
BASIL: A Cloud Platform for Sharing and
Reusing SPARQL Queries as Web APIs

Enrico Daga, Luca Panziera, and Carlos Pedrinaci

Knowledge Media Institute (KMI) - The Open University.
Walton Hall, MK76AA Milton Keynes, United Kingdom

{enrico.daga,luca.panziera,carlos.pedrinaci}@open.ac.uk
http://kmi.open.ac.uk

Abstract. One of the reasons why Web APIs are more used to consume
open data compared to SPARQL endpoints is the expertise required to
use the query language. Therefore, a tool for sharing and reusing existing
real queries could help developers on adopting Linked Data. We propose
BASIL, a cloud platform that supports sharing and reusing SPARQL
queries. In BASIL, loaded queries generate Web APIs that can be used
in applications instead of embedding the call to the SPARQL endpoints,
thus facilitating query maintenance and evolution. Compared to similar
solutions, BASIL aims on minimising the learning curve for users to
promote its adoption. BASIL is a simple platform that does not introduce
new specifications, formalisms and technologies for users that belong to
both Web APIs and Linked Data communities.

1 Introduction

The availability of datasets as Linked Open Data (LOD) is rapidly increasing on
the Web [4]. Billions of linked statements are publicly available as RDF triples
through hundreds of SPARQL endpoints, potential data sources to develop dis-
tributed and rich Web application. However, the current most adopted approach
for publishing and consuming open data are Web APIs. The higher adoption of
Web APIs is visible by comparing information provided by both the datahub.io1

Linked Data catalog and ProgrammableWeb2, the most popular Web API catalog,
which includes also SPARQL endpoints. According to datahub.io, more that 1000
SPARQL endpoints are currently available on the Web on June 2015. At the
same time, DBpedia is the only SPARQL endpoint that appears in the top 500
most popular Web APIs on ProgrammableWeb.

In this scenario, we propose BASIL as a solution to support developers in
consuming data from SPARQL endpoints. BASIL (Builging Apis SImpLy) is
a cloud platform that allows data consumers to tailor their own Web APIs
by specifying queries on SPARQL endpoints. Tailored Web APIs and related
SPARQL queries can be shared, reused and cloned by other users. This demo paper
1 http://datahub.io/
2 http://www.programmableweb.com/



2 E. Daga, L. Panziera, C. Pedrinaci

presents the cloud based service deployed at http://basil.kmi.open.ac.uk, also
based on a dedicated user interface (PESTO).

2 The BASIL cloud platform

The design of the BASIL follows a specific philosophy: to minimise the learning
curve for the users in order to foster its adoption. To reach this objective, BASIL
(i) is modelled to be as simple as possible, (ii) is designed by using well-know
Web API practices and (iii) minimises the introduction of new formalisms. The
architecture of BASIL is provided in figure 2. The BASIL platform plays the
role of a mediator between SPARQL endpoints and developer’s applications. By
submitting a SPARQL query and an endpoint to BASIL, a developer generates a
Web API. Figure 1 shows an example, that is also reachable at http://basil.

Fig. 1: A query as appears in the BASIL environment.

kmi.open.ac.uk/basil/qhq3k9v61eu9. The API extracts a list of people born
on a given year from DBPedia.

There are few rules to specify if and how a variable maps to a request parameter
of the API. By putting a “_” character in front of their label (e.g. ?_param)
users define mandatory parameters. With two underscores, the parameter is
optional. After the name, they can specify how the value needs to be replaced in
the SPARQL syntax. In the example of Figure 1, the variable ?_year_number
generates the mandatory query parameter “year”, that is meant to be replaced as
a number before query execution. When an API is consumed, the variable in the
query is substituted by the input value specified in the related query parameter.
The output data format can be specified through content negotiation. The
supported response formats are plain XML, JSON and CSV without namespaces,
for data consumers that are not familiar with Linked Data, and Semantic Web
Standards (such as, RDF+XML, N3 and Turtle), for SPARQL experts.



BASIL: Sharing and Reusing SPARQL Queries as Web APIs 3

BASIL API

consumes
data or views

Web
API

Web developers

REST

tailors WEB API
(SPARQL query)

Web
API

defines view
(template)

Web
API

Web
API

Web
API

clones WEB API

Linked Data Cloud

SPARQL

Fig. 2: The BASIL architecure

In addition, developers can specify views for each Web API. A view3 is an
alternative presentation of an API results based on a template or script. E.g.,
a view can be a HTML representation of the results ready to be embedded in
a web site, with no further processing. The advantage of views is to adapt the
output of a Web API to applications with special needs.

In order to support API integration, BASIL makes available an interactive
documentation based on Swagger4 for each API, which allow developers to test
APIs before using them in applications. Specifications of APIs and their views
are publicly accessible as subresources of the APIs to enable query analysis and
reuse. Developers can also quickly create new APIs by cloning and customizing
existing ones.

Different kinds of users can benefit from BASIL. SPARQL-aware developers
can tailor Web APIs to support colleagues or business partners that are not
expert in Semantic Web technologies, or simply because they think that its
more handy to integrate a Web API in their application instead of embedding a
SPARQL query. Users that are not SPARQL experienced can consume directly
existing Web APIs and start learning by looking to existing queries or cloning
and modifying APIs. Both type of users will benefit from using a Web API in
applications instead of embedding the call to a SPARQL endpoint, in order to
facilitate query maintenance and evolution.

Developers can access the platform functionalities through the BASIL API, a
CRUD API over HTTP5, or PESTO, a Web-based user interface6. BASIL source
code is available on GitHub7. More details on BASIL are available in [1].

3 Our definition of view is inherited from the popular Model-View-Controller (MVC)
pattern.

4 https://github.com/swagger-api/swagger-spec
5 The interactive documentation is available at http://basil.kmi.open.ac.uk/docs
6 Available at http://basil.kmi.open.ac.uk
7 https://github.com/the-open-university/basil



4 E. Daga, L. Panziera, C. Pedrinaci

3 Related Work

The Linked Data Platform8 (LDP) is a W3C recommendation to perform CRUD
operations on resources exposed as Linked Data. The specification enables con-
suming or modifying linked data resources through REST, by packaging a single
Web API serving RDF data. However, LDP provides data as full RDF, and the
specification does not recommend how to customise the data model. Approaches
based on storing SPARQL queries on the server side have been proposed by the
Linked Data API9 specification, which have been implemented by ELDA10 and
Open PHACTS [2]. A similar facility is provided by The Data Tank11, by defining
a template language. As well as BASIL, both attempts hide the complexity of the
SPARQL specification to the data consumer through a Web API. Nevertheless,
the two approaches introduce additional formalisms, which highly increase the
learning curve of potential adopters. The relation between Web services and
Linked Data has been analysed in [3]. In this context, approaches to bridge the
gap between services and linked data have been proposed. In [5], the authors
propose a method to publish existing Web APIs as Linked Data. The same issue
has been addressed by introducing functional descriptions of hypermedia services
in [6]. Compared to [3, 5, 6], this paper addresses the opposite issue. BASIL
exploits the benefits of Web APIs on top of SPARQL endpoints as simple and
intuitive bridge between the Semantic Web and the Web developer communities.

References

1. Daga, E., Panziera, L., Pedrinaci, C.: A BASILar Approach for Building Web APIs
on top of SPARQL Endpoints. In: Proc. of the Third Workshop on Services and
Applications over Linked APIs and Data (SALAD) co-located with ESWC 2015
(2015)

2. Groth, P., Loizou, A., Gray, A.J., Goble, C., Harland, L., Pettifer, S.: API-centric
Linked Data integration: The Open PHACTS Discovery Platform case study. Web
Semantics: Science, Services and Agents on the WWW 29(0), 12 – 18 (2014)

3. Pedrinaci, C., Domingue, J.: Toward the next wave of services: Linked Services for
the Web of data. Journal of Universal Computer Science 16(13), 1694–1719 (2010)

4. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: The Semantic Web - ISWC 2014 - 13th
International Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014.
Proceedings, Part I. pp. 245–260 (2014)

5. Speiser, S., Harth, A.: Integrating linked data and services with linked data services.
In: The Semantic Web: Research and Applications, pp. 170–184. Springer (2011)

6. Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Vallés, J.G., Van de Walle,
R.: Functional descriptions as the bridge between hypermedia apis and the semantic
web. In: Proc. of the WS-REST workshop. pp. 33–40. ACM (2012)

8 http://www.w3.org/TR/ldp/
9 https://github.com/UKGovLD/linked-data-api

10 http://www.epimorphics.com/web/tools/elda.html
11 http://docs.thedatatank.com/4.3/spectql


