
Data Complexity of Query Answering

in Description Logics

Diego Calvanese1, Giuseppe De Giacomo2, Domenico Lembo2,
Maurizio Lenzerini2, Riccardo Rosati2

1 Faculty of Computer Science
Free University of Bozen-Bolzano

Piazza Domenicani 3
39100 Bolzano, Italy

calvanese@inf.unibz.it

2 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113
00198 Roma, Italy

lastname @dis.uniroma1.it

Abstract

In this paper we study data complexity of answering conjunctive queries over
DL knowledge bases constituted by an ABox and a TBox. In particular, we char-
acterize the LogSpace boundary (over the data) of the problem. This boundary
is particularly meaningful because, when we go above it, query answering is not
expressible as a first-order logic formula (and hence an SQL query) over the data.
Within the LogSpace boundary we essentially find DL-Lite, a simple DL that is
rich enough to express the core of UML class diagrams. The second contribution
of the paper is to establish coNP-hardness of query answering with respect to
data complexity for various cases of surprisingly simple DLs.

1 Introduction

The idea of using ontologies as a conceptual view over data repositories is becoming
more and more popular. For example, in Enterprise Application Integration Systems,
Data Integration Systems [11], and Semantic Web [8], data become instances of con-
cepts in ontologies. In these contexts, data are typically very large (much larger than
the intentional level of the ontologies), and query answering becomes one of the basic
reasoning services. Hence, when measuring the computational complexity of query
answering (and reasoning in general) the most important parameter is the size of the
data.

In this paper we consider conjunctive queries (CQs) specified over Description
Logics (DL) knowledge bases constituted by an ABox and a TBox, and study the
data complexity of the query answering problem, i.e., the complexity of computing
the answers to a CQ that are a logical consequence of the ABox and the TBox,
measured with respect to the size of the ABox only. In particular, we are interested
in characterizing the LogSpace boundary of the problem, i.e., finding maximally
expressive DLs for which query answering can be done in LogSpace. This boundary
is particularly meaningful because, when we go above it, query answering is no longer
expressible as a first-order logic (FOL) formula over the data, i.e., it is not possible

to answer a CQ by first computing in LogSpace its reformulation as a first-order
query, and then evaluating the reformulation over the ABox. Since first-order queries
can be expressed in SQL, an important characteristic of the DLs for which query
answering can be done in LogSpace is that they allow for taking advantage of Data
Base Management System (DBMS) techniques for both representing data, i.e., ABox
assertions, and answering queries via reformulation into SQL1.

The contributions of the paper are the following.

• We discuss DLs for which query answering is in LogSpace. In this class, we
essentially find DL-Lite [5], a simple DL that is rich enough to express basic
ontology languages, conceptual data models (e.g., Entity-Relationship [1]), and
object-oriented formalisms (e.g., basic UML class diagrams2). We also analyze
some possible extensions of DL-Lite that preserve the computational complexity
characterization we are interested in.

• We show that minimal additions to the languages considered above bring data
complexity of query answering to NLogSpace-hardness and PTime-hardness,
thus losing the possibility of reformulating queries in first-order logic. In fact,
we conjecture that for such languages query answering is in PTime, and thus
still feasible in practice, but the database technologies needed (Datalog engines)
are not as mature as standard SQL-based DBMSs.

• Finally, we establish coNP-hardness of query answering with respect to data
complexity for surprisingly simple DLs. In particular, we get intractability as
soon as the logic is able to express simple forms of covering constraints.

What emerges from our complexity analysis is that DL-Lite is a maximal DL which
allows query answering through standard database technology. In this sense, DL-Lite
is the first DL specifically tailored for effective query answering over large amounts of
data.

Actually, DL-Lite is a fragment of expressive DLs with assertions and inverses
studied in the 90’s (see [2] for an overview), which are at the base of current ontology
languages such as OWL, and for which optimized automated reasoning systems such
as Fact3 and Racer4 have been developed. Indeed, one could use, off-the-shelf, a
system like Racer to perform KB satisfiability, instance checking (of concepts), and
logical implication of inclusion assertions in DL-Lite.

The paper is organized as follows. In the next section we introduce some prelimi-
naries which will be useful for the following discussions. In Section 3, we present DLs
for which query answering is in LogSpace, and in Section 4 DLs for which query
answering goes beyond LogSpace. In Section 5 we overview related work, and in
Section 6 we draw some conclusions.

1We consider here the kernel of the SQL-92 standard, i.e., we see SQL as an implementation of
relational algebra.

2http://www.omg.org/uml/
3http://www.cs.man.ac.uk/~horrocks/FaCT/
4http://www.sts.tu-harburg.de/~r.f.moeller/racer/

2 Preliminaries

We are interested in queries, and more specifically in conjunctive queries, expressed
over DL knowledge bases (KBs) formed by a TBox and an ABox. The TBox is formed
by a set of inclusion assertions of the form

B v C

and a set of functionality assertions of the form

(funct R)

expressing the functionality of the role R.
In DL-Lite, we distinguish between the constructs that we allow in the concept on

the left-hand side (B) and in the right-hand side (C) of inclusion assertions. Depending
on the actual language that we use for B and C, we get different complexities, as shown
in the next sections. As for roles R, depending on the particular language, we allow
either atomic roles only (denoted by P), or atomic and inverse roles (P−).

First, we observe that including B1 t B2 in the constructs for B on the left-hand
side and C1 u C2 in the constructs for C on the right-hand side does not affect the
results below, since they can be simulated by inclusion assertions as follows:

• B1 tB2 v C is equivalent to B1 v C and B2 v C;

• B v C1 u C2 is equivalent to B v C1 and B v C2.

Similarly, we can trivially add ⊥ to the language for B on the left-hand side and > to
the language for C on the right-hand side.

As for the ABox, we allow for membership assertions on atomic concepts and on
atomic roles:

A(a), P (a, b)

stating respectively that the object (denoted by the constant) a is an instance of A
and that the pair (a, b) of objects (denoted by the two constants a and b) is an instance
of the atomic role P .

Given a KB K = (T ,A), where T is a TBox and A is an ABox, we can query the
knowledge base using conjunctive queries. A conjunctive query q is an expression of
the form

{ ~x | conj (~x, ~y) }
where ~x are the so called distinguished variables that will be bound with objects in the
KB, ~y are the non-distinguished variables, which are existentially qualified variables,
and conj (~x, ~y) is a conjunction of atoms of the form A(z) or P (z1, z2) where A and P
are respectively atomic concept and roles and z, z1, z2 are either constants in the KB
or variables in ~x or ~y. When the query is boolean and the conjunction is constituted
by a single atom A(a) (resp., P (a, b)), with a (resp., a, b) a constant in the KB, we
simply denote it by A(a) (resp., P (a, b)).

The reasoning service we are interested in is conjunctive query answering : given a
conjunctive query q(~x) with distinguished variables ~x and a knowledge base K, return

all tuples ~t of objects in K that substituted to ~x are such that K |= q(~t). In the
following, we will simply use the term “query answering”, and omit the qualification
“conjunctive”.

We observe that both concept satisfiability and instance checking can be seen as
special cases of query answering. In particular, instance checking, i.e., logical impli-
cation of ABox assertions, can be expressed as the problem of answering conjunctive
queries constituted by just one ground atom.

Finally, we will talk about data complexity of query answering. The notion of data
complexity is borrowed from relational database theory [14], and in the context of DLs
is defined as follows. First, we note that there is a recognition problem associated with
query answering, which is defined as follows. We have a fixed TBox T expressed in
a DL L, and a fixed query q: the recognition problem associated to T and q is the
decision problem of checking whether, given an ABox A, and a tuple ~t of objects, we
have that (T ,A) |= q(~t). Note that neither the TBox nor the query is an input to
the recognition problem. When we say that query answering for a certain DL L is
in S (where S is a complexity class) with respect to data complexity, we mean that
the corresponding recognition problem is in S. Similarly, when we say that query
answering for a certain DL L is S-hard with respect to data complexity, we mean that
the corresponding recognition problem is S-hard.

3 Within LogSpace

In this section we discuss several DLs for which query answering is in LogSpace.
The first DL of this kind is DL-Lite [5], where

B → A | ∃R
C → B | ¬B
R → P | P−

(funct R) is allowed

An important feature of this logic is that it is perfectly suited for representing ABox
assertions managed in secondary storage by a relational DBMS. Indeed, the query
answering algorithm presented in [5] is based on the idea of expanding the original
query into a set (i.e., a union) of conjunctive queries that can be directly evaluated
over the ABox. The expansion process takes into account only the original query and
the TBox assertions, and is independent of the ABox. Hence, the resulting union of
conjunctive queries is of constant size with respect to the size of the ABox5. Since
conjunctive queries are FOL formulas, and since the evaluation of FOL formulas can
be done in LogSpace, it follows that query answering in DL-Lite is in LogSpace.
Notably, the consistency check that is part of query answering can also be reduced to
the evaluation of a set of conjunctive queries (with inequalities) over the ABox.

5Note that the union of conjunctive queries resulting from the expansion is polynomial in the size
of the TBox. Also, each conjunctive query in such a union is linear in the size of the original query,
though the total number of conjunctive queries produced by the expansion may be exponential in the
size of the original query.

From a practical point of view, this is an important result. Indeed, the query
generated by our expansion algorithm can be evaluated by an SQL engine over a
simple relational database defined by ABox assertions, thus taking advantage of well-
established query optimization strategies that we find in relational DBMSs.

Interestingly, the above method can be adapted to the case where we extend DL-
Lite with new features. In particular, we have proved that if we extend B with
conjunction, and C with ⊥,6 we still have the possibility of reducing query answering
to FOL evaluation over the ABox. From this, we get the following result.

Theorem 1 Query answering is in LogSpace with respect to data complexity for
the case where

B → A | ∃R | B1 uB2

C → A | ⊥ | ∃R
R → P | P−

(funct R) is allowed

Proof (sketch). The query answering algorithm for this logic is obtained by extending
the reformulation technique of DL-Lite [5], which is independent of the ABox and
produces a union of conjunctive queries over the ABox. Hence, we get the LogSpace
upper bound.

Notice that DL-Lite and the extension mentioned in the above theorem only allow
for unqualified existential quantification. One might ask what happens to the complex-
ity of query answering if we add qualified existential quantification to the language.
It turns out that, if qualified existentials are allowed in C, then query answering is
still in LogSpace, provided that we get rid of functionality constraints.

Theorem 2 Query answering is in LogSpace with respect to data complexity for
the case where

B → A | ∃R | B1 uB2

C → A | ⊥ | ∃R.C
R → P | P−

(funct R) is not allowed

Proof (sketch). Again, the query answering algorithm for this logic is obtained by
extending the reformulation technique of DL-Lite.

Other logics allowing for different usages of qualified existential quantification will
be analyzed in the next section.

4 Beyond LogSpace

In the previous section, we have pointed out the importance of reducing query an-
swering over a knowledge base to FOL query evaluation over the ABox only.

6Note that having ⊥ in C and u on B allows for expressing ¬B in C.

In this section, we show that, as soon as we consider further, minimal exten-
sions of DL-Lite, besides those illustrated in Section 3, we cross the boundary of
LogSpace data complexity. Going beyond LogSpace data complexity means ac-
tually that query answering requires more powerful engines than those available in
standard relational database technology. An immediate consequence of this fact is
that we lose the possibility of taking advantage of data management tools and query
optimization techniques of current DBMSs.

The first case of this type is when we add qualified existential quantification to
B. The second case is when we add qualified universal quantification to C, and the
third case is when we add qualified existential quantification to C, while keeping the
possibility of expressing functionality constraints.

Theorem 3 Instance checking (and hence query answering) is NLogSpace-hard
with respect to data complexity for the cases where

1. B → A | ∃P .A
C → A
R → P
(funct R) is not allowed

2. B → A
C → A | ∀P .A
R → P
(funct R) is not allowed

3. B → A
C → A | ∃P .A
R → P
(funct R) is allowed

Proof (sketch). For Case 1, the proof is by a log-space reduction from reachability
in directed graphs, which is NLogSpace-complete. Let G = (N, E) be a directed
graph, where N is a set of nodes and E ⊆ N ×N is the set of edges of G, and let s,
d be two nodes in N . Reachability is the problem of checking whether there is a path
in G from s to d.

We define a KB K = (T ,A), where the TBox T is constituted by a single inclusion
assertion

∃P .A v A

and the ABoxA has as constants the nodes of G, and is constituted by the membership
assertion A(d), and by one membership assertion P (n, n′) for each edge (n, n′) ∈ E.
It is easy to see that K can be constructed in log-space from G, s, and d. We show
that there is a path in G from s to d if and only if K |= A(s).

“⇐” Suppose there is no path in G from s to d. We construct a model I of K
such that sI 6∈ AI . Consider the interpretation I with ∆I = N , nI = n for each
n ∈ N , P I = E, and AI = {n | there is a path in G from n to d }. We show that I
is a model of K. By construction, I satisfies all membership assertions P (n, n′) and

the membership assertion A(d). Consider an object n ∈ (∃P .A)I . Then there is an
object n′ ∈ AI such that (n, n′) ∈ P I . Then, by definition of I, there is a path in
G from n′ to d, and (n, n′) ∈ E. Hence, there is also a path in G from n to d and,
by definition of I, we have that n ∈ AI . It follows that also the inclusion assertion
∃P .A v A is satisfied in I.

“⇒” Suppose there is a path in G from a node n to d. We prove by induction on
the length k of such a path that K |= A(n). Base case: k = 0, then n = d, and the
claim follows from A(d) ∈ A. Inductive case: suppose there is a path in G of length
k− 1 from n′ to d and (n, n′) ∈ E. By the inductive hypothesis, K |= A(n′), and since
by definition P (n, n′) ∈ A, we have that K |= ∃P .A(n). By the inclusion assertion in
T it follows that K |= A(n).

For Case 2, the proof follows from Case 1 and the observation that an assertion
∃P .A1 v A2 is logically equivalent to the assertion A1 v ∀P−.A2, and that we can
get rid of inverse roles by inverting the edges of the graph represented in the ABox.

For Case 3, the proof is again by a log-space reduction from reachability in directed
graphs, and is based on the idea that an assertion ∃P .A1 v A2 can be simulated by
the assertions A1 v ∃P−.A2 and (funct P−). Moreover, the graph can be encoded
using only functional roles, and we can again get rid of inverse roles by inverting edges.

Note that all the above “negative” results hold for instance checking already, i.e.,
for the simplest queries possible. Also, note that in all three cases, we are considering
extensions to a subset of DL-Lite in order to get NLogSpace-hardness. For exam-
ple, in the first case, C has the simplest form possible, and neither inverse roles nor
functionality constraints are used in the reduction.

As for the upper bound of query answering in the above logics, we point out that
it is open whether query answering can be done in NLogSpace.

Next we show that if we consider further extensions to the logics mentioned in
Theorem 3, we get even stronger complexity results. In particular, we first con-
sider three cases where query answering (actually, instance checking already) becomes
PTime-hard in data complexity. The three cases are obtained from the ones in The-
orem 3 by adding conjunction on the left-hand side of inclusion assertions. Note that
the PTime-hardness result basically means that we need at least the power of full
Datalog to answer queries in these cases.

Theorem 4 Instance checking (and hence query answering) is PTime-hard with re-
spect to data complexity for the cases where

1. B → A | ∃P .A | B1 uB2

C → A
R → P
(funct R) is not allowed

2. B → A | B1 uB2

C → A | ∀P .A
R → P
(funct R) is not allowed

3. B → A | B1 uB2

C → A | ∃P .A
R → P
(funct R) is allowed

Proof (sketch). For Case 1, the proof is by a log-space reduction from Path System
Accessibility, which is PTime-complete [7]. An instance of Path System Accessibility
is defined as PS = (N,E, S, t), where N is a set of nodes, E ⊆ N × N × N is an
accessibility relation (we call its elements edges), S ⊆ N is a set of source nodes, and
t ∈ N is a terminal node. PS consists in verifying whether t is accessible, where a
node n ∈ N is accessible if n ∈ S or if there exist accessible nodes n1 and n2 such
that (n, n1, n2) ∈ E.

We define the KB K = (T ,A), where the TBox T is constituted by the inclusion
assertions

∃P1.A v B1 ∃P2.A v B2 B1 uB2 v A ∃P3.A v A

and the ABox A makes use of the nodes in N and the edges in E as constants.
Consider a node n ∈ N , and let e1, . . . , ek be all edges in E that have n as their first
component, taken in some arbitrarily chosen order. Then the ABox A contains the
following membership assertions:

• P3(n, e1), and P3(ei, ei+1) for i ∈ {1, . . . , k − 1},
• P1(ei, j) and P2(ei, k), where ei = (n, j, k), for i ∈ {1, . . . , k − 1}.

Additionally, A contains one membership assertion A(n) for each node n ∈ S. Again,
it is easy to see that K can be constructed in LogSpace from PS . We show that t is
accessible in PS if and only if K |= A(t).

“⇐” Suppose that t is not accessible in PS . We construct a model I of K such
that tI 6∈ AI . Consider the interpretation I with ∆I = N ∪ E, and in which each
constant of the ABox is interpreted as itself, P I

1 , P I
2 , and P I

3 consist of all pairs of
nodes directly required by the ABox assertions, BI

1 consists of all edges (i, j, k) such
that j is accessible in PS , BI

2 consists of all edges (i, j, k) such that k is accessible in
PS , and AI consists of all nodes n that are accessible in PS union all edges (i, j, k)
such that both j and k are accessible in PS . It is easy to see that I is a model of K,
and since t is not accessible in PS , we have that t 6∈ AI .

“⇒” Suppose that t is accessible in PS . We prove by induction on the structure
of the derivation of accessibility that if a node n is accessible, then K |= A(n). Base
case (direct derivation): n ∈ S, hence, by definition, A contains the assertion A(n)
and K |= A(n). Inductive case (indirect derivation): there exists an edge (n, j, k) ∈ E
and both j and k are accessible. By the inductive hypothesis, we have that K |= A(j)
and K |= A(k). Let e1, . . . , eh be the edges in E that have n as their first component,
up to eh = (n, j, k) and in the same order used in the construction of the ABox.
Then, by P1(eh, j) in the ABox and the assertions ∃P1.A v B1 we have that K |=
B1(eh). Similarly, we get K |= B2(eh), and hence K |= A(eh). By exploiting assertions

P3(ei, ei+i) in the ABox, and the TBox assertion ∃P3.A v A, we obtain by induction
on h that K |= A(e1). Finally, by P3(n, e1), we obtain that K |= A(n).

For Cases 2 and 3, the proof follows from Case 1 and observations analogous to
the ones for Theorem 3.

We conjecture that in all the cases mentioned in both Theorem 3 and Theorem 4,
query answering can be actually done in PTime.

Finally, we show three cases where the TBox language becomes so expressive that
the data complexity of query answering goes beyond PTime (assuming PTime 6= NP).

Theorem 5 Query answering is coNP-hard with respect to data complexity for the
cases where

1. B → A | ¬A
C → A
R → P
(funct R) is not allowed

2. B → A
C → A | A1 tA2

R → P
(funct R) is not allowed

3. B → A | ∀P .A
C → A
R → P
(funct R) is not allowed

Proof (sketch). In all three cases, the proof is an adaptation of the proof of coNP-
hardness of instance checking for ALE in [6], by re-expressing the ALE concept in
that proof as a conjunctive query.

In all the above cases, query answering becomes polynomially intractable with re-
spect to data complexity. These cases are therefore particularly challenging, especially
in those situations where the size of the ABox is substantial. Actually, the feasibility
of query answering in theses cases is seriously hampered.

5 Related work

Reasoning with conjunctive queries in expressive DLs with assertions and inverse roles
has been recently studied (see e.g., [3, 4]), although not yet implemented in systems.
Unfortunately, the known reasoning algorithms for these DLs are in 2ExpTime with
respect to combined complexity, and more importantly they are not tailored towards
obtaining tight complexity bounds with respect to data complexity (they are in Ex-
pTime).

The problem of answering conjunctive queries over a DL knowledge base has also
been considered in [12]. Making use of an algorithm based on tableaux, a coNP, and

B C R (funct R) Complexity

A | ∃R | B1 uB2 A | ⊥ | ∃R P | P− allowed in LogSpace

A | ∃R | B1 uB2 A | ⊥ | ∃R.C P | P− not allowed in LogSpace

A | ∃P .A A P not allowed NLogSpace-hard
A A | ∀P .A P not allowed NLogSpace-hard
A A | ∃P .A P allowed NLogSpace-hard

A | ∃P .A | B1 uB2 A P not allowed PTime-hard
A | B1 uB2 A | ∀P .A P not allowed PTime-hard
A | B1 uB2 A | ∃P .A P allowed PTime-hard

A | ¬A A P not allowed coNP-hard
A A | A1 tA2 P not allowed coNP-hard

A | ∀P .A A P not allowed coNP-hard

Legenda: A (possibly with subscript)= atomic concept, P= atomic role,
B (possibly with subscript) = left-hand side of TBox inclusion assertions,
C = right-hand side of TBox inclusion assertions, R= auxiliary symbol.

Figure 1: Data Complexity of Query Answering in Description Logics

thus optimal (cf., Theorem 5), upper-bound with respect to data complexity is given
for a DL with arbitrary inclusion assertions, but lacking inverse roles. Instance check-
ing in SHIQ, a DL with inverse roles and role hierarchies, is addressed in [10], where
a coNP upper-bound is given. The paper presents also a fairly general sub-language of
SHIQ, subsuming DL-Lite, for which instance checking stays polynomial. The results
are shown by making use of a reduction to Disjunctive Datalog and then exploiting
resolution [9]. However, the latter techniques seem not to be easily generalizable to
the problem of answering conjunctive queries (as opposed to queries constituted by a
single atom) without incurring in a blowup that is exponential in the size of the data.
In [13] the above results have been generalized, and a coNP algorithm for answering
conjunctive queries in SHIQ has been devised. It is interesting to observe that, from
the point of view of data complexity, once we allow for the rather simple combinations
of constructs of the DLs in Theorem 5, we already obtain the same coNP-completeness
bound as for the quite expressive DL SHIQ.

6 Conclusions

We have presented first fundamental results on the data complexity (complexity with
respect to the size of the ABox only) of query answering in DLs. In particular, we have
concentrated on the LogSpace boundary of the problem, based on the observation
that, when we go above this boundary, query answering is no longer expressible as a
first-order logic formula (and hence an SQL query) over the data. The results provided
in this paper are summarized in Figure 1. We are currently working on finding tighter
upper bounds in all the cases that have been left open by our analysis.

Although we focused on data complexity, we are also working on characterizing

the complexity of query answering with respect to the size of the TBox, with respect
to the size of the query, and with respect to combined complexity.

While in this paper we considered conjunctive queries, our general goal is to come
up with a clear picture on how the complexity of query answering is influenced not
only by different TBox languages, but also by different query languages.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley
Publ. Co., Reading, Massachussetts, 1995.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2003.

[3] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–158,
1998.

[4] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views
over description logics knowledge bases. In Proc. of the 17th Nat. Conf. on
Artificial Intelligence (AAAI 2000), pages 386–391, 2000.

[5] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, and G. Vetere. DL-
Lite: Practical reasoning for rich DLs. In Proc. of the 2004 Description
Logic Workshop (DL 2004). CEUR Electronic Workshop Proceedings, http:
//ceur-ws.org/Vol-104/, 2004.

[6] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in concept
languages: From subsumption to instance checking. J. of Logic and Computation,
4(4):423–452, 1994.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability — A guide to NP-
completeness. W. H. Freeman and Company, San Francisco (CA, USA), 1979.

[8] J. Heflin and J. Hendler. A portrait of the semantic web in action. IEEE Intel-
ligent Systems, 16(2):54–59, 2001.

[9] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ-description logic to
disjunctive datalog programs. In Proc. of the 9th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2004), 2004.

[10] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very
expressive description logics. In Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2005), 2005.

[11] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

[12] A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

[13] M. M. Ortiz de la Fuente, D. Calvanese, T. Eiter, and E. Franconi. Data com-
plexity of answering conjunctive queries over SHIQ knowledge bases. Technical
report, Faculty of Computer Science, Free University of Bozen-Bolzano, July
2005.

[14] M. Y. Vardi. The complexity of relational query languages. In Proc. of the 14th
ACM SIGACT Symp. on Theory of Computing (STOC’82), pages 137–146, 1982.

