
Linked Data Reactor: a Framework for Building
Reactive Linked Data Applications

Ali Khalili

Knowledge Representation and Reasoning Research Group
Deptartment of Computer Sciences

Vrije Universiteit Amsterdam
a.khalili@vu.nl

Abstract. This paper presents Linked Data Reactor (LD-Reactor or
LD-R) as a framework for developing flexible and reusable User In-
terface components for Linked Data applications. LD-Reactor utilizes
Facebook’s ReactJS components, Flux architecture and Yahoo’s Fluxible
framework for isomorphic Web applications. It also exploits Semantic-
UI framework for flexible UI themes. LD-R aims to apply the idea of
component-based application development into RDF data model hence
enhancing current user interfaces to view, browse and edit Linked Data.

Documentation: http://ld-r.org
Demo: http://demo.ld-r.org
Code Repository: https://github.com/ali1k/ld-r

1 Introduction

With the growing number of structured data published, the Web is moving
towards becoming a rich ecosystem of machine-understandable Linked Data.
Semantically structured data facilitates a number of important aspects of in-
formation management such as information retrieval, search, visualization, cus-
tomization, personalization and integration [1]. Despite all these benefits, Linked
Data Applications (LDAs) are not yet adopted by the large community of Web
developers outside the Semantic Web domain and, causally, by the end-users on
the Web.

The current communication gap between Semantic Web developers and User
Experience (UX) designers, caused by the need to bear Semantic Web knowl-
edge, prevents the streamlined flow of best practices from the UX community
into Linked Data user interface (UI) development. The resulting lack of adoption
and standardization often makes current LDAs inconsistent with user expecta-
tions and impels more development time and costs on LDA developers. In this
situation, more time is spent in re-designing existing UIs rather than focusing
on innovation and creation of sophisticated LDAs.

In [3], We performed an elaborate study on the current pitfalls of LDA UI
design and proposed Adaptive Linked Data-driven Web Components and its open

http://ld-r.org
http://demo.ld-r.org
https://github.com/ali1k/ld-r

source implementation called Linked Data Reactor1 as a solution to tackle those
issues. This paper serves as a more technical description of that idea.

2 Adaptive Linked Data-driven Web Components

In order to streamline the process of UI development in LDAs, we propose an
architecture of adaptive LD-R Web components – Web components enriched by
the RDF data model. As shown in Figure 1, the proposed architecture addresses
LDA UI reusability and flexibility by incorporating RDF-based Web components
and scopes. In the following sections, the main elements of the architecture are
described:

2.1 LD-R Web Components

As depicted in Figure 2, there are four core component levels in an LD-R Web
application. Each core component abstracts the actions required for retrieving
and updating the graph-based data and provides a basis for user-defined com-
ponents to interact with Linked Data in three modes: view, edit and browse.

LD-R
Web Components

Scopes
Configurations

Interaction Mode

Core (RDF) Components

User-defined Components

View Edit Browse

Core Configurations

Component-specific Configurations

Semantic
Markup

Fig. 1. Main elements of the adaptive LD-R Web components architecture.

1 http://ld-r.org

http://ld-r.org

Dataset

Resource

Property

Value

Browser

Data Flow1

2

3

4

Viewer Editor

Fig. 2. Core LD-R Web components.

The data-flow in the system starts from the Dataset component which han-
dles all the events related to a set of resources under a named graph identified
by a URI. The next level is the Resource component which is identified by a URI
and indicates what is described in the application. A resource is described by a
set of properties which are handled by the Property component. Properties can
be either individual or aggregate when combining multiple features of a resource
(e.g. a component that combines longitude and latitude properties; start date
and end date properties for a date range, etc.). Each property is instantiated
by an individual value or multiple values in case of an aggregate object. The
value(s) of properties are controlled by the Value component. In turn, Value
components invoke different components to view, edit and browse the property
values. Viewer, Editor and Browser components are terminals in the LD-R sin-
gle directional data flow where customized user-generated components can be
plugged into the system. User interactions with the LD-R components are con-
trolled by a set of configurations defined on one or more selected component
levels known as scopes.

2.2 Scopes and Configurations

LD-R Web components provide a versatile approach for context adaptation.
A context can be a specific domain of interest, a specific user requirement or
both. In order to enable customization and personalization, the LD-R approach
exploits the concepts of Scope and Configuration. A scope is defined as a hier-
archical permutation of Dataset, Resource, Property and Value components (cf.
Figure 3).

V

DRPD

P

D

R

P

V

V

D

R

D

V

V

P

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

R

P

V

D

P

V

P

V V

R

D

R P

R D

R

Value

DatasetResourceProperty

Fig. 3. LD-R scopes based on the permutation of dataset, resource, property and value
identifiers.

1 InitialConfig = {initial application configuration }
2 Context = [array of scopes with the corresponding

configuration objects]

3 Config = InitialConfig

4 for (i = 15; i < 1; i--) {
5 Config.compareWith(Context[i]) {
6 Config.addMissingAttributes ()

7 Config.overwriteExistingAttributes ()

8 }
9 }

Code 1. Algorithm for the LD-R UI adaptation.

Each scope conveys a certain level of specificity on a given context ranging
from 1 (most specific) to 15 (least specific). Scopes are defined by using either the
URIs of named graphs, resources and properties, or by identifying the resource
types and data types. A configuration is defined as a setting which affects the
way the LDA and Web components are interpreted and rendered (e.g. render
a specific component for a specific RDF property or enforce a component to
display Wikipedia page URIs for DBpedia resources). UI adaptation is handled
by traversing the configurations for scopes, populating the configurations and
overwriting them when a more specific applicable scope is found. As shown in
Code 1 below, in the worst case when the DRPV scopes are used and the UI is

R2

C8

C10

C7 C11

R4

D2

R3

P5P4P3P2P1

R1

D1

C3

C4

C2

App
C1

C5

C6

C9

Fig. 4. A sample LD-R configuration hypergraph.

supposed to render the Value components, all 15 scopes need to be traversed for
the adaptation:

Figure 4 demonstrates an example of the LD-R configuration hypergraph
containing scopes with the maximum depth of DRP. The graph defines a generic
configuration for the application as C1. There are configurations defined for the
dataset scope D1 as C2, for the resource scope R2 as C3 and for the property
scope P2 as C4. There are also configurations for the RP scope R2P2 as C5 and for
the DRP scope D1R2P2 as C6. Let’s suppose we have a setting with the following
values for the scopes and configurations:

– D1= <http://ld-r.org/users>

– R2= type foaf:Person

– P2= rdfs:label

– C1={{viewer:‘basic’},{attr1:1},{attr2:3}}
– C2={{attr1:0},{attr3:2}}
– C3={{attr3:1},{attr4:4},{attr5:1}}
– C4={{attr5:2},{attr6:1}}
– C5={{viewer:‘contact’},{attr3:5},{attr7:6}}
– C6={{attr3:8},{attr7:1},{attr8:3}}

With the above settings, when a property component for rdfs:label is ren-
dered without the dataset and resource context, the configuration will be:

{{viewer:‘basic’},{attr1:1},{attr2:3},{attr5:2},{attr6:1}}

When the property component gets rendered within the resource context of
type foaf:Person, the settings for viewer and attr5 are overwritten and new
settings for attr3, attr4 and attr7 are added:

{{viewer:‘contact’},{attr1:1},{attr2:3},{attr3:5},{attr4:4},
{attr5:1},{attr6:1},{attr7:6}}

When the additional context of dataset as <http://ld-r.org/users> is
given, attr3 and attr7 get overwritten and a new setting for attr8 is added:

{{viewer:‘contact’},{attr1:0},{attr2:3},{attr3:8},{attr4:4},
{attr5:1},{attr6:1},{attr7:1},{attr8:3}}

Scopes can also be defined on a per user basis, facilitating the versioning
and reuse of user-specific configurations. User-Specific configurations provide
different views on components and thereby data, based on the different personas
dealing with them.

In addition to the fine-grained component customization, LD-R Web applica-
tions provide a fine-grained access control over the data through the component
scopes. For example, an application developer can restrict access to a specific
property of a specific resource in a certain dataset and on a specific interaction
mode.

2.3 Semantic Markup for Web Components

The innate support of RDF in LD-R Web components enable the automatic
creation of semantic markup on the UI level. Lower semantic techniques such
as RDFa, Mircodata and JSON-LD can be incorporated in the core LD-R com-
ponents to expose structured data to current search engines which are capable
of parsing semantic markup. For example, an LD-R component created based
on the Good Relations2 or Schema.org ontologies, can automatically expose the
product data as Google Rich Snippets for products3 which will provide better
visibility of the data on Web search results (i.e. SEO).

In addition to automatic annotation of data provided by the LD-R Web
components, the approach offers semi-automatic markup of Web components by
creating component metadata. Component metadata consists of two categories
of markup:

– Automatic markup generated by parsing component package specification
– metadata about the component and its dependencies. It includes general
metadata such as name, description, version, homepage, author as well as
technical metadata on component source repository and dependencies.

– Manual markup created by component authors which exposes metadata such
as component level (dataset, resource, property, value), granularity (indi-
vidual, aggregate), mode (view, edit, browse) and configuration parameters
specification.

2 http://www.heppnetz.de/projects/goodrelations/
3 https://developers.google.com/structured-data/

Schema.org
http://www.heppnetz.de/projects/goodrelations/
https://developers.google.com/structured-data/

Actions

StoresLD-R
Components

RESTful Services

Endpoint

communicate

CRUD

Data

update

render

action

Dispatcher
dispatch

Flux
unidirectional data flow

Fig. 5. Data flow in the LD-Reactor framework.

Similar to content markup, Component markup can utilize commonly-known
ontologies such as Schema.org in order to improve the visibility of LD-R com-
ponents and enable application assemblers to better understand the intended
usage and capabilities of a given component.

3 Implementation

In order to realize the idea of adaptive Linked Data-driven Web components,
we implemented an open-source software framework called Linked Data Reactor
(LD-Reactor) which is available online at http://ld-r.org. LD-Reactor uti-
lizes Facebook’s ReactJS4 components, the Flux5 architecture, Yahoo!’s Flux-
ible6 framework for isomorphic Web applications (i.e. running the components
code both on the server and the client) and the Semantic-UI7 framework for flex-
ible UI themes. The main reasons we chose React components over other Web
Components solutions (e.g. Polymer8, AngularJS9, EmberJS10, etc.) were the
maturity and maintainability of the technology, the native multi-platform sup-
port, the number of developer tools/components/applications, and the efficiency
of its underlying virtual DOM approach11.

As shown in Figure 5, LD-Reactor follows the Flux architecture which es-
chews MVC (Model-View-Controller) in favour of a unidirectional data flow.

4 https://facebook.github.io/react/
5 https://facebook.github.io/flux
6 http://fluxible.io/
7 http://semantic-ui.com/
8 http://www.polymer-project.org/
9 https://angularjs.org/

10 http://emberjs.com/
11 Elaborating on all these factors is beyond the scope of this paper.

Schema.org
http://ld-r.org
https://facebook.github.io/react/
https://facebook.github.io/flux
http://fluxible.io/
http://semantic-ui.com/
http://www.polymer-project.org/
https://angularjs.org/
http://emberjs.com/

When a user interacts with a React component, the component propagates an
action through a central dispatcher, to the various stores that hold the ap-
plication’s data and business logic, and updates all affected components. The
component interaction with SPARQL endpoints to retrieve and update Linked
Data occurs through the invocation of RESTful services in actions.

In order to allow the bootstrapping of LDA UIs, LD-Reactor provides a
comprehensive framework that combines the following main elements:

– A set of RESTful Web services that allow basic CRUD operations on Linked
Data using SPARQL queries12.

– A set of core components called Reactors which implement core Linked Data
components (see Figure 2) together with their corresponding actions and
stores.

– A set of default components which allow basic viewing, editing and browsing
of Linked Data.

– A set of minimal viable configurations based on the type of data and prop-
erties from commonly-used vocabularies on the Semantic Web (e.g. foaf,
dcterms and SKOS).

– A basic access control plugin which allows restricting read/write access to
data.

LD-Reactor implementation is compliant with Microservices Architecture [4]
where the existing ReactJS components can be extended by complementary
Linked Data services. In contrast to the centralized monolithic architecture, the
microservices architecture allows placing the main functionalities of the LDA
into separate decoupled services and scale by distributing these services across
servers, replicating as needed. This architectural style also helps to minimize
the redeploying of the entire application when changes in components were re-
quested.

There are three modes of interactions within LD-R components namely view,
browse and edit. These modes work with two types of value granularity: indi-
vidual and aggregate. As shown in Figure 7, components can target individual
values or interact with aggregate values when users want to show/update multi-
ple values at once. Figure 6 depicts the browse mode where individual (e.g. item
lists with check boxes) and aggregate data browser (e.g. data sliders or maps)
components can be employed.

Semantic markup of data (as discussed in Section 2.3) is supported natively
within the framework by embedding Microdata annotations within the LD-R
Web components. Additionally, in order to facilitate the creation of compo-
nent metadata, we developed a tool13 which automatically generates the general

12 the framework is compliant with the SPARQL 1.1 standard. However, we have iden-
tified certain inconsistencies between OpenRDF Sesame and OpenLink Virtuoso
RDF stores, which did not allow the execution of syntactically identical queries
across both systems. Thereby, specific adaptors have been implemented for each of
these two RDF stores.

13 https://github.com/ali1k/ld-r-metadata-generator

https://github.com/ali1k/ld-r-metadata-generator

Fig. 6. A screenshot of LD-Reactor browse mode.

metadata about the components in JSON-LD, using Schema.org’s SoftwareAp-
plication schema14.

Code 2 presents a sample LD-R config which is already in-use within the
RISIS project15:

– The UI should be able to render metadata properties in different categories
(Code 2 line 3, 4).

– The labels for properties should be changeable in the UI especially for tech-
nical properties (e.g. RDF dump) that are unknown to researchers outside
the Semantic Web domain (Code 2 line 18, 26, 40).

– There should be a hint for properties to help metadata editors to understand
the meaning of the property (Code 2 line 20, 28, 41).

– Instead of showing the full URIs, the output UI should render either a short-
ened URI or a meaningful string linked to the original URI (Code 2 line 6).

– Whenever a DBpedia URI is provided, display the corresponding Wikipedia
URI enabling users to retrieve human readable information (Code 2 line 33,
45).

– When a dropdown menu is provided, there should be the ability to accom-
modate user-defined values which are not listed in the menu (Code 2 line
57).

14 https://schema.org/SoftwareApplication
15 http://datasets.risis.eu

Schema.org
https://schema.org/SoftwareApplication
http://datasets.risis.eu

Fig. 7. A screenshot of LD-Reactor view and edit mode for individual (top) and ag-
gregate (bottom) values.

1 resource: {
2 ‘generic ’: {
3 usePropertyCategories: 1,
4 propertyCategories: [‘overview ’, ‘legalAspects ’, ‘technicalAspects ’]

,
5 resourceReactor: [‘Resource ’],
6 shortenURI: 1
7 }
8 },
9 property: {

10 ‘generic ’: {
11 propertyReactor: [‘IndividualProperty ’],
12 objectReactor: [‘IndividualObject ’],
13 objectIViewer: [‘BasicIndividualView ’],
14 objectIEditor: [‘BasicIndividualInput ’]
15 },
16 ‘http://purl.org/dc/terms/language ’: {
17 allowNewValue: 1,
18 label: [‘Dataset Language ’],
19 category: [‘overview ’],
20 hint: [‘The language of the dataset. Resources defined by the

Library of Congress (http://id.loc.gov/vocabulary/iso639-1.html
, http://id.loc.gov/vocabulary/iso639-2.html) SHOULD be used.’]
,

21 objectIViewer: [‘LanguageView ’],
22 objectIEditor: [‘LanguageInput ’],
23 defaultValue: [‘http://id.loc.gov/vocabulary/iso639-1/en ’]
24 },
25 ‘http://purl.org/dc/terms/spatial ’: {
26 label: [‘Geographical coverage ’],
27 category: [‘overview ’],
28 hint: [‘The geographical area covered by the dataset.’],
29 allowNewValue: 1,
30 objectReactor: [‘AggregateObject ’],
31 objectAViewer: [‘DBpediaGoogleMapView ’],
32 objectIViewer: [‘BasicDBpediaView ’],
33 asWikipedia: 1,
34 objectAEditor: [‘BasicAggregateInput ’],
35 objectIEditor: [‘DBpediaInput ’],
36 lookupClass: [‘Place ’]
37 },
38 ‘http://purl.org/dc/terms/subject ’: {
39 category: [‘overview ’],
40 label: [‘Keywords ’],
41 hint: [‘Tags a dataset with a topic.’],
42 allowNewValue: 1,
43 objectIEditor: [‘DBpediaInput ’],
44 objectIViewer: [‘BasicDBpediaView ’],
45 asWikipedia: 1
46 },
47 ‘http://purl.org/dc/terms/license ’: {
48 category: [‘legalAspects ’],
49 label: [‘License ’],
50 allowNewValue: 1,
51 objectIViewer: [‘BasicOptionView ’],
52 objectIEditor: [‘BasicOptionInput ’],
53 options: [
54 {label: ‘Open Data Commons Attribution License ’, value: ‘http://

www.opendatacommons.org/licenses/by/’},
55 {label: ‘Creative Commons Attribution -ShareAlike ’, value: ‘http:

// creativecommons.org/licenses/by-sa/3.0/’}
56],
57 allowUserDefinedValue: 1
58 }
59 }

Code 2. An excerpt of the LD-Reactor configuration file.

4 Related Work

We have brought an elaborate analysis of the related work in [3]. In this section,
we only summarize the main related work.

UI Frameworks. WYSIWYM (What You See Is What You Mean) [2] is a generic
semantics-based UI model to allow integrated visualization, exploration and au-
thoring of structured and unstructured data. Our proposed approach utilizes the
WYSIWYM model for binding RDF-based data to viewer, editor and browser
UIs. Uduvudu [5] is another approach to making an adaptive RDF-based UI en-
gine to render Linked Data. Instead of adopting Web components, Uduvudu em-
ploys a set of flexible UI templates that can be combined to create complex UIs.
Even though the static templates do not provide enough interactions for editing
and browsing data (in contrast to Web components), we believe that algorithms
for automatic selection of templates employed in Uduvudu can be reused in the
LD-Reactor framework for automatic generation of configurations. Another sim-
ilar approach is SemwidgJS [10] which brings a semantic Widget library for the
rapid development of LDA UIs. SemwidgJS offers a simplified query language
to allow the navigation of graph-based data by ordinary Web developers. The
main difference between LD-R and SemwidgJS is that LD-Reactor suggests a
more interactive model which is not only for displaying Linked Data but also
for providing user adaptations based on the meaning of data. LD-Viewer [6] is
another related Linked Data presentation framework particularly tailored for the
presentation of DBpedia resources. In contrast to LD-Reactor, LD-Viewer builds
on top of the traditional MVC architecture and its extensions rely heavily on the
knowledge of RDF which is a burden for developers unfamiliar with Semantic
Web technologies.

Tools and Applications. In addition to the LDA UI frameworks, there are sev-
eral ad-hoc tools for Linked Data visualization and exploration such as Balloon
Synopsis [8] and Sgvizler [9] which can be utilized as Web components within
the LD-Reactor framework. [7] provides an extensive list of these tools aiming
to make Linked Data accessible for common end-users who are not familiar with
Semantic Web.

Overall, what distinguishes Linked-Data-Reactor from the existing frame-
works and tools is its modern isomorphic component-based architecture that
addresses reactive and reusable UIs as its first class citizen.

5 Conclusion

We argue that bridging the gap between Semantic Web Technologies and Web
Components worlds brings mutual benefits for both sides. On one hand, Semantic
Web technologies provide support for richer component discovery, interoperabil-
ity, integration, and adaptation on the Web. On the other, Web Components
bring the advantages of UI standardization, reusability, replaceability and en-
capsulation to current Semantic Web applications.

This paper presented Linked Data Reactor as a component-based LDA de-
velopment framework which aims to bring a better communication between UX
designers and Semantic Web developers in order to reuse best UI practices within
Linked Data applications.

References

1. A. Khalili and S. Auer. User interfaces for semantic authoring of textual content:
A systematic literature review. Web Semantics: Science, Services and Agents on
the World Wide Web, 22(0):1 – 18, 2013.

2. A. Khalili and S. Auer. Wysiwym – integrated visualization, exploration and
authoring of semantically enriched un-structured content. Semantic Web Journal,
2014.

3. A. Khalili, A. Loizou, and F. van Harmelen. Adaptive linked data-driven web
components: Building flexible and reusable semantic web interfaces. Semantic
Web Conference (ESWC) 2016, 2016.

4. J. Lewis and M. Fowler. Microservices, 2014. http://martinfowler.com/

articles/microservices.html.
5. M. Luggen, A. Gschwend, A. Bernhard, and P. Cudre-Mauroux. Uduvudu: a graph-

aware and adaptive ui engine for linked data. In C. Bizer, S. Auer, T. Berners-Lee,
and T. Heath, editors, Workshop on Linked Data on the Web (LDOW), number
1409 in CEUR Workshop Proceedings, Aachen, 2015.

6. D. Lukovnikov, C. Stadler, and J. Lehmann. Ld viewer - linked data presenta-
tion framework. In Proceedings of the 10th International Conference on Semantic
Systems, SEM ’14, pages 124–131, New York, NY, USA, 2014. ACM.

7. S. Ojha, M. Jovanovic, and F. Giunchiglia. Entity-centric visualization of open
data. In J. Abascal, S. Barbosa, M. Fetter, T. Gross, P. Palanque, and M. Winckler,
editors, Human-Computer Interaction INTERACT, volume 9298 of Lecture Notes
in Computer Science, pages 149–166. Springer, 2015.

8. K. Schlegel, T. Weißgerber, F. Stegmaier, M. Granitzer, and H. Kosch. Balloon
synopsis: A jquery plugin to easily integrate the semantic web in a website. In
R. Verborgh and E. Mannens, editors, ISWC Developers Workshop, volume 1268
of CEUR Workshop Proceedings, pages 19–24. CEUR-WS.org, 2014.

9. M. G. Skjveland. Sgvizler: A javascript wrapper for easy visualization of sparql
result sets. In 9th Extended Semantic Web Conference (ESWC2012), May 2012.

10. T. Stegemann and J. Ziegler. Semwidgjs: A semantic widget library for the rapid
development of user interfaces for linked open data. In 44. Jahrestagung der
Gesellschaft für Informatik, Informatik 2014, Big Data - Komplexität meistern,
22.-26. September 2014 in Stuttgart, Deutschland, pages 479–490, 2014.

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

	Linked Data Reactor: a Framework for Building Reactive Linked Data Applications

