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1 Czech Technical University in Prague, Faculty of Information Technology
Thákurova 9, 160 00 Praha 6, Czech Republic

klimek@fit.cvut.cz
2 Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
helmich@ksi.mff.cuni.cz

Abstract. There is already a vast amount of Linked Data on the web. What is
missing is a convenient way of analyzing and visualizing the data that would
benefit from the Linked Data principles. In our previous work we introduced the
Linked Data Visualization Model (LDVM). It is a formal base that exploits the
principles to ensure interoperability and compatibility of compliant components.
In this paper we introduce a vocabulary for description of the components and an
analytic and visualization pipeline composed of them. We demonstrate its viability
on an example from the Czech Linked Open Data cloud.
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1 Introduction

Vast amount of data represented in a form of Linked Open Data (LOD) is now available
on the Web. Unfortunately, not so many users are capable of using the data in a useful
way yet. The data is represented in RDF and often uses commonly known vocabularies,
which brings opportunities for data analysis and visualization that were not there before.
However, the appropriate tools that would exploit these new benefits are still lacking.

Figure 1 shows datasets transformed to Linked Data by our research group over
the past few years. The circles are the individual datasets and the edges mean there
is a decent amount of links among entities of the two datasets. This gives the users
some very rough ideas of what they can find in those datasets. Each dataset should
also be described by its metadata, which gives more information about what is inside.
However, the Linked Data principles offer more. For each of our datasets a SPARQL
endpoint – an open endpoint to a database where everyone can place a structured query -
is available. This in combination with commonly used Linked Data vocabularies means
that anyone can simply ask whether a particular dataset contains interesting data. The
obvious issue here is that non expert users do not know SPARQL so they do not know
how to ask the right question. For example, if a user is interested in opening hours
of a particular institution of public power, he could query the appropriate dataset that
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Fig. 1. Czech Linked Open Data Cloud

he sees in our Czech LOD cloud, if he knew how. This situation is somehow similar
to programming and common algorithms. For every programming language there are
libraries of algorithms implemented by experts who know how to do that, packaged for
use by people who do not. Because on the Web of Data there are vocabularies that are
de facto standards for representation of certain types of data such as opening hours of
locations in general3, if the data is in the dataset, it would be found by a general query
suited for this, perhaps written by an expert. This means that a regular user could find our
dataset of institutions of public power and assume that it uses the standard vocabulary.
Then he could use the query from a library of queries suited for common tasks using the
common vocabularies and execute this query on a dataset of his choosing. He would get
the result, possibly even displayed in a user friendly way, again thanks to the standard
vocabularies and all this without understanding SPARQL, RDF, Linked Data, etc.

Previously, we introduced the Linked Data Visualization Model (LDVM) [4], which
allows users to create and reuse analytic and visualization components that leverage the
Linked Data principles. We also showed a tool Payola [6] implementing the model and
in [7] we demonstrated that expert users can prepare analyses and visualizations and
allow non-experts to use them to get data from the LOD cloud4.

3
http://www.heppnetz.de/ontologies/goodrelations/v1.html#OpeningHoursSpecification

4
http://lod-cloud.net/
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In this paper we introduce the LDVM vocabulary, which allows LDVM implementa-
tions to store and exchange configuration of individual LDVM components as well as
whole analytic and visualization pipelines in RDF and in compliance with the Linked
Data principles. The vocabulary contains support for pipeline nesting so that complete
pipelines created by experts can be wrapped as another component to be used in pipelines
by non-experts. By publishing the vocabulary we also open our approach to Linked
Data analysis and visualization so that anyone who is interested can easily create a
reusable component or pipeline and share it with others. The technical benefits are easy
sharing, open format easily adoptable by other implementations, easier management
of configurations – all the configurations can be maintained by SPARQL queries and
the possibility to configure the components and pipelines programmatically. In addition,
there are all the generally known Linked Data benefits such as ability to better provide
context through linking to other sources, better provenance tracking, etc.

This paper is structured as follows. In section 2 we briefly describe the principles of
LDVM. In section 3 we introduce the LDVM vocabulary, which is the main contribution
of this paper. In section 4 we show the usage of the vocabulary on examples. In section 5
we survey related work and in section 6 we conclude.

2 Linked Data Visualization Model

In our previous work we defined the Linked Data Visualization Model (LDVM), an
abstract visualization process customized for the specifics of Linked Data. In short,
LDVM allows users to create data visualization pipelines that consist of four stages:
Source Data, Analytical Abstraction, Visualization Abstraction and View. The aim of
LDVM is to provide means of creating reusable components at each stage that can be
put together to create a pipeline even by non-expert users who do not know RDF. The
idea is to let expert users to create the components by configuring generic ones with
proper SPARQL queries and vocabulary transformations. In addition, the components
are configured in a way that allows the LDVM implementation to automatically check
whether two components are compatible or not. If two components are compatible, then
the output of one can be connected to the input of the other in a meaningful way. With
these components and the compatibility checking mechanism in place, the visualization
pipelines can then be created by non-expert users.

2.1 Model Components

There are four stages of the visualization model populated by LDVM components.
Source Data stage allows a user to define a custom transformation to prepare an arbitrary
dataset for further stages, which require their input to be RDF. In this paper we only
consider RDF data sources such as RDF files or SPARQL endpoints, e.g. DBPedia. The
LDVM components at this stage are called data sources. The Analytical Abstraction
stage enables the user to specify analytical operators that extract data to be processed
from one or more data sources and then transform it to create the desired analysis.
The transformation can also compute additional characteristics like aggregations. For
example, we can query for resources of type dbpedia-owl:City and then compute the
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number of cities in individual countries. The LDVM components at this stage are called
analyzers. In the Visualization Abstraction stage of LDVM we need to prepare the data
to be compatible with the desired visualization technique. We could have prepared the
analytical abstraction in a way that is directly compatible with a visualizer. In that case,
this step can be skipped. However, the typical use case for Visualization Abstraction is
to facilitate reuse of existing analyzers and existing visualizers that work with similar
data, only in different formats. For that we need to use a LDVM transformer. In View
stage, data is passed to a visualizer, which creates a user-friendly visualization. The
components, when connected together, create a analytic and visualization pipeline which,
when executed, takes data from a source and transforms it to produce a visualization at
the end. However, not every component can produce meaningful results from any input.
Typically, each component is designed for a specific purpose, e.g. visualizing map data,
and it does not make sense with other data. This means that only components that are
somehow compatible can create a meaningful pipeline.

2.2 Component Compatibility

Now that we described the four basic types of LDVM components, let us take a look at
the notion of their compatibility, which is a key feature of LDVM. We first introduced
the idea of compatibility checking in [4] and then further refined it in [7]. However, as
the implementation progressed we developed this feature even further.

The idea is based on the ability to check whether a component can work with the
data it has on its input. We can check this using e.g. a SPARQL query, but we can
do that only when the pipeline is already running, when we actually have the data to
check. However, we want to use the component compatibility in design time to rule out
component combinations that do not make any sense and to help the users to use the
right components before they actually run the pipeline. Therefore, we need a way to
check the compatibility without the actual data. For this, we use two constructs - an input
descriptor and an output data sample. The input descriptor describes what is expected in
the input data. For simplicity, let us use a set of SPARQL queries for the descriptor. A
descriptor is bound to an input of its component.

In order to evaluate the descriptors in design time, we require that each LDVM
component that produces data (data source, analyzer, transformer) also provides a static
sample of the resulting data. For the data sample to be useful, it should be as small as
possible, so that the input descriptors of other components execute as fast as possible.
Also, it should contain the maximum amount of classes and properties whose instances
can be produced by the component, making it as descriptive as possible. For example,
when an analyzer transforms data about cities and their population, its output data sample
will contain a representation of one city with all the properties that the component can
possibly produce given it has all the inputs it needs. Note that, e.g. for data sources, it is
also possible to implement the evaluation of descriptors over the output data sample as
evaluation directly on the represented SPARQL endpoint.

Each LDVM component has a set of features, where each feature represents a part of
the expected component functionality. A component feature can be either mandatory or
optional. For example, a visualizer that displays points and their descriptions on a map
can have 2 features. One feature represents the ability to display the points on a map.
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This one will be mandatory, because without the points, the whole visualisation lacks
purpose. The second feature will represent the ability to display a description for each
point on the map. It will be optional, because when there is no data for the description,
the visualization still makes sense - there are still points on a map. Whether a component
feature can be used or not depends on whether there is the data needed for it on the input,
therefore, each feature is described by a set of input descriptors.

We say that a feature of a component in a pipeline is usable when all queries in all
descriptors are evaluated true on their respective inputs. A component is compatible
with the mapping of outputs of other components to its inputs when all its mandatory
features are usable. The usability of optional features can be further used to evaluate the
expected quality of the output of the component. For simplicity, we do not elaborate on
the output quality in this paper. The described mechanism of component compatibility
can be used in design time for checking of validity of the visualization pipeline. It can
also be used for suggestions of components that can be connected to a given component
output. In addition, it can be used in run time for verification of the compatibility using
the actual data that is passed through the pipeline. Finally, this concept can be also
used for periodic checking of data source content, e.g. whether the data has changed its
structure and therefore became unusable or requires pipeline change.

3 LDVM Vocabulary

In our current take on implementation of LDVM we aim to have individual components
running as independent services that exchange only information needed to access the
input and output data. Also we aim for easy configuration of individual components as
well as easy configuration of the whole pipeline. In accordance with the Linked Data
principles, we now use RDF as the format for storage and exchange of configuration so
that any component that works with RDF can use LDVM components both individually
and in a pipeline. For this purpose we have devised a vocabulary for LDVM, which is the
main contribution of this paper. In Figure 2 there is a UML class diagram depicting the
structure of the vocabulary. Boxes represent classes, edges represent object properties
(links) and properties listed inside of the class boxes represent data properties. We chose
the ldvm5 prefix for the vocabulary, which is developed on GitHub6.

3.1 Templates and Instances

There are blue and green classes. The blue classes belong to template level of the
vocabulary and green classes belong to the instance level. The easiest way to imagine the
division is to imagine a pipeline editor with a toolbox. In the toolbox, there are LDVM
component templates with their default configuration. When a designer wants to use a
LDVM component in a pipeline, he drags it onto the editor canvas, creating an instance.
There can be multiple instances of the same LDVM component template in a single
pipeline, each with configuration that overrides the default one. The template holds input
descriptors and output data samples, which are used for the compatibility checking. The

5
http://linked.opendata.cz/ontology/ldvm/

6
https://github.com/payola/ldvm
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instance configuration and input and output mappings are then used for compatibility
checking of a finished pipeline, which also depends on the content of the data sources.
Also, they are used during pipeline execution to verify compatibility on the actual data.
Each instance is connected to its template using the ldvm:instanceOf property.

3.2 Component Types

There are four basic component types as described in subsection 2.1 - data sources,
analyzers, transformers and visualizers. They have their representation on both the
template level - descendants of the ldvm:ComponentTemplate class - and instance
levels - descendants of the ldvm:ComponentInstance class. From the implementation
point of view, transformers are just analyzers with one input and one output, so the
difference is purely semantic. This is why transformers are subclass of analyzers.

3.3 Data Ports

Components have input and output data ports. On the template level we distinguish
the inputs and outputs of a component. To ldvm:InputDataPortTemplate the in-
put descriptors of features can be applied. ldvm:OutputDataPortTemplate has the
ldvm:outputDataSample links to the output data samples. Both are subclasses of
ldvm:DataPortTemplate. The data ports are mapped to each other - output of one
component to input of another - as instances of ldvm:DataPortInstance using the
ldvm:boundTo property. This data port instance mapping forms the actual visualiza-
tion pipeline, which can be then executed. Because data ports are not LDVM com-
ponents, their instances are connected to their templates using a separate property
ldvm:dataPortInstanceOf.

3.4 Features and Descriptors

On the template level, features and descriptors (see subsection 2.2) of a component
are represented. Each component template can have multiple features connected us-
ing the ldvm:feature property. The features themselves - instances of either the
ldvm:MandatoryFeature class or the ldvm:OptionalFeature class - can be de-
scribed using standard Linked Data techniques and vocabularies such as dcterms and
skos. Each feature can have descriptors, instances of ldvm:Descriptor connected
using the ldvm:descriptor property. The descriptors have their actual SPARQL
queries as literals connected using the ldvm:query property. In addition, the input
data port templates to which the particular descriptor is applied are denoted using the
ldvm:appliesTo property.

3.5 Configuration

Now that we have the LDVM components, we need to represent their configuration.
On the template level, components have their default configuration connected using the
ldvm:componentConfigurationTemplate property. On the instance level, compo-
nents point to their configuration, when it is different from the default one, using the
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ldvm:componentConfigurationInstance property. The configuration itself is the
same whether it is on the template level or the instance level and therefore we do not dis-
tinguish the levels here and we only have one class ldvm:ComponentConfiguration.

The structure of the configuration of a LDVM component is completely dependent
on what the component needs to function. It is also RDF data and it can use various vo-
cabularies. It can be even linked to other datasets according to the Linked Data principles.
Therefore it is not a trivial task to determine the boundaries of the configuration data in
the RDF data graph in general. On the other hand, each component knows precisely what
is expected in its configuration and in what format. This is why we need each component
to provide a SPARQL query that can be used to obtain its configuration data so that
the LDVM implementation can extract it. That SPARQL query is connected to every
configuration using the mandatory ldvm:configurationSPARQL property.

3.6 Pipeline

Finally, the pipeline itself is represented by the ldvm:Pipeline class instance. It links
to all the instances of LDVM components used in the pipeline.

3.7 Nested Pipelines

A key feature for collaboration of expert and non-expert users is pipeline nesting. An
expert can create a pipeline that is potentially complex in number of components, their
configuration and binding, but could be reused in other pipelines as a black box data
source, analyzer or transformer. The intuitive way of achieving this goal is to let the
expert to create the pipeline without a visualizer and potentially even without a data
source. This pipeline would then create the black box with its own inputs represented
by the missing input mappings of the inner pipeline and outputs represented by the
outputs of the inner components to which no input is bound. However, there is one
conceptual problem. This inner pipeline is made of component instances and we want to
create a component template (reusable black box) out of it. For this, we need a property
ldvm:nestedPipeline that indicates, that a pipeline is nested in the component
template. In addition, we need to map the input data port templates of the new component
template to be bound to the input data port instances of the components of the inner
pipeline. Also, we need the output instances of the components of the inner pipeline
to be bound to the output data port templates of the new component template. This is
indicated by the ldvm:nestedBoundTo property.

4 Examples

In this section we will introduce examples of how actual templates and instances use
LDVM. We use the Turtle RDF syntax7 and due to space limitations we shorten full
URLs and omit human readable labels in the data, which we otherwise recommend
according to the "label everything" principle.

7
http://www.w3.org/TR/turtle/
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4.1 SPARQL Analyzer Template

In this section we show how a SPARQL analyzer component template uses LDVM
vocabulary. See Listing 1.1.

1 a-sparql:SparqlAnalyzerConfiguration a rdfs:Class ;
2 rdfs:subClassOf ldvm:ComponentConfiguration .
3 a-sparql:query a rdf:Property ;
4 rdfs:domain a-sparql:SparqlAnalyzerConfiguration ;
5 rdfs:range xsd:string .
6 a-sparql-r:Configuration a a-sparql:SparqlAnalyzerConfiguration ;
7 a-sparql:query "CONSTRUCT {GRAPH ?g {?s ?p ?o}} WHERE {GRAPH ?g {?s ?p ?o}}" ;
8 ldvm:configurationSPARQL """
9 PREFIX a-sparql: <http://linked.opendata.cz/ontology/ldvm/analyzer/sparql/>

10
11 CONSTRUCT {
12 ?config a-sparql:query ?query;
13 dcterms:title ?title .
14 }
15 WHERE {
16 ?config a a a-sparql:SparqlAnalyzerConfiguration;
17 OPTIONAL {?config a-sparql:query ?query . }
18 OPTIONAL {?config dcterms:title ?title . }
19 }
20 """ .
21 a-sparql-r:Input a ldvm:InputDataPortTemplate .
22 a-sparql-r:Output a ldvm:OutputDataPortTemplate .
23 a-sparql-r:Descriptor a ldvm:Descriptor ;
24 ldvm:query """ASK {?s ?p ?o}""" ;
25 ldvm:appliesTo a-sparql-r:Input .
26 a-sparql-r:Feature a ldvm:MandatoryFeature ;
27 ldvm:descriptor a-sparql-r:Descriptor .
28 a-sparql-r:SparqlAnalyzerTemplate a ldvm:AnalyzerTemplate ;
29 ldvm:componentConfigurationTemplate a-sparql-r:Configuration ;
30 ldvm:inputTemplate a-sparql-r:Input ;
31 ldvm:outputTemplate a-sparql-r:Output ;
32 ldvm:feature a-sparql-r:Feature .

Listing 1.1. SPARQL Analyzer example

First, note that each LDVM component should define its own mini-vocabulary needed
for its configuration. In the case of an analyzer that executes a SPARQL query, we need
to configure the query. Therefore, we create a class representing the configuration of the
SPARQL analyzer - see line 1 - a subclass of ldvm:ComponentConfiguration. Then
we define the property to be used for the SPARQL query - see line 3 and we instantiate
the the configuration as a default configuration - see line 6. Note the query that actually
gets the whole configuration. This one would actually get every configuration of every
SPARQL analyzer in the data. The LDVM implementation adds a special BIND clause
that fixates the ?config variable on the URI of the specific configuration. In addition,
the component template has an input (line 21), output (line 22) and a mandatory feature
(line 26) with its descriptor (line 23) that returns true whenever there is some RDF data
on the input. Finally, we create the new component template itself on line 28.
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4.2 Nested Pipeline Example

In this section we show how a nested pipeline instance can be wrapped into a new
analyzer template. It is a simple pipeline of 3 analyzers where the first two take the
input data from individual inputs, transform it and pass it to the third one. The third one
merges the data and passes it to the output.

Fig. 3. Analyzer template containing nested pipeline

See Figure 3 where we chose a graphical representation rather than a textual one
where boxes are entities, the class of the entities is written in bold and the actual URI
of the entity is shortened. The new analyzer template has two inputs and one output
and contains the nested pipeline. There is a link to a new output data sample from the
output. There are two instances of the SPARQL analyzer template (see subsection 4.1),
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which transform the data from the individual inputs, their inputs are bound to them using
the ldvm:nestedBoundTo property. The third member of the pipeline has one input
bound to the output of the SPARQL analyzers and one output bound to the output of the
template itself.

At the same time, Figure 3 is an example of a very simple pipeline instance, which
is the one nested in the new component template. What is missing due to lack of space
is the instance configuration of a component, which can overwrite the one specified
at template level. The configuration itself, however, looks the same at both levels and
depends completely on the component being configured.

5 Related Work

The problem of Linked Data not being accessible to non-experts is well-known. With the
LDVM Vocabulary we aim at an open web-services like environment that is independent
of the specific implementation of the LDVM components. This of course requires
proper definition of interfaces and the LDVM vocabulary is the base for that. However,
the approaches so far usually aim at a closed browser environment that is able to
analyze and visualize the Linked Data Cloud similarly to our first version of Payola
[6]. They do not provide configuration and description using a reusable vocabulary. The
approaches include Hide the stack [5], where the authors describe a browser meant
for end-users, which is based on templates based on SPARQL queries. Also recent is
LDVizWiz [1], which is a very LDVM-like approach to detecting categories of data in
SPARQL endpoints and extracting basic information about entities in those categories.
An lightweight application of LDVM in enterprise is described in LinDa [9]. Yet another
similar approach that analyzes SPARQL endpoints to generate faceted browsers is
rdf:SynopsViz [3]. In [2] the authors use their LODeX tool to summarize LOD datasets
according to the vocabularies used. For more tools for Linked Data visualization see
[7]. The most relevant related work to the specific topic of a vocabulary supporting
Linked Data visualization is Fresnel - Display Vocabulary for RDF [8]. Fresnel specifies
how a resource should be visually represented by Fresnel-compliant tools like LENA
8 and Longwell 9. Therefore, Fresnel vocabulary could be perceived as a vocabulary
for describing LDVM visualization abstraction. This is partly because the vocabulary
was created before the Linked Data era and therefore focuses on visualizing RDF data
without considering vocabularies and multiple sources.

6 Conclusions

In this paper we briefly described our Linked Data Visualization Model (LDVM) and pro-
posed a Linked Data vocabulary for description of its components and their configuration.
The vocabulary supports description of inputs and outputs of individual components,
which allows LDVM implementations to check whether components are compatible
with each other. In addition, the vocabulary supports creation of new LDVM compatible

8
https://code.google.com/p/lena/

9
http://simile.mit.edu/issues/browse/LONGWELL
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component templates and representation of analytic and visualization pipelines based on
those components. This support includes creation of component templates from pipeline
instances, which facilitates cooperation between expert and non-expert users of LDVM
implementations. Expert users can create complex pipelines and provide them as black
box components to the non-experts who can then use them in their pipelines. We showed
the vocabulary usage on an example of a component template and example of a nested
pipeline. There are multiple advantages of representing the templates, their configuration
and whole pipelines in RDF according to the LDVM vocabulary. For example, the
data processed by the pipelines can be linked to the actual pipelines, the templates and
pipelines can be easily manipulated by SPARQL queries and shared among users.
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