Smart Container: an ontology towards
conceptualizing Docker

Da Huo!, Jaroslaw Nabrzyski!, and Charles F. Vardeman II!

University of Notre Dame
{dhuo,naber, cvardema}@nd. edu

Abstract. Because of growing demand to preserve and share repro-
ducible computational experiments in scientific community, there has
been interest in using Docker Linux Containers as a preservation mech-
anism. However, this is insufficient to help researches to comprehend
”Dockerized” experiments and connect computational artifacts with con-
cepts in peer-reviewed publications. We present here an ontology and
software, Smart Container, that can conceptualize Docker artifacts by
and is aligned with other existing vocabularies such as the well known
W3C prov vocabulary.

1 Introduction

As modern science becomes computation-driven and data intensive, the need for
reproducibility of scientific research requires an efficient approach to preserve and
share computational experiments. Virtual Machines and workflow languages are
two mechanisms that have been explored as general solution to the preservation
problem. But VMs have large software dependency requirements to distribute
and workflow techniques do not capture third party resource dependencies [4].
We believe Docker provides a more portable and light-weighted approach that, in
fact, the European Organization for Nuclear Research, known as CERN' already
adopted to preserve high energy physics experiments.

We present here are initial work towards building an ontology called Smart
Container(SC) that conceptualizes Docker software objects and is aligned with
other existing ontologies, PROV-0O? and CSO3. We are aiming to provide a
mechanism that can capture the provenance of Docker containers themselves and
potential enable sharing Docker information on the Semantic Web via Linked
Data principles. We describe how we can capture the provenance trail of Docker
images as artifacts themselves and how we can extend this provenance to include
artifacts that are contained within a container object.

2 Formalize the SC Domain

Given the complexity of software systems, an initial ontology certainly cannot
cover every single aspect related to Docker. Therefore, we focused on conceptu-
alizing essential terms involving running a computational experiment in Docker

! https://twiki.cern.ch/twiki/bin/view/Main/DockerCVMFS
2 http://www.w3.org/ns/prov#
3 http://cos.ontoware.org/cso#



importing existing ontologies and conceptual terms into an ontology pattern. The
purpose of this work is to fill the provenance gap between Docker infrastructure
and scientific experiment artifacts and providing a vocabulary prototype that is
capable for future extension.

2.1 Background

The Smart Container Ontology was constructed from a systematic alignment
between the main concepts present in existing Docker meta-data utilizing and
existing vocabulary terms where possible to contextualize those meta-data con-
cepts. In our work, PROV and CSO, two widely-used vocabularies, were intro-
duced to construct the ground of Smart Container Ontology.

PROV-0 is a W3C recommendation that describes the interactions of prove-
nance generated in different systems and under different contexts[2]. Three main
types of concepts: prov:Entity, which represents objects; prov:Activity, which de-
scribes an event happened over time involving entities; and prov:Agent, which is
responsible for an activity or an entity, constructed PROV-O. PROV-O has been
demonstrated to have reasonable flexibility and has been shown to enable align-
ment between other ontologies [1]. Therefore, we choose to use PROV-O as the
foundational “upper” ontology for the Smart Container Ontology to facilitate
connections with other vocabularies.

The Core Software Ontology(CSO)[3] is an ontology formalizing common
concepts in software engineering, such as data, software with its different shades
of meaning classes and methods. CSO uses DOLCE* as a foundational ontology
and its extensions: Descriptions&Situations(DnS)?, the Ontology of Plans(OoP)%
and the Ontology of Information Objects(OI0)”. CSO provided us with a formal-
ization of “software” concepts that we can apply to Smart Container domains.
However, because of the complexity of DOLCE, we do not import CSO directly
to avoid entailment of relations beyond the scope of this application.

Docker is an application based on Linux Containers(LXC). It isolates an ap-
plication with its dependencies in a single process which is more light-weighted
than full hypervisor virtualization of guest operating system. It can be provi-
sioned by a simple Dockerfile text based workflow. Docker also adopted a layer
file system way to achieve versioning and component re-use. A Docker image is
a read-only layer which is stateless. A container has states: when it is running,
it represents a tree of processes isolated from other processes on the host; when
it exits, it represents a read-write layer generated by the process along with
its all underneath stateless images. We differentiated these two concepts in our
ontology.

4 http://purl.org/ifgi/dolce#

® http://www.loa.istc.cnr.it/ontologies/ExtendedDnS . owl

5 http://www.loa.istc.cnr.it/ontologies/Plans.owl

" http://wuw.ontologydesignpatterns.org/ont/dul/I0Lite.owl



2.2 Alignment Pattern

From inspection, a Docker image is a digital object with some attributes. It
matches the description of a prov:Entity: a physical, digital, conceptual, or other
kind of thing with some fixed aspects[2]. The Dockerfile is a text file with lines of
Dockerfile commands. Docker fetches these commands and invokes the relevant
software to execute them. Each line in the Dockerfile generates an execution
inside the container. Because a container has states, we treat static (just created
or exited) container as a prov:Entity, which is similar to a docker image. A
running container is represented by a prov:Activity, which represents something
that occurs over a period of time and acts upon or with entities[2]. For each
Docker container, a software can be bash, python, Docker itself or any other agent
executes commands. We extracted the software responsible for each command
execution as a prov:SoftwareAgent, which is a subclass of prov:Agent. From a
macro perspective, a series of operation in a computational experiment is always
associated with a human user. We aligned the human user with prov:Person,
sub-classing prov:Agent and use the prov:actedOnBehalfOf to connect the two.

In computational experiments, we have to be very careful about some special
concepts from the computer science domain. The encoding of the whole com-
putational experiment, such as the Dockerfile, is similar to InformationObject
concept from CSO. The Docker itself in the experiment, on the other hand, is
similar to a form of CSO:InformationRealization which is a realization of code in
the machine. If we break the Dockerfile line by line, we also can treat each line of
command as a smaller InformationObject. The running container is analogous to
Computational Activity in CSO where the software manifests itself by a sequence
of tasks contained in a plan. Our approach is Ontology Pattern based creating
our own specialization but apply rdfs:seeAlso to terms in CSO, the weak sense
of identity without making strong ontological commitments based on DOLCE.

In fig 1, sc:Image, representing a Docker Image, is a specialization of
prov:Entity. Docker containers were divided into three parts: sc:startContainer,
sc:runningContainer and sc:endContainer. sc:startContainer and sc:endContainer
subclass prov:Entity representing static conditions. sc:RunningContainer, on the
other hand, subclasses prov:Activity as an event over time. An Dockerfile, refer-
enced as sc:Dockerfile, and a line of command, referenced as sc:Command, both
are subclasses of prov:Plan. The human user of the Dockerfile is identified as
sc:User which subclassing prov:Person. sc:SoftwareAgent is a direct subclass of
prov:SoftwareAgent standing for the software executes commands. We use a tech-
nique similar to TrustURI’s by using the Docker image 64 digit code uniquely can
be resolved by a uniform resource name(URN) with specific protocols to create
a URI for a static image. Each running container can be exposed by a HT'TP ad-
dress which is dereferenceable so we construct Uniform Resource Locator(URI)
in the normal manner. We identify a human agent using URI’s constructed
from ORCID(Open Researcher and Contributor ID)identifier, a non-proprietary
alphanumeric code to uniquely identify scientific and other academic authors,
facilitating investigator and potential publication identities to be propagated.



prov:Person
sc:User
prov:Plan

sc:Dockerfile

prov:wasDerivedFrom

sc:Command

prov:actedOnBehalfOf

prov:softwareAgent

sc:softwareAgent

prov:Entity

sc:startContainer

prov:wasGgneratedby ) )
prov:wasDerivedFro rov:wasAssociatedWith

prov:Entity

sc:lmage

prov:wasStartedby

prov:Activity

sc:runningContainer > sc:computationalActivity

rdfs:seeAlso

prov:wasEndedby \ rdfs:seeAlso
n :

sc:hadParent
sc:hadChild

prov:Entity

sc:endContainer

cso:computationalActivity

prov:wasDerivedFrom

Fig. 1. Boxes represent concepts with inheritance represented by the smaller boxes

3 Conclusion

In this paper, we present an ontology pattern named Smart Container that con-
textualizes the docker software system acting as an infrastructure for computa-
tional experiments. We populated our ontology design pattern by analyzing main
concepts in Docker and aligned with PROV-O and CSO to provide possibilities
for wider extensions.

Acknowledgements. We acknowledge funding from NSF grant PHY-1247316
“DASPOS: Data and Software Preservation for Open Science.”

References

1. Compton, M., Corsar, D., Taylor, K.: Sensor data provenance: Ssno and prov-o to-
gether at last. In: To appear 7th International Semantic Sensor Networks Workshop
(October 2014) (2014)

2. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D., Gar-
ijo, D., Soiland-Reyes, S., Zednik, S., Zhao, J.: Prov-o: The prov ontology. W3C
Recommendation 30 (2013)

3. Oberle, D.; Grimm, S., Staab, S.: An ontology for software. In: Handbook on on-
tologies, pp. 383—402. Springer (2009)

4. Zhao, J., Gomez-Perez, J.M., Belhajjame, K., Klyne, G., Garcia-Cuesta, E., Gar-
rido, A., Hettne, K., Roos, M., De Roure, D., Goble, C.: Why workflows breakun-
derstanding and combating decay in taverna workflows. In: E-Science (e-Science),
2012 IEEE 8th International Conference on. pp. 1-9. IEEE (2012)



