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Abstract. The cognitive theory of conceptual blending models human creativity
as a mental process that combines two mental spaces into a new mental space,
called a blend. According to this theory, a blend is constructed by taking the
commonalities among the input mental spaces into account, to form a so-called
generic space, and by projecting their non-common structure in a selective way
to the novel blended space. In this paper, we apply this idea to blend input spaces
modeled as complex EL++ concepts. To construct the generic space of two EL++

concepts, these need to be generalised in a controlled manner. For this, we pro-
pose an upward refinement operator that is used for finding common generalisa-
tions of EL++ concepts.

1 Introduction

The generalisation of concepts plays a crucial role in creative cognitive processes for
analogical reasoning and concept invention. In this work we focus on its role in con-
ceptual blending [13], a cognitive theory that inspired several algorithms and method-
ologies in computational creativity research [24, 26, 29].

A key problem in computational approaches to conceptual blending is that the com-
bination of two concepts to be blended may generate an unsatisfiable one due to contra-
diction, or may not satisfy certain properties. However, by generalising input concepts,
we can remove inconsistencies to find a novel and useful combination of the input con-
cepts. For instance, a ‘red French sedan’ and a ‘blue German minivan’ can be blended
to a ‘red German sedan’ by generalising the first concept to a ‘red European sedan’ and
the second one to a ‘coloured German car’. The least general generalisation of our input
concepts—a ‘coloured European car’—serves as an upper bound of the generalisation
space to be explored, and, in a certain sense, plays the role of the so called generic space
in conceptual blending, which states the shared structure of both concepts.

This paper addresses the formalisation of an operator for generalising input spaces
modeled as EL++ concepts [3,4]. The generalisation of EL++ concepts has been stud-
ied both in the Description Logic (DL) and in the Inductive Logic Programming (ILP)
literature, although from different perspectives. Whilst approaches in DL focus on for-
malising the computation of a least general generalisation (LGG) (also known as least



common subsumer) among different concepts as a non-standard reasoning task [2,6,27],
approaches in ILP are concerned on learning DL descriptions from examples [20]. In
both cases, however, finding an LGG is a challenging task. Its computability and exis-
tence depend on the type of DL adopted and on the assumptions made over the Tbox.

Our work relates to these approaches, but our main motivation for generalising DL
concepts is intrinsically different. Although we do need to be aware of what properties
are shared by the concepts in order to blend them, it is not necessary (although desirable)
to find a generic space that is also an LGG. A minimally specific common subsumer
w.r.t. the subconcepts that can be built using the axioms in a TBox will suffice. With
this objective in mind, we propose a generalisation refinement operator for generalising
EL++ concepts which is inductively defined over the structure of concept descriptions.
We discuss some of the properties typically used to characterise refinement operators,
namely, local finiteness, properness and completeness [28].4

This paper is organised as follows: Section 2 provides the background knowledge
to make this paper self-contained. Section 3 describes how conceptual blending can be
characterised by the notion of amalgams [7, 22] in order to create new EL++ concepts.
Section 4 proposes the formalisation of a generalisation refinement operator for gener-
alising EL++ concepts. In Section 5, we describe how the operator can be implemented
in Answer Set Programming (ASP) [15] in order to find a generic space between EL++

concepts. Section 6 outlines several works that relate to ours from different perspectives,
before concluding and providing a vision for future work.

2 Background

In this section we introduce the basic notions that will be used throughout the paper.
After presenting the description logic EL++, we introduce refinement operators.

2.1 The Description Logic EL++

In DLs, concept and role descriptions are defined inductively by means of concept and
role constructors over the sets NC of concept names, NR of role names, and NI of
individual names. As is common practice, we shall write A, B for concept names, C,
D for concept descriptions, r, s for role names, and a, b, for individual names.

The semantics of concept and role descriptions is defined in terms of an interpreta-
tion I = (∆I , ·I), where∆I is a non-empty domain and ·I is an interpretation function
assigning a set AI ⊆ ∆I to each concept name A ∈ NC , a set rI ⊆ ∆I ×∆I to each
role name r ∈ NR, and an element aI ∈ ∆I for each individual name a ∈ NI , which
is extended to general concept and role descriptions. The upper part of Table 1 shows
the constructors of the description logic EL++ that are relevant for this paper, together
with their interpretation. For a complete presentation of EL++ we refer to [3, 4].

4 Briefly, a refinement operator is said to be locally finite when it generates a finite set of re-
finements at each step; proper, when its refinements are not equivalent to the original concept,
and complete, when it produces all possible refinements of a given concept. These property
are formally presented in Section 2.2.



concept description interpretation

A AI ⊆ ∆I

> ∆I

⊥ ∅
C uD CI ∩DI

∃r.C {x ∈ ∆I | ∃y ∈ ∆I .(x, y) ∈ rI ∧ y ∈ CI}

axiom satisfaction

C v D CI ⊆ DI

C ≡ D CI = DI

r1 ◦ · · · ◦ rn v r rI1 ; · · · ; rIn ⊆ rI

domain(r) v C rI ⊆ CI ×∆I

range(r) v C rI ⊆ ∆I × CI

Table 1: Syntax and semantics of some EL++ contructors and axioms. (‘;’ is the usual composi-
tion operator in relation algebra.)

A knowledge base consists of a finite set T of terminological axioms, called TBox,
which contains intensional knowledge defining the main notions relevant to the domain
of discourse; and a finite set A of assertional axioms, called ABox, which contains
extensional knowledge about individual objects of the domain. In this paper, we focus
only on terminological axioms of the form C v D, i.e. general concept inclusions
(GCIs), and r1 ◦ · · · ◦ rn v r, i.e. role inclusions (RIs), as well as axioms specifying
domain and range restrictions for roles. The lower part of Table 1 shows the form of
these axioms, together with the condition for these to be satisfied by an interpretation
I. By L(T ) we refer to the set of all EL++ concept descriptions we can form with the
concept and role names occurring in T .

RIs allow one to specify role hierarchies (r v s) and role transitivity (r ◦ r v r).
The bottom concept⊥, in combination with GCIs, allows one to express disjointness of
concept descriptions, e.g., C uD v ⊥ tells that C and D are disjoint. An interpretation
I is a model of a TBox T iff it satisfies all axioms in T . The basic reasoning task in
EL++ is subsumption. Given a TBox T and two concept descriptions C and D, we say
that C is subsumed by D w.r.t. T , denoted as C vT D iff CI ⊆ DI for every model
I of T . C is strictly subsumed by D w.r.t. T (C @T D) iff C vT D but D 6vT C. We
write C ≡T D as an abbreviation for C vT D and D vT C. Analogously, given two
roles r, s ∈ NR, we say that r is subsumed by s w.r.t. T , denoted as r vT s iff rI ⊆ sI
for every model I of T . The role r is strictly subsumed by s w.r.t. T iff r vT s but
s 6vT r.

2.2 Refinement Operators

Refinement operators are a well known notion in Inductive Logic Programming where
they are used to structure a search process for learning concepts from examples. In this



setting, two types of refinement operators exist: specialisation (or downward) refine-
ment operators and generalisation (or upward) refinement operators. While the former
constructs specialisations of hypotheses, the latter contructs generalisations.

Formally speaking, refinement operators are defined over quasi-ordered sets. A
quasi-ordered set is a pair 〈S,�〉 where S is a set and � is a binary relation among
elements of S that is reflexive (a � a) and transitive (if a � b and b � c then a � c). If
a � b, we say that b is more general than a, and if also b � a we say that a and b are
equivalent. A generalisation refinement operator is defined as follows.5

Definition 1. A generalisation refinement operator γ over a quasi-ordered set 〈S,�〉
is a set-valued function such that ∀a ∈ S : γ(a) ⊆ {b ∈ S | a � b}.

A refinement operator γ can be classified according to some desirable properties [28].
We say that γ is:

– locally finite, if the number of generalisations generated for any given element by
the operator is finite, that is, ∀a ∈ S : γ(a) is finite;

– proper, if an element is not equivalent to any of its generalisations, i.e., ∀a, b ∈ S,
if b ∈ γ(a), then a and b are not equivalent;

– complete, if there are no generalisations that are not generated by the operator, i.e.,
∀a, b ∈ S it holds that if a � b, then b ∈ γ∗(a) (where γ∗(a) denotes the set of all
elements which can be reached from a by means of γ in zero or a finite number of
steps).

When a refinement operator is locally finite, proper, and complete it is said to be ideal.
An ideal specialisation refinement operator for EL has been explored in [19] by taking
〈S,�〉 as the set of EL concept descriptions ordered under vT . In this paper, we define
a generalisation refinement operator for EL++ and study its properties.

3 Amalgam-based Conceptual Blending of EL++ Concepts

The process of conceptual blending can be characterised by the notion of amalgam [7,
22]. According to this approach, input concepts are generalised until a generic space is
found, and pairs of generalised versions of the input concepts are ‘combined’ to create
blends.

Formally, the notion of amalgams can be defined in any representation language
L for which a subsumption relation between formulas (or descriptions) of L can be
defined, and therefore also in L(T ) with the subsumption relationvT for a given EL++

TBox T . Given two descriptions C1, C2 ∈ L(T ), a most general specialisation (MGS)
is a description Cmgs such that Cmgs vT C1 and Cmgs vT C2 and for any other
description D such that D vT C1 and D vT C2, then D vT Cmgs. A least general
generalisation (LGG) is a description Clgg such that C1 vT Clgg and C2 vT Clgg
and for any other description D such that C1 vT D and C2 vT D, then Clgg vT D.
Intuitively, an MGS is a description that has all the information from both original
descriptions C1 and C2, while an LGG contains what is common to them.6

5 A deeper analysis of refinement operators can be found in [28].
6 In [22], the LGG and MGS of two concept descriptions are also known as their anti-unification

and unification respectively.



Horse Bird

Horse

Pegasus

Bird

GenericSpace

Fig. 1: A diagram of an amalgam Pegasus from descriptions Horse and Bird and their respective
generalisations Horse and Bird. Arrows indicate the subsumption of the target by the source of
the arrow.

An amalgam or blend of two descriptions is a new description that contains parts
from these original descriptions. For the purposes of this paper we can define an amal-
gam of two descriptions as follows.

Definition 2 (Amalgam). Let T be an EL++ TBox. A description Cam ∈ L(T ) is an
amalgam of two descriptions C1 and C2 (with LGG Clgg) if there exist two descriptions
C1 and C2 such that: C1 vT C1 vT Clgg, C2 vT C2 vT Clgg, and Cam is an MGS
of C1 and C2.

This definition is illustrated in Figure 1 by means of a typical blend example: Pega-
sus, the winged divine stallion. From a conceptual blending point of view, Pegasus is
a blend between a horse and a bird, maintaining pretty much the horse characteristics
but adding the bird-like features such as the wings and the ability to fly. A horse and a
bird can be described by concepts having different types of clade, some specific body-
parts and abilities. For instance, a horse is a mammal, with a torso and legs, and with
the ability to walk and to trot. A stereotypical characterisation (concept definition) of a
horse and a bird modeled in EL++ is shown below.

Horse ≡ Mammal u ∃hasBodyPart.Torso u ∃hasBodyPart.Legs u
∃hasAbility.Walk u ∃hasAbility.Trot

Bird ≡ Avialae u ∃hasBodyPart.Torso u ∃hasBodyPart.Legs u
∃hasBodyPart.Wings u ∃hasAbility.LayEggs u ∃hasAbility.Fly

The combination of these concepts violates the common sense knowledge that mam-
mals do not generally lay eggs and that avialae do not trot.7 Therefore, these abilities
need to be generalised in a controlled manner before these concepts can be blended.
The common descriptions between a horse and a bird—a clade with body-parts torso
and legs—is a lower bound in the space of generalisations that need to be explored in
order to generalise these concepts and to blend them into Pegasus. Then, a generalised
version of the bird concepts is:

Bird ≡ Clade u ∃hasBodyPart.Torso u ∃hasBodyPart.Legs u
∃hasBodyPart.Wings u ∃hasAbility.Fly

7 This common sense knowledge can be modeled in EL++ by means of two axioms:
Mammals u ∃hasAbility.LayEggs v ⊥ and Avialae u ∃hasAbility.Trot v ⊥. For the sake of
this example, we do not consider the case of the platypus, an egg-laying mammal.



When we blend Bird with Horse, we obtain a concept describing Pegasus. Please notice
that in this case we can use a special case of amalgam (called asymmetric amalgam), in
which Horse and Horse coincide.

Pegasus ≡ Mammal u ∃hasBodyPart.Torso u ∃hasBodyPart.Legs u
∃hasBodyPart.Wings u ∃hasAbility.Walk u ∃hasAbility.Trot u
∃hasAbility.Fly

In the next section, we define a generalisation refinement operator that allows us to find
generalisations of EL++ concept descriptions needed for computing the amalgams as
described above.

4 A Generalisation Refinement Operator for EL++

In any description logic the set of concept descriptions are ordered under the subsump-
tion relation forming a quasi-ordered set. For EL++ in particular they form a bounded
meet-semilattice with conjunction as meet operation, > as greatest element, and ⊥ as
least element.8 In order to define a generalisation refinement operator for EL++, we
need some auxiliary definitions.

Definition 3. Let T be an EL++ TBox. The set of subconcepts of T is given as

sub(T ) = {>,⊥} ∪
⋃

CvD∈T

sub(C) ∪ sub(D) (1)

where sub is inductively defined over the structure of concept descriptions.

Based on sub(T ), we define the upward cover set of atomic concepts and roles. sub(T )
guarantees the following upward cover set to be finite.

Definition 4. Let T be an EL++ TBox with concept names fromNC . The upward cover
set of an atomic concept A ∈ NC ∪ {>,⊥} and of a role r ∈ NR with respect to T is
given as:

UpCov(A) := {C ∈ sub(T ) | A vT C (2)
and there is no C ′ ∈ sub(T ) such that A @T C

′ @T C}

UpCov(r) := {s ∈ NR | r vT s (3)
and there is no s′ ∈ NR such that r @T s′ @T s}

We can now define our generalisation refinement operator for EL++ as follows.

8 A bounded meet-semilattice is a partially ordered set which has a meet (or greatest lower
bound) for any nonempty finite subset.



Definition 5. Let T be an EL++ TBox. We define the generalisation refinement operator
γ inductively over the structure of concept descriptions as follows:

γ(A) = UpCov(A)

γ(>) = UpCov(>) = ∅
γ(⊥) = UpCov(⊥)

γ(C uD) = {C ′ uD | C ′ ∈ γ(C)} ∪ {C uD′ | D′ ∈ γ(D)} ∪ {C,D}

γ(∃r.C) =
{
γr(∃r.C) ∪ γC(∃r.C) whenever UpCov(r) 6= ∅ or γ(C) 6= ∅
{>} otherwise.

where γr and γC are defined as:

γr(∃r.C) = {∃s.C | s ∈ UpCov(r)}
γC(∃r.C) = {∃r.C ′ | C ′ ∈ γ(C)}

Given a generalisation refinement operator γ, EL++ concepts are related by refinement
paths as described next.

Definition 6. A finite sequence C1, . . . , Cn of EL++ concepts is a concept refinement
path C1

γ−→ Cn from C1 to Cn of the generalisation refinement operator γ iff Ci+1 ∈
γ(Ci) for all i : 1 ≤ i < n. γ∗(C) denotes the set of all concepts that can be reached
from C by means of γ in a finite number of steps.

That γ is indeed a generalisation refinement operator as expressed by Definition 1 can
be proven by applying structural induction on EL++ concepts [10].

Proposition 1. The operator γ is a generalisation refinement operator over the set of
all EL++ concepts with the order vT .

Our definition of UpCov for basic concepts and roles only considers the set of sub-
concepts present in a TBox T . This guarantees that γ is locally finite, since at each
generalisation step, the set of possible generalisations is finite.

Proposition 2. The generalisation refinement operator γ is locally finite.

This proposition can be proven by showing that for every EL++ concept C, γ(C) is
finite by induction on the structure of C [10].

When generalising concept names and role names, we always ensure that the result-
ing concepts are more general (w.r.t. the TBox T ) than the original elements. Unfortu-
nately, this does not guarantee that γ is proper.

Example 1. Let T := {A v B}. Then, following Definition 5, we have that generalis-
ing the concept AuB can yield Au>. However, both these concepts are equivalent to
A w.r.t. T . Therefore, γ is not proper.

One possible way to avoid this situation, and, therefore, to guarantee the properness of
γ, is to redefine it with an additional semantic test. More precisely, let γ′ be defined as:

γ′(C) := γ(C)\{D ∈ γ(C) such that D ≡T C} (4)

Essentially, γ′ discards those generalisations that are equivalent to the concept being
generalised. It is easy to see that γ′ is still a finite generalisation refinement operator
and it is proper.



Proposition 3. The generalisation refinement operator γ′ is proper.

The repetitive application of the generalisation refinement operator allows to find a
description that represents the properties that two or more EL++ concepts have in com-
mon. This description is a common generalisation of EL++ concepts, the so-called
generic space that is used in conceptual blending.

Definition 7. An EL++ concept description G is a generic space of the EL++ concept
descriptions C1, . . . , Cn if and only if G ∈ γ′∗(Ci) for all i = 1, . . . , n.

Example 2. Let us consider the Horse and Bird concepts. Their generic space is Cladeu
∃hasBodyPart.Torso u ∃hasBodyPart.Legs and is obtained as follows. In the Horse
concept, Mammal is generalised to Clade and ∃hasBodyPart.Trot and ∃hasAbility.Walk
are removed. In the Bird concept, Avialae is generalised to Clade and the relations
∃hasBodyPart.Wings and ∃hasAbility.LayEggs are removed.

Unfortunately, due to the fact that the upward cover set we defined only takes sub-
concepts already present in the TBox into account, neither γ nor its refinement γ′ are
complete; that is, these operators may fail to compute some of the generalisations of a
given EL++ concept w.r.t. vT .

Example 3. Let T := {A v B, A v C}. Then, generalising the concept A yields
γ(A) = {B,C}. However, B uC is also a possible (and less general) generalisation of
A w.r.t. vT .

More generally, as the following theorem shows, no generalisation refinement operator
over EL++ concepts w.r.t. vT can be locally finite, proper, and complete [10].

Theorem 1. There is no ideal generalisation refinement operator for EL++ concepts.

Since the generalisation refinement operator is not complete, it cannot guarantee to find
a generic space that is a least general generalisation. Although having a least general
generalisation is desirable, finding a common description, which allows us creating new
EL++ concepts from existing ones by conceptual blending, will suffice.

At this point, we should note, however, that the generalisation refinement operator
may even fail to compute a generic space of a set of EL++ concepts. Indeed, as the
following example shows, γ′ can produce an infinite chain of generalisations.

Example 4. Let T := {A v ∃r.A,B v >}. Then, the generalisation of the concept
description B can yield >. The generalisation of the concept description A yields the
concept defined as {∃r.∃r. · · · ∃r.A}. A common (trivial) generalisation for A and B is
> but it is not computed by γ′.

Not finding a least general generalisation of a set of EL++ concepts is a not a new
problem in the DL literature. Different solutions have been proposed [1, 2, 6, 27, 30].
Typically, some assumptions are made over the structure of the TBox or a fixed role
depth of concepts is considered. In the following, we adopt the latter view, and we
restrict the number of nested quantifiers in a concept description to a fixed constant k.
To this end, we introduce the definition of role depth of a concept as follows.



Definition 8. The role depth of an EL++ concept description C is defined as the max-
imum number of nested (existential) quantifiers in C:

roleDepth(>) = roleDepth(A) = 0,

roleDepth(C uD) = max{roleDepth(C), roleDepth(D)},
roleDepth(∃r.C) = roleDepth(C) + 1

Based on the role depth of a concept we modify the definition of the generalisation
operator γ′ to take a fixed constant k ∈ N>0 of nested quantifiers into account. More
precisely, let γ′k be defined as γ′, except that for the case of generalising a concept ∃r.C
we set:

γ′k(∃r.C) :=


γr(∃r.C) ∪ γC(∃r.C) if (UpCov(r) 6= ∅ or γ(C) 6= ∅) and

roleDepth(C) ≤ k,
{>} otherwise.

The role depth prevents the generalisation refinement operator from generating infi-
nite chains of generalisations. Consequently, it can ensure that a (trivial) generic space
between EL++ concepts can always be found.

Definition 9. An EL++ concept description Gk is a k-approximation of a generic
space of the EL++ concept descriptions C1, . . . , Cn if and only if Gk ∈ γ′∗k (Ci) for
all i = 1, . . . , n.

Proposition 4. There always exists a k-approximation Gk for any EL++ concept de-
scriptions C1, . . . , Cn.

The role depth not only avoids infinite chains of generalisations, but also provides a way
to maintain the structure of the input concepts in conceptual blending. For instance, by
choosing the value of k as the maximum role depth of the input concepts to be blended,
the operator yields generalisations with a similar role structure.

5 Implementation

In [10], we describe an algorithm implementing the cognitive theory of conceptual
blending by Fauconnier & Turner [13] in which the input (mental) spaces are modeled
in terms of EL++ concept descriptions.

The conceptual blending of EL++ concepts is implemented as an amalgam-based
workflow consisting of two phases: blend generation and blend evaluation. The first
phase finds a generic space between EL++ concepts and creates new blended concepts
by taking their generalisations into account. The second phase evaluates the blends by
checking if they are consistent or satisfy certain properties.

The generic space search is implemented in Answer Set Programming (ASP) [15],
a well-known declarative programming paradigm to solve non-monotonic search prob-
lems. A domain-independent ASP program generalises EL++ concepts in a step-wise
transition process. To this end, we consider each step of the generalisation refinement



operator in Definition 5 as an action. The domain-independent ASP program is instan-
tiated with domain knowledge. The domain knowledge is obtained by translating the
EL++ TBox into ASP facts and predicates. EL++ concepts are generalised until their
descriptions are equal. The stable models of the ASP program contain the generalisa-
tion steps to be applied in order to generalise the EL++ concepts until a generic space
is reached. Each stable model is used to generate a set of blends.

We use the ASP solver clingo4 [14] as main reasoning engine, which allows us not
only to implement the search in an incremental manner, but also to use external pro-
grams via a Python interface. In our case, we control the amalgam-based workflow by
a Python script. The script also calls the jcel reasoner [21] as an external tool in order
to check that the generalisations obtained at a given step are not equivalent to the con-
cept being generalised —thus guaranteeing properness of the generalisation refinement
operator— and to evaluate the blends.

Blend evaluation essentially consists of a logical check and a ranking function. The
logical check discards those blends that are not consistent or does not satisfy some con-
sequence requirements. Consequence satisfaction and consistency checking are realised
through the jcel reasoner. A heuristic is used to rank the blends. Further details about
the implementation can be found in [10].

6 Related Work

Conceptual blending in EL++ as described in this paper is a special case of the amalgam-
based concept blending model described in [8,26], and implemented for CASL theories
in [11] in order to blend chords in cadences. This model has also been used to study
the role of blending in mathematical invention [9,12]. This concept blending model, as
the one presented here, is based on the notion of amalgam defined over a space of gen-
eralisations [22]. The space of generalisations is defined by refinement operators, that
can be specialisation operators or generalisation operators, notions developed by the
ILP community for inductive learning. These notions can be specified in any language
where refinement operators define a generalisation space like ILP [28], description log-
ics [25], or order-sorted feature terms [23].

Several approaches for generalising ontology concepts in the EL family exist in the
DL and ILP literature. On the one hand, in DL approaches, the LGG is defined in terms
of a non-standard reasoning task over a TBox [1,2,6,27,30]. Generally speaking, since
the LGG w.r.t. general TBoxes in the EL family does usually not exist, these approaches
propose several solutions for computing it. For instance, Baader [1,2] devises the exact
conditions for the existence of the LGG for cyclic EL-TBoxes based on graph-theoretic
generalisations. In [6], the authors propose an algorithm for computing good LGGs
w.r.t. a background terminology. In [27, 30], some conditions for the existence of the
LGG for general TBoxes based on canonical models are shown. As already pointed out
in the introduction, our work relates to these approaches, but it is different in spirit.

Our work also seems to be related to the problem of concept unification in EL [5]
that focuses on finding the substitutions needed to make two EL++ concepts equivalent.
In a certain sense, we also try to make two concepts equivalent, but we generalise them
by taking the axioms in the TBox into account.



An approach in DL that uses refinement operators is [25], where the language
chosen for representing the generalisation space, is that of DL Conjunctive Queries.
Here LGG between two inputs, translated to conjunctive queries, can be determined by
searching over the generalisation space using downward (specialisation) operators.

On the other hand, studying the LGG in terms of generalisation and specialisation
refinement operators has been used for order-sorted feature terms and Horn clauses in
ILP. Anti-unification (or LGG) in order-sorted feature terms was studied in [23], which
was conducive to later develop the notion of amalgam [22]. The notion of refinement
operator has been more studied in the space of Horn clauses [28], but LGG in particular
has not been a topic intensively pursued in the context of inductive learning in ILP.

7 Conclusions and Future Work

In this paper we defined a generalisation refinement operator for generalising EL++

concepts for conceptual blending. The operator works by recursively traversing their
descriptions. We discussed the properties of the operator. We showed that the operator
is locally finite, proper, but it is not complete (Propositions 2-3 and Theorem 1). We
claimed, however, that completeness is not an essential property for our needs, since
being able to find a generic space between two EL++ concepts, although not an LGG,
is already a sufficient condition for conceptual blending.

We described how the generalisation refinement operator can be implemented in
ASP. Essentially, ASP is used to find the generalisations needed to be applied in order to
generalise two EL++ concepts until a generic space is reached. The ASP-based search
process is embedded in an amalgam-based algorithm that creates new EL++ concepts
by combining pair of generalised EL++ concepts. All the details can be found in our
technical report [10].

We envision some directions of future research. We aim at employing a richer DL,
such as SROIQ [17] in our conceptual blending framework. This will allow us to
capture more complex concept descriptions and consequence requirements. We will
also study ways of prioritising some portions of the concept descriptions as fundamental
properties that should not be modified during blending.

Another extension of the framework that we wish to explore is the blending of
ontologies rather than concepts. Blending ontologies has already been explored in an
ontological blending framework [16, 18], where blends are computed as colimits of
algebraic specifications. In this framework, the blending process is not characterised
in terms of amalgams, the input concepts are not generalised, and the generic space is
assumed to be given. Therefore, the results of this paper can be extended and applied in
this framework.

We consider the work of this paper to be a fundamental step towards the challeng-
ing task of defining and implementing a computational creativity framework based on
conceptual blending that employs DL as its formal underpinning language.
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