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Abstract. One of the areas of data integration covers systems that maintain co-
herence among a heterogeneous set of databases. Such a system repeatedly col-
lects data from the local databases, synchronizes them, and pushes the updates 
back.  
One of the key problems in this architecture is the conflict resolution. When 
data in a less relevant data source changes, it should not cause any data change 
in a store with higher relevancy.  
To meet such requirements, we propose a DataPile structure with following 
main advantages: effective storage of historical versions of data, straightfor-
ward adaptation to global schema changes, separation of data conversion and 
replication logic, simple implementation of data relevance. 
Key usage of such mechanisms is in projects with following traits or require-
ments: integration of heterogeneous data from sources with different reliability, 
data coherence of databases whose schema differs, data changes are performed 
on local databases and minimal load on the central database. 

1   Introduction 

The concept of data integration covers many different areas of application [3,13]. In 
this paper, we focus on one kind of applications characterized by the following re-
quirements: 
− Data warehousing: The data originated at the local data sources should be repli-

cated into a central repository (data warehouse) in order to allow efficient analyti-
cal processing and querying the central system independently of local systems. 

− Back-propagation: Any update which occurs in a local database (performed by its 
local application) should be distributed to other local databases for which this kind 
of data is relevant. 

− History records: The central repository should maintain full history of all data 
stored therein. 

Each one of the requirements forms a well-known problem having well-known solu-
tions [2,8,9,10]; nevertheless, combining the requirements together introduces new, 
interesting problems, and disqualifies many of the traditional solutions. This paper 
presents a technique, called DataPile, which combines flexible storage technology 
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(built upon a standard relational database system) with system architecture that sepa-
rates the replication mechanisms from the schema-matching and data-conversion 
logic. Since the approach is inspired by XML techniques rather than relational data-
bases, its combination with modern XML-based technologies is straightforward. 
Nevertheless, the system is created over relational database system and direct integra-
tion with traditional database systems is also possible. 

One of the most difficult problems in the area of data integration is handling of 
duplicate and inconsistent information. The key issue in this problem is entity identi-
fication, i.e. determining the correspondence between different records in different 
data sources [11, 14]. The reality requires that the system administrators understand 
the principles of the entity matching algorithm; thus, various difficult formalisms 
presented in the theory [7] are not applicable. Our approach uses a simplified entity 
matching system which allows the users to specify matching parameters that are easy 
to understand. Some researchers [6] advice that successful entity identification re-
quires additional semantics information. Since this information cannot be generally 
given in advance, the integrated system should be able to defer decision to the user. 
The system should detect inconsistencies and either resolve them, or allow users to 
resolve them manually. The need for user-assisted conflict resolution induces a new 
class of problems: The repository should be able to store data before final resolution 
while their relationship to the real world entities is not consistent. Consequently, the 
system should be able to merge entities whenever the users discover that the entities 
describe the same real-world entity, and, conversely, to split an entity whenever the 
previous merge is found invalid. Under the presence of integrity constraints and his-
tory records, this requirement needs special attention. 

The relationship between the global system and local database is usually expressed 
using the global-as-view and local-as-view approaches [5]. In our system, a mixture 
of these methods is used depending on the degree of integration required. 

Maintenance of history records falls in the area of temporal databases and queries, 
where many successful solutions are known [1, 4, 12]. The theory usually distin-
guishes between the valid time, for which the data element is valid in the real world, 
and the transaction time, recording the moments when the data entry was inserted, 
updated, or deleted. In our approach, the central system automatically assigns and 
stores the transaction time, while the local systems are responsible for maintaining the 
valid time where appropriate. Queries based on transaction time are processed by 
special algorithms implemented in the central system; queries related to valid time are 
processed in the same manner as queries to normal attributes. 

The rest of the paper is organized as follows: The second chapter describes the 
principles of the DataPile technology used to flexibly store structured data in a rela-
tional database system. The next chapter focuses on entity identification using data 
matching and relevance weighing. The fourth chapter shows the overall architecture 
of the integrated system. The fifth chapter presents an evaluation based on a commer-
cial data-integration project where the DataPile approach was used. 
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2   The DataPile 

2.1   Terminology  

We have used an own terminology, which is partly derived from the XML terminol-
ogy. The first term is entity, which represents a type of the traditional database row. 
An entity consists of attributes, which are analogous to the traditional database col-
umns. An entity instance is an instance of entity and directly equals to traditional 
database row contents. An attribute value is an instance of attribute and forms a value 
of one column in one row. A metatable is a conventional database table used by the 
DataPile to store schema information and other system data. 

2.2   Data Verticalization 

Usual information systems consist of some nontrivial number of conventional data-
base tables; huge information systems have huge number of such tables. Moreover, 
the requirement for preserving all changes in data usually leads to the scheme, where 
changing one value of one column in one row causes inserting a new changed row 
(possibly very large) and updating the old row with some state changing column (e.g. 
validity termination timestamp). Another problem in conventional information sys-
tems is extensibility; adding some new columns or new tables may cause large appli-
cation code rewriting. 
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Figure 1. A sample schema of the DataPile-based system 
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All these problems are addressed by the proposed method of storing data in different 
way than in traditional approaches but using standard relational databases – the 
DataPile. All real applications data are stored in two relational tables: one less impor-
tant table DT_LOB_HASH is dedicated for storing LOBs (for performance pur-
poses), and the second one, the most important, DT_PILE stores data of all other 
datatypes. This particular table is called the Pile, because all data is stored in one 
table without any “well-formed” internal structure or hierarchy. Each row in the pile 
represents one attribute, whose value is/was valid during certain interval of transac-
tion time. 

The Fig. 1 represents slightly simplified schema of the heart of DataPile-based in-
formation system. Tables with prefix DT_ hold real data; all other tables (with prefix 
MT_) are metatables. The table DT_ENTITY holds valid “global” ID for an entity  
instance stored in the pile together with information about the entity in form of a 
reference to the metatable MT_ENTITY_TYPE which stores entities. Entities consist 
of attributes, and this is modeled by the metatable MT_ATTR_TYPE. 

Real values are stored in columns val_xxx of the main table DT_PILE , where xxx 
represents logical type of the attribute (number, string, datetime, ID – foreign key). 
Besides the actual data, other additional data is stored in the DT_PILE table: Transac-
tion time aspect of any attribute value is represented by two columns ts_valid_xxx. 
The type of given attribute value can be found by reference attr_id to the 
MT_ATTR_TYPE. The ent_id value compounds all attribute values into one entity 
instance. Other columns not mentioned here serve the system for proper implementa-
tion of the functionality needed. 

Such a structure easily avoids all the problems mentioned at the beginning of this 
paper: The number of relational tables used does not grow with an expansion of an 
information system; it is constant regardless on how huge the system is. Data changes 
are preserved with minimal overhead – one attribute value change is represented by 
inserting a new value into the pile – one new row is inserted into DT_PILE table not 
touching the rest of attribute values related to the same entity instance. Extensibility 
of the system is reached by the possibility to insert some new rows into metatables 
and therefore the possibility of defining new entities, attributes, or both. 

From the above described layout we can see that this data structure fulfils two re-
quirements put on the information system as a whole: easy extensibility of the data 
scheme and full information about data changes on the timeline. 

3   Data Matching and Weighing 

The requirement on data unification is solved by two algorithms: data matching 
and data weighing. 

3.1   Data Matching 

Let us show an example, which represents usual situation we meet while processing 
the same data in different applications. Let application A1 have a record about a per-
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son with the name “Jana”, surname “Teskova” with some personal identification 
number “806010/7000” and an address “Mother’s home No. 10”. The same informa-
tion is stored in the application A2 as well. After Jana Teskova got married, she took 
her husband’s surname (as it is quite usual over here). So her surname changes to 
“Stanclova”. She also moved to live with her new husband on the address “New 
home 20”. Our person notifies about her marriage and the accompanying changes 
only the office using application A1, and does not notify other office with application 
A2 - at first she might not even know A2 does not share the data with A1 as they both 
are used to keep data about people in one organization, and at second she may expect 
that A1 and A2 are integrated together, so changes in A1 are automatically redistrib-
uted to A2 as well (but this is a so called distribution problem, which is discussed 
later). So the result is A1 and A2 store different data about one entity instance. What 
happens when we try to merge data from A1 and A2 into a common data storage? 

As our example shows, nearly all attributes have changed. But some of them are 
constant, especially personal identification number, which should by truly unique in 
our country. The association of words “should be” unfortunately means that cases 
exist, when different persons have the same personal identification number. On the 
other side, these cases are rare. Having two personal records with the same personal 
identification number means they belong in fact to a single person with probability of 
roughly 0,999999. 

In this example, other attributes have changed, but a combination of some attrib-
utes can have significant meaning: e.g. name and surname together form a whole 
name. Even name and surname aren’t commonly unique in a state, equality of such 
attributes means some nontrivial probability these two records describe a single per-
son. 

This example leads us to attribute classification. Every attribute is assigned one of 
these classes: determinant, relevant, uninteresting. 
− Determinant – identifies an entity instance with very high probability (e.g. personal 

identification number, passport number etc.). 
− Relevant – significant attribute, which helps identify unambiguously equality of 

entities (e.g. attribute types “name” and “surname” for entity type “person”). 
− Uninteresting – has no impact on entity matching. 
Following algorithm describes entity matching for two entity instances (one is already 
stored in the database, the second one is a newly integrated/created entity): 
1. All determinant and relevant attribute values are equal – quite clear match with 

very high probability. 
2. A nonempty subset of determinant and nonempty subset of relevant attribute 

values are equal, remaining determinant and relevant attribute values have no 
counterpart in the complimentary entity instance – very good match with quite 
high probability yet (example: let us extend our example with another attribute 
“passport number”. The first entity instance has attributes “personal identifica-
tion number” and “passport number” filled. The second entity instance has only 
“personal identification number” filled and “passport number” is missing.). 
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3. A nonempty subset of determinant attribute values is equal, remaining determi-
nant attribute values has no counterpart in the complimentary entity instance, but 
some nonempty subset of relevant attribute values differ – this case seems to be 
clear as well, because the probability of match for determinant attribute values 
outweighs probability of different relevant attribute values, but some uncertainty 
remains as the probability of determinant attribute values is always <1.0. We 
must not loose any data and their history, so the system solves such a case by 
considering these two entity instances as different with notification to the system 
administrator. The administrator can investigate this case more precisely and can 
merge these two entities together using an administrator application. This case 
directly describes the situation during entity matching from our first example – 
the personal identification number as a determinant attribute value is the same, 
but surname as a subset of relevant attribute values differs. 

4. A nonempty subset of determinant attribute values differs, remaining determinant 
attribute values with counterpart are equal, some nonempty subset of relevant at-
tribute values is equal, remaining relevant attribute values have no counterpart – 
this case usually arises out of misspelling one determinant attribute value. This 
case is solved as above – entity instances are considered to be different and the 
system administrator is notified. 

5. All other cases – input entities are different entity instances with very high prob-
ability. 

3.2   Data Weighing 

Let us show another example: An employee record is usually kept in different appli-
cations in different departments, e.g. human resources department, pay-
roll/accountants department, library, etc. Some applications and departments them-
selves emphasize some entities and usually some subset of attributes from entities 
used, e.g. staff department knows with high probability that given person has a cer-
tain name, surname, home address, etc., whereas payroll department knows with high 
probability his/her account number, etc. 

It should be beneficial for data integration to have possibility measure somehow 
the probability, that an application has entity instances (or more precisely on individ-
ual attribute values) filled with correct values. Therefore, every attribute value in the 
DataPile keeps a number which measures probability this given value is correct. This 
probability is stored in the DT_PILE column “relevance”. 

During processing of incoming data all incoming attribute values are somehow 
evaluated (this will be explained later) and the computed relevance is compared to 
current relevance of attribute value stored in the DataPile. If the new value has greater 
or equal computed relevance than current value has, the new value “wins”, becomes 
the current value, and the old value is marked as archive. Otherwise (when the rele-
vance is lower than current relevance) the new value is stored as well, but only as a 
remark saying the application has ineffectually tried to change this attribute value. 
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But there is a problem: when an unimportant application with low relevance keeps 
correct data (replicated from the central repository) and wants to change some attrib-
ute values (because a user has made some changes), these changes will be always 
ignored. This problem is solved by “approving” the data. Every application must 
confirm to central repository it agrees with current data replicated from central reposi-
tory to this application. This confirmation is stored in the DataPile and the system 
knows the given application has accepted the current attribute value. When such an 
application (which approved a current attribute value) changes the value, the rule 
about weighing relevance is ignored and the attribute value is changed.  

For example, a large company has usually some branch offices, where department 
branches can be located as well. Such branches usually show different credibility, 
which should be reflected by the relevance computation as well. 

For computing relevancy of an attribute value following equation is therefore used: 

 atecetiapapa RRRRRR ⋅⋅⋅⋅=  (1) 

where Ra means attribute value relevancy, Rap is static application relevancy (e.g. 
application used by staff department), Riap is static instance of application relevancy 
(e.g. branch of department), Ret is a static entity relevancy, Rec is a computed entity 
instance relevancy, and Rat is a static attribute relevancy. All these static values are 
stored in metatables as floating-point values. Rec represents computed relevancy for 
given entity instance and its value is computed as follows: 

( )iRR
i

acec ∏=  (2) 

where Rac(i) is either a value stored in metatables (when attribute i from given entity 
has some particular value stored in metatables as well), or it has value of 1. This 
computed relevancy supports changing of the relevancy based on the presence of 
selected attributes in the entity. 

4   Implementation 

4.1   The DataPile Architecture 

The whole DataPile-based system is in general shown on the following picture.  
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Figure 2. The DataPile architecture 
 
Every application (marked in the picture as App1..n) has its own local database (Local 
DB1..n). The DataPile machinery is constituted by the Trinity of Central database, 
Temporal database, and Application server: the Central DB contains the DataPile as 
data structure for collected data storage, the Temporal DB serves only as communica-
tion medium between the DataPile machinery and applications (data is revealed here 
only during replication and immediately deleted when replication ends). The Applica-
tion server, which gives life to the whole system, is discussed in following section. 

4.2   Application Server 

The whole DataPile architecture utilizes the request/reply paradigm. The application 
server behaves to the rest of world passively; it waits for requests inserted into the 
temporal DB, fulfills them using central DB data, and writes a reply back into the 
temporal DB. 

Application server is by intention implemented so that it doesn’t understand any 
data semantic. Everything is controlled by the content of metatables and nothing is 
hardcoded. The application server is primarily responsible for replication, computing 
algorithms like all the above mentioned data matching and weighing, and can handle 
other requests too (e.g. perform specialized queries upon the data stored in the 
DataPile). 
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4.3   Replication channel 

The communication channel between an application and the DataPile machinery is 
not as simple as it may appear on the first look. In reality there are inserted two fil-
ters: export and import filter. They are traditional adapters, which are responsible for 
adapting different database schemas used by the DataPile machinery and local data-
base. A watchful reader may note that the direction from application to the DataPile is 
marked as “export”, opposite direction as “import”; the marking is taken from the 
application point of view. 
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Figure 3. Communication between the DataPile machinery and an application 

4.4   Cache 

New applications may advantageously use collected data in central repository. Un-
fortunately the DataPile structure is not very well suited for direct access (e.g. search-
ing is not very effective). Almost all applications in fact need to know only current 
attribute value, ignoring all history stored in the DataPile. To support such applica-
tions, the application server actively builds and maintains caches, where only current 
attribute values are stored and these caches are presented to applications in the form 
of traditional relational tables. The applications can easily search and use all other 
RDBMS functions on the caches. 

5   Evaluation and Conclusions 

The architecture described in this paper brings an alternative to traditional techniques. 
It brings several advantages but also some disadvantages. 

All the concepts described in this paper were used in a real project – design and 
development of an information system based on data replication and synchronization 
of data coming from bigger number of different data sources (approx. 30 local infor-
mation systems and 20 other applications producing 30 millions entries per year for 
60 000 users, in this project). The project lasts from the fall 2003 and now is in the 
phase of finishing the pilot phase and starting roll-out. 



 187

Basic and commonly usable advantage of the DataPile structure is its maintainabil-
ity, easy extensibility and ability to keep the track of the whole data history. All cur-
rent applications used at all branches remain preserved and functional without any 
change according to a strongly desired requirement. The central data repository inte-
grates data from all data sources including all their history and sources of their 
changes. This enables recovering of any historical snapshot of any data. All data 
changes are redistributed to all other applications that contain these data, even if the 
source and destination schemas are different. The global schema changes affect nei-
ther data in the central repository nor local applications. 

During the development of the project, we have discovered several disadvantages 
of our approach: 

Efficiency, especially during export and matching, is low. During the initial export 
of one certain local system, about 500 000 entries had to be processed. This took 
more than 24 hours. This time complexity is caused by a relatively complex matching 
algorithm. Fortunately, this time complexity is not very important in everyday life 
because number of data changes is smaller in magnitude in comparison to the initial 
migration data volume. 

The second disadvantage is the fact, that the structure of the central repository 
makes constructing direct queries difficult. Therefore the concept of caches was in-
troduced and all the queries to non-historical data are performed on the caches instead 
of the DataPile itself. 

The project showed that the DataPile approach is suitable for certain class of large 
applications, where data warehousing is coupled with maintaining consistency of 
local databases. In this class of applications, the drawbacks mentioned above are 
outweighed by integration of data warehousing features with the support for data 
replication, synchronization, and cleaning using back-propagation. 
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