
High Availability
in a

J2EE Enterprise Application Environment

Udo Pletat

IBM Deutschland Entwicklung GmbH
Schönaicher Str. 220

71032 Böblingen, Germany
pletat@de.ibm.com

Abstract
Recent developments of middleware products enabling J2EE enterprise
architectures include high availability features in, e.g., J2EE application
servers and database systems. This is a step towards making the cornerstones
of a J2EE enterprise infrastructure more autonomous, in the sense that their
high availability becomes less dependent on dedicated system management
software ensuring application and system availability. The article reports about
a project exploring recent high-availability features of respective IBM products
in an industry application context.

1 Introduction

The trend towards 24x7 operation of enterprise IT infrastructures increases the need
to make this IT infrastructure highly available. Besides organizational guidelines how
to operate an IT shop continuously, there are many approaches to automate system
failovers not only in case of unexpected failures, but also for regular system
maintenance or upgrades, see e.g., [1]. The term business resilience - i.e., continuous
availability of the IT infrastructure without business relevant downtimes - captures
the expectation of IT customers and the challenge for IT providers.

Recent developments of middleware products enabling J2EE enterprise architectures
include high availability features in, e.g., J2EE servers and database systems, see [5]
and [6]. This makes the cornerstones of a J2EE enterprise infrastructure more
autonomous, in the sense that their high availability becomes less dependent on
dedicated system management software.
The article reports about a technology assessment project exploring and evaluating
recent high-availability features of respective IBM products (WebSphere Application
Server 1 and DB2 2 ) in an industry application context. The project emphasized
obtaining reference results with respect to

• simplifications that can be achieved for setting up a high-availability
infrastructure,

1 WebSphere Application Server is a registered trademark of IBM Corporation
2 DB2 is a registered trademark of IBM Corporation



• comparing system failover times with high availability configurations
relying entirely on dedicated system management software, and

• integration of modern J2EE components of an enterprise architecture with
approaches that are operational for 10 years or more.

2 Integration architecture for legacy and J2EE applications

The high-availability setup being discussed reflects an enterprise application
integration architecture where legacy application systems are connected to more
modern J2EE based applications running on a respective J2EE application server, see
also [2]. Figure 1 below shows a typical structure of such an integration architecture.

WMQ

DB2

Messaging Enfgine
DB tables

WAS

Legacy
App

Queue
Manager WAS

Msg
Engine

Msg
Engine

J2EE App

= message queueDB2

Legacy
application

DB

Legacy world J2EE world

J2EE
Application DB

J2EE App

Figure 1: Legacy and J2EE application integration architecture

The fundamental components of such EAI structure are
• a (set of) legacy application(s) attached to a JMS-free message queuing

infrastructure, e.g., based on message queuing systems like WebSphere
MQ3;

• the J2EE applications are hosted on respective application servers. Modern
servers like WAS 6 include full JMS provider functionality capable to
interact with respective non-JMS message queuing systems;

• the J2EE applications need to access databases, e.g., based on DB2. The
database system holds the application data and serves as the persistent
message store maintaining respective tables of the messaging engine4.

The key objective of setting up a high-availability infrastructure for the J2EE part of
such an enterprise integration architecture is a deployment of the J2EE part of the
above enterprise application to a redundant hardware topology, where each J2EE
application server is clustered with the cluster typically containing a primary and a
standby machine; the same applies to the database server. In order to achieve short

3 WebSphere MQ is a registered trademark of IBM Corporation
4 The database view is slightly simplified for the time being, but there is no conceptual
difference whether to have a single DB shared by multiple J2EE servers or each J2EE server
accessing its ‘own’ DB or having criss-cross database access. Typically, one may assume that
the legacy applications run against their own database.



failover times, a so-called ‘hot standby’ approach is mandatory; in such a
configuration the primary server performs all normal operation while the standby
server is ready to take over, but idles until the failover becomes necessary.

3 High-availability scenarios and requirements

Typical high-availability scenarios to be covered are
• network disconnections between the legacy applications and J2EE

application cluster or between the J2EE cluster components,
• failure of a J2EE application server, and
• database server failure.

The kernel requirements for a high-availability system setup are usually
• ease of setup and operation and
• short failover times with (close to) no human intervention.

The ‘classical approach’ to cope with these high-availability requirements is to use
shared disks holding the relevant data of the middleware component to be made
highly available and two server nodes - primary and standby – accessing the
component’s data on the shared disk, see also [13]. In case of a failover, high
availability management software like Tivoli System Automation (TSA)5 or High
Availability and Cluster Multi-Processing (HACMP)6 (see [9] and [10]) starts the
failed middleware component on the standby machine. This failover process makes
sure that all relevant file systems, IP addresses, etc. for that component are switched
over to the standby node, see left hand part of Figure 2 below illustrating the shared
disk concept for the database failover.

Primary
DB server

Standby
DB server

DB disks
(bin &)

data & log

Restart DB system
on standby server

Client
application

Primary
DB server

Standby
DB server

Standby
DB disks

data & log

Primary
DB disks

data & log

Immediate roll
forward of trx log

Client
application

Figure 2: Shared disk plus restart versus transaction log replication

The right hand part of Figure 2 above shows how data replication features in a
product like DB2 8.2 can be used for making the database system highly available:

• in-transaction data replication through log shipping from the primary to the
standby database server assures that the standby database keeps track with
the DB operations executed against the primary database;

5 Tivoli System Automation is a registered Trademark of IBM Corporation
6 High Availability and Cluster Multi-Processing is a registered Trademark of IBM
Corporation



• automatic client re-route assuring that the database failover is basically
transparent to client applications.

The transaction log forwarding approach - also known as ‘eager data replication’, see
[11] or [12] - combines aspects of high-availability and data replication for disaster
recovery scenarios. Looking a bit closer at the options for a database high-availability
setup, Table 1 summarizes some arguments for/against the two main approaches.

Table 1: Shared disk versus replication approach to database high availability

Pro Con
Shared
disk

- no performance penalty in
normal operation

- dependence on storage area
network

- database corruption due to failure
may require database restore

- more complicated system
management software configuration

Data
replication

- simpler system
management software setup

- database restores after
primary database failure are
less likely

- performance penalty in normal
operation

For the database side the overall failover time, i.e., the time between the occurrence
of a failure and the point in time when the applications resume processing after the
component failover is complete, is not so much influenced by the database startup
times. However, in a complicated storage area network setup for high volume
databases, the disk switching may consume a significant portion of the failover time.

On the WebSphere side, the main argument for the hot standby approach is indeed
the shorter failover time because there is no need for restarting the application server
and the deployed applications on the standby node. Application server start time plus
application loading time can be significant, so the availability of the standby
application server with all applications being started there – but remaining passive
until a failover occurs – is an essential decision criterion.
High-availability features of a product like WebSphere Application Server Version 6
include

• setup of clusters consisting of redundant application server nodes with
failover policies like ‘1 of N’ (meaning that application server runs on 1 out
of N available server machines), ‘static’ (meaning that application server
has to run on a dedicated server machine), plus user-definable policies to let
also external high-availability management software interact with
WebSphere Application Server,

• support of so-called singleton services that run only once in a WAS high-
availability cluster; typical singletons are the messaging engine and the
transaction manager;

• improved failover times compared to using a shared disk approach plus
typical high-availability management software.

These new features reduce the need for using dedicated high-availability
management software and move J2EE server high-availability away from being
‘only’ based on workload management features where - in a J2EE server cluster - the
workload of a failed server will be taken over by other servers in the cluster.



4 High Availability using recent WebSphere and DB2
technology

In the previous section we have outlined some key features of recent middleware
products and now we sketch how these features can be exploited for setting up a
highly available J2EE server infrastructure where

• high availability requirements of the J2EE server can be satisfied with the
WAS internal high availability features7. The key element being the hot-
standby application server which can takeover immediately without any
need for server re-starts and replaying transactions other than those that
were ‘in-flight’ at the point in time the primary server failed.

• high availability features of the database for the J2EE server(s) are fulfilled
by using the high availability and disaster recovery feature of DB2. For
database failover, this means that we also arrive at a hot-standby setting
where at most the in-flight transactions have to be replayed on the backup
database server after the failover has occurred8.

The next sections provide some details about the respective setup of WAS and DB2.

4.1 WAS System setup

The layout of the so-called WAS cell is illustrated in Figure 3 below. The setup for
the study consists of a 5-node cell where the nodes on the left-hand side make up the
so-called primary tower while the two nodes on the right-hand side make up the
backup tower, see Figure 3 below. The transaction log files for each J2EE server pair
(primary and backup) reside on a NFS Version 4 enabled file system, which can be
attached either in NAS-style (Network Attached Storage through a respective file
server – which in our case also hosts the deployment manager administrating the
WAS cell configuration) or SAN-style (Storage Area Network via directly attached
disks).

WebSphere controls the failover of the application server itself plus the transaction
manager and messaging engine. Using the so-called ‘connection proximity’
configuration allows to specify that an application can only participate in message
traffic, if a messaging engine is hosted by the application server where the
application is deployed. This allows for having all applications started both on the
primary and the standby application server; the availability of the messaging engine
on either of the cluster’s application servers defines whether of the application

7 When WAS fails over a connectivity loss between the WAS Messaging Engine and the
WebSphere MQ Queue Manager cannot be recovered automatically by WAS alone, because
WAS does not support an ‘automatic client-re-route’ feature as offered by DB2. Respective
TSA scripting failing over the WAS IP address fills this current gap.
8 Also here there is a little gap in the sense that the triggering the takeover of the backup
database fully automatically requires a simple use of high-availability management software
like TSA. This automates the decision on whether the primary database server is considered
down so that a failover has to be initiated.



deployed on the primary or standby application server may process messages, thus
making the applications ‘quasi-singletons’.

DeploymentManager
&

Transaction LogFile
Node

Primary node A

MQ Mgr

Standby node A

Node Agent

Standby J2EE server A

TrxMgr

EjbCWebC

Applications

Deployment
Manager

Legacy App

Node Agent

Primary J2EE server A

EjbCWebC

TrxMgrMsgEng
Cluster A

MsgEng

Applications
TrxLog
File A

Cluster B

Primary node B Standby node B

Node Agent

Standby J2EE server B

TrxMgr

EjbCWebC

Applications

Node Agent

Primary J2EE server B

EjbCWebC

TrxMgrMsgEng MsgEng

Applications
TrxLog
File B

Figure 3: High availability layout of the J2EE server cell

4.2 DB2 System Setup

Exploiting the HADR (high-availability and disaster recovery) feature of DB2 leads
to a quite straight-forward setup of the highly available database, as illustrated in the
right hand part of Figure 2 above. The database system has to maintain both the J2EE
application data and it also serves as the persistent store for the Messaging Engine. In
most cases it is a recommended practice to separate the application data from the
Messaging Engine data leading to at least two databases for which a primary and
standby instance have to be configured for use with HADR. There are three
reliability modes for transferring the transaction logs from the primary database node
to the standby:

• ‘synchronous’ - the original operation on the primary database succeeds
when it receives a notification from the standby database that the transaction
log entry has been written to the disk on the standby server;

• ‘near synchronous’ - the original operation on the primary database
succeeds when it receives a notification from the standby database that the
transaction log entry has been written to the main memory on the standby
server;

• ‘asynchronous’ - the original operation on the primary database succeeds
when it has transferred the log file entry to its TCP/IP system.

The three modes allow for balancing between performance and reliability
requirements as the transfer of the transaction log data from the primary to the
standby database server is part of the original operation executed on the primary
server.



According to the database replication scheme proposed in [12], the HADR approach
falls into the category of so-called ‘eager replications’ and especially into the
category ‘primary copy, linear, voting’ (for the synchronization modes ‘synchronous’
and ‘near synchronous’) and ‘primary copy, linear, non-voting’ (for the
synchronization mode ‘asynchronous’), respectively.

4.3 Making your applications HA-aware

Of course, applications do not become highly available by ‘simply’ making the
middleware infrastructure to which they are deployed highly available. In the
preceding sections we have ‘only’ described the prerequisites that have to exist
anyway in order to prepare your IT infrastructure for making the applications highly
available.
As outlined also in [1], the applications must be able absorb failing accesses to the
middleware in case, e.g., the database becomes unavailable for a certain period of
time. Typical strategies include

• enabling access retries;
• saving consistent intermediate state to disk so that in case of a failover and

application restart on the backup node, the new instance of the application
knows the state of the old one before that one ‘died’;

• capturing exceptions caused by the failovers appropriately, e.g., DB2
supports an automatic client re-route where applications will be notified
about a database failover through respective exceptions;

• fnally, the transaction structure for processing incoming messages has a high
impact on which high-availability provisions have to be taken in the
application code. Especially the message processing may vary from using
Message Driven Beans together with Container Managed Transaction
(simple) to using plain JMS and the Java Transaction API (complex), see
also [4] and [5].

The table below gives a quick overview on the various transaction management
alternatives that are of interest when the message processing shall take place under
transactional control in a J2EE enterprise application, see, e.g., [3] and [5].

Table 2: Transaction control alternatives

Transaction control
mechanism

Message
consumption

Failover behavior

JMS Java Transaction API inside
transaction

- transaction rolled back
- message back to queue

after rollback
Java Transaction API outside

transaction
- transaction rolled back
- message no longer on

queue after rollback
MDB Bean managed transactions

with JTA transaction
demarcation

outside
transaction

- transaction rolled back
- message no longer on
queue after rollback

Container managed transactions
with transaction mode
‘required’ or ‘notSupported’

inside
transaction

- transaction rolled back
- message back to queue
after rollback



To exploit the transaction recovery services of the J2EE server after the failover is
accomplished, it is a good practice to consume messages within the transaction scope
– no matter whether using JMS or MDB. Whether to use JMS or MDB depends on
the degree of flexibility of the transaction structure for processing messages required
by the J2EE applications.

5 Results and experiences

The results of this advanced study exploring the high availability features of recent
middleware products being the key elements of typical J2EE base enterprise IT
architectures are both promising and creating new expectations.
On the positive side we find simplified setups of a highly-available J2EE
infrastructure, including database access. In addition the so-called ‘hot-standby’
servers are becoming reality with shortened failover times, especially for J2EE
application servers.
On the other hand, new expectations are also being created, e.g., by asking for
improved failover policies both for WebSphere Application Server and DB2; finally,
integration with upcoming trends of on-demand operating environments which
improve the dynamic management of middleware infrastructures may lead to the next
generation of high-availability approaches.

Acknowledgement
The author would like to thank Michael Haeberlen, Andrew James, and Sven Stueven
for their contributions to bring the system described in the article to life.

References

[1] Blueprints for High-Availability, E. Marcus and H. Stern, Wiley Publishing Company,
2003

[2] Patterns of Enterprise Application Architecture, M. Fowler, Addison-Wesley Publishing
Company, 2003

[3] Java Message Service, Version 1.1, Sun Microsystems Corporation, 2002
[4] Java Transaction API, Version 1.0.1b, Sun Microsystems Corporation, 2002
[5] Enterprise Java Beans, R. Monson-Haefel, O’Reilly Publishing Company, 2002
[6] WebSphere Application Server Version 6, Information Center, IBM Corporation, 2004
[7] DB2 Version 8.2, Data Recovery and High Availability Guide and Reference, IBM

Corporation 2004
[8] IBM WebSphere Version 6: Performance, Scalability and High-Availability, IBM

Redbook, IBM Corporation 2005 (draft)
[9] Tivoli Systems Automation for Multi-Platforms, Guide and Reference, Version 1.2,

IBM Corporation 2004
[10] High Availability and Cluster Multi-Processing for AIX, Version 5.1, IBM Corporation,

2003
[11] The Dangers of Replication and a Solution, J. N. Gray, P. Helland, D. Sasha and P.

O’Neil, Proceedings 1996 ACM SIGMOD International Conference on Management of
Data, pp 173-182, Montreal, June 1996

[12] Database Replication Techniques: A Three Dimension Comparison. M. Wiesmann, F.
Pedone, A. Schiper, B. Kemme, and G. Alonso, Proceedings 19th IEEE Symposium on
Reliable Distributed Systems (SRDS 2000), Nuernberg, Germany, October 2000

[13] IBM WebSphere Version 5.1: Performance, Scalability and High-Availability, IBM
Redbook, IBM Corporation 2004


