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Abstract. Semantic-based approaches are relatively new technologies.
Some of these technologies are supported by specifications of W3 Con-
sortium, i.e. RDF, SPARQL and so on. There are many areas where
semantic data can be utilized, e.g. social networks, annotation of protein
sequences etc. From the physical database design point of view, several
index data structures are utilized to handle this data. In many cases, the
well-known B-tree is used as a basic index supporting some operations.
Since the semantic data are multidimensional, a common way is to use a
number of B-trees to index the data. In this article, we review other in-
dex data structures; we show that we can create only one index when we
utilize a multidimensional data structure like the R-tree. We compare a
performance of the B-tree indices with the R-tree and some its variants.
Our experiments are performed over a huge semantic database, we show
advantages and disadvantages of these data structures.

1 Introduction

Semantic-based approaches are new technologies trying to allow computers to
handle semantic information. These approaches have many specific applications.
The main advantage of a semantic system is that the computer can reveal unex-
pected facts, e.g. a new effective drug combination in medicine [6], unexpected
relationships in social networks [19] or artificial intelligence [28] can be discov-
ered. This is the reason why the semantic systems are a current research topic.

The W3 Consortium have released some specifications related to semantic
technologies1, e.g. RDF [32] as a model of the semantic data or SPARQL [25]
as a query language for the RDF data. In addition, more general specifications
are also usable for a semantic DBMS supporting SPARQL or another query
language, e.g. XML [9] or WSDL [12] for a communication with the DBMS.

In this article, we also list a lot of semantic DBMS with the query languages
they support and the indices they utilize. Since the semantic DBMS often utilize
a relational DBMS as a storage for the RDF triple table (representing the RDF
data), the B-tree [13] is often used as the main index. The main issue of this
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physical implementation is that a number of B-trees have to be built to support
queries over the triple table. However, there are other index data structures
capable to handle semantic data. In this article, we show that it is possible to
create only one index if we utilize a multidimensional data structure like the R-
tree [22] or some of its variants (namely the Signature R-tree [30] or the Ordered
R-tree [31]).

In Section 2, we present some basic terms related to semantic technologies.
In Section 3, we describe the basic physical design for the RDF data. Section 4
describes some negative issues of the B-tree as an index data structure for the
triple table. In addition, the R-tree, R∗-tree [8], and two their variants are de-
scribed. In Section 5, we summarize the advantages and disadvantages of these
data structures for various queries over the LUBM data collection [21]. Finally,
we conclude the article and outline the possibilities of our future work.

2 Semantic Technologies

In this section, we briefly introduce a theoretical basis of the RDF model [32]
and the SPARQL query language [25] standardized by W3C. We recommend the
book [20] for a more detailed review.

2.1 RDF Model

RDF (Resource Description Framework) is a general model representing infor-
mation on the Web; data are modeled as a directed labeled graph [32]. Each
edge represents a relationship between an object and a subject : two nodes of the
graph. The label of the edge is called property. An example of the graph is given
in Figure 1. This tuple (subject, property, object) is called an RDF triple (s,p,o).

The values of each triple usually include IRI (Internationalized Resource
Identifiers) [15] identifying an abstract or a physical resource. In [20], the author
introduces the following definition:

Definition 1 (RDF triple). Let us assume there are pairwise disjoint infinite
sets I, B, and L, where I represents the set of IRIs, B the set of blank nodes,
and L the set of literals. We call a triple (s, p, o) ∈ (I ∪B)I(I ∪B ∪L) an RDF
triple, where s represents the subject, p the predicate, and o the object of the
RDF triple.

A triple table is a set of RDF triples; it is a representation of the RDF graph.
In Table 1, we see a fragment of the triple table to the RDF graph in Figure 1.
A triple store or an RDF database is an engine enabling to store an RDF graph
and efficient processing of queries. However, we usually require other operations
like update, insert or delete.

Some RDF stores add a fourth element to the triple; this fourth element
contains the context of the triple [14]. There are RDF engines enabling to manage
these quads [16].
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Fig. 1. An example of an RDF graph [18]

Subject Property Object

LongJump type Jump

Blanka Vlasic jumps HighJump

GoldenLeague type Meeting

Table 1. A fragment of an RDF triple table [18]

The RDF specification [32] does not define any way how to store and index
the triple table; therefore, there are many variants of the physical design of the
triple table and we describe them in Section 3.

2.2 SPARQL Query Language

Although there are many query languages for RDF data2, e.g. SPARQL/Update
(or SPALUR) [38], SPARQL 1.1 [25] is a de-facto standard query language for
RDF data. It is similar to SQL in many features. SPARQL 1.1 also includes
insert, update, and delete operations.

The basic query construct of the SELECT statement includes
SELECT <projection> WHERE <sequence of triple patterns>. A variable in
SPARQL defined by the symbol ? and a name represents the main difference com-
pared to SQL; they define unknown values of o, s or p in a pattern as well as
a relationship among triple patterns. We distinguish four types of the SPARQL
query (for more details see [25]):

– SELECT – returns the result relation defined by the projection and patterns.

2 http://www.w3.org/2001/11/13-RDF-Query-Rules/
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– ASK – similar to the SELECT query; however, it returns the boolean value;
true if the result is not empty, otherwise false.

– CONSTRUCT – allows to format own result graph over the triples returned
by the patterns.

– DESCRIBE – returns the node (and its neighbours) defined by the patterns.

A form of <pattern> determines the selectivity of a query over the triple
table. We can distinguish a point query (s, p, o) returning 0 or 1 triple, or a
range query where the query (s, ∗, ∗) can returns more triples than the query
(s, p, ∗).
Example 1 (SPARQL Queries).

1. SELECT ?s ?p ?o WHERE { ?s ?p ?o }
This query selects the whole triple table, it represents the range query
(∗, ∗, ∗).

2. SELECT * WHERE { <Blanka Vlasic> <jumps> <HighJump> }
ASK { <Blanka Vlasic> <jumps> <HighJump> }
These two queries are similar; the SELECT query returns 0 or 1 triple, on
the other hand, the ASK query returns true in the case the triple exists in
the graph. These queries represent the point (s, p, o) query over the triple
table.

3. SELECT ?s WHERE { ?s <type> <Jump> }

ASK { ?s <type> <Jump> }

CONSTRUCT ?s <type> <Discipline> WHERE { ?s <type> <Jump> }
These three queries include the same selection: the range query (∗, <type>,
<Jump>). The SELECT query returns all subjects matched by the range
query, the ASK query returns true if any triple exists in the graph, and
the CONSTRUCT query returns triples (∗, <type>, <Discipline>) for all
triples retrieved by the selection.

4. SELECT ?p ?o WHERE { <organized> ?p ?o }
This query selects all triples matched by the range query (<organized>, ∗,
∗). The selectivity of this query is probably lower than the selectivity of the
queries 2 and 3; however, it is higher compared to the query 1.

Moreover, the selection includes zero or more join operations. In Figure 2, we
show two queries including more join operations. A query with one join is shown
in Figure 2(a). In this SELECT, we can see two output variables o1 and o2. In
Lines 2 and 3, the range queries (*, <type>, *) and (*, <jumps>, *) are defined.
Results of these range queries are then joined using the subject represented by
the j variable and objects for variables o1 and o2 are returned.

A more complex SPARQL query with join is shown in Figure 2(b). This
SELECT also contains the output variables o1 and o2. However, this query is
evaluated by a sequence of three joins: the first join involves sets defined by
queries in Lines 2 and 3, the second join involves the result of the previous join
and the result of the query in Line 4, and the last join involves the result of the
previous join and the result of the query in Line 5. The result of the complete
query includes subjects and objects for the variables s and o.
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1. SELECT ?o1 ?o2 WHERE {

2. ?j <type> ?o1 .

3. ?j <jumps> ?o2

4. }

1. SELECT ?s ?o WHERE {

2. ?s <jumps> ?j1 .

3. ?j1 <type> ?j2 .

4. ?j2 <sc> ?j3 .

5. ?j3 <hasWorlRecord> ?o

6. }

type jumps

j

o1 o2

type

jumps

sc

hasWorlRecord
j1

s

j2

j3

o

(a) (b)

Fig. 2. Two SPARQL query with join and their graph representations

3 Existing Triple Stores

In Table 2, we show triple stores introduced from 2002 to 2014. These triple
stores include academic prototypes, commercial solutions as well as open source
projects. Although some details of their implementation are not known, we can
distinguish three basic types of the physical design for the triple table [18]:

1. Triple Table (TT ) – in this case, triples are stored in a sequence array.

2. Property Table (PT ) – in this case, we define a tuple (s, o1, o2, . . . , on) for
properties p1, p2, . . . pn. Tuples of this schema are stored in a sequence array.
We can define more property tables in that cases the number of properties
is higher than n.

3. Vertical Partitioning (VP) – the property table where n = 1.

Except these main approaches there are also some other variants and improve-
ments, for example Hierarchical Property Partitioning utilized in roStore [17].
In some works, we distinguish the Multiple indices approach, which means that
some combinations of various indices together with a modification of the above
described types are depicted. In Table 2, we can see the B-tree and its variants
are the most commonly used data structure indexing the triple table.

3 http://www.guha.com/rdfdb/
4 http://rdfstore.sourceforge.net/
5 http://www.bigdata.com/



18 Roman Meca, Michal Krátký, Peter Chovanec, Filip Křižka

Store Published
Last

update

Physical Index Supported
design data query
type structure language

JENA [34] 2002 2014 PT Hash-table, B-tree SPARQL

RDFSuite [3] 2001 2003 PT B-tree SPARUL

Sesame [10] 2002 2014 PT B-tree SPALUR

3store [23] 2003 2013 TT Hash-table RDQL/SPARQL

rdfDB3 2004 2010 TT B-tree SPARQL

RDFStore4 2004 2006 TT BerkeleyDB SPARQL

Redland [7] 2002 2014 TT Hash-table SPARQL

AllegroGraph[1] 2006 2014 B-tree SPARQL

sw-Store[2] 2009 2014 VP
B-tree,
Bitmap SPARQL

4store [24] 2009 2013 PT Hash-table SPALUR

YARS [26] 2005 2006 MI B-tree N3 extension

YARS2 [27] 2007 MI
Sparse index,

B-tree SPARQL

Kowari [42] 2005 2005 MI
AVL tree,

B-tree iTQL/RDQL

Hexastore [41] 2008 MI B-tree SPARQL

RDFJoin [35] 2008 VP B-tree SPARQL

RDFKB [36] 2009 MI B-tree -

BitMat [4] 2009 2013 MI 3D Bitmap SPARQL-like

RDF-3X [37] 2008 2013 MI B-tree SPARQL

Parliament [29] 2009 2014 MI B-tree, Heap table -

Virtuoso[16] 2009 2014 MI
B-tree,
Bitmap SPALUR

RDFCube[33] 2007 MI 3D Hash-table -

GRIN [40] 2007 MI B-tree SPARQL

BigData5 2008 2014 MI B-tree SPARQL 1.1

Oracle [11] 2005 2014 MI B-tree, R-tree SPARQL

Marmotta [5] 2013 2014 MI B-tree SPARQL

Table 2. Triple Stores. TT - triple table PT - property table VP - vertical partitioning
MI - multiple indices
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4 Index Data Structures

4.1 B-tree

The B-tree is an one-dimensional paged data structure supporting point and
one-dimensional range queries as well as update operations [13]. As result, in
the case we want to support a general range query without a sequential scan of
all leaf nodes, we have to create more indices.

For example, in the case of a B-tree with the compound key (s, p, o), we
can effectively utilize range queries (s, p, ∗) and (s, ∗, ∗). On the other hand,
fast processing of the range query (∗, p, o) demands a sequential scan over all
leaf nodes of the B-tree. To cover all combination of searched dimensions with
efficient range query execution, three B-trees have to be created (see Table 3).
Consequently, this solution means that the size of indices is probably higher
than the table size. This issue is even more evident in the case of the Quad
table; in Table 4, we see that we need 6 indices to cover all range queries over
quads. There are two problematic issues related to this technique: the higher
space overhead and the additional overhead of the update operations since more
indices have to be updated.

Compound key of the B-tree
(s, p, o) (o, s, p) (p, o, s)

Supporting (s, p, o) (o, s, p) (p, o, s)
range (s, p, ∗) (o, s, ∗) (p, o, ∗)

queries (s, ∗, ∗) (o, ∗, ∗) (p, ∗, ∗)
(∗, ∗, ∗) (∗, ∗, ∗) (∗, ∗, ∗)

Table 3. B-tree indices for the triple table

Compound key of the B-tree
(s, p, o, c) (p, o, c) (o, c, s) (c, s, p) (c, p) (o, s)

(s, p, o, c) (p, ∗, ∗) (o, ∗, ∗) (c, ∗, ∗) (c, p) (o, s)
Supporting (s, p, o, ∗) (p, o, ∗) (o, c, ∗) (c, s, ∗)

range (s, p, ∗, ∗) (p, o, c) (o, c, s) (c, s, p)
queries (s, ∗, ∗, ∗)

(∗, ∗, ∗, ∗)
Table 4. B-tree indices for the quad table

4.2 R-tree

Since the multidimensional R-tree [22] supports a general multidimensional range
query, we can use it as a solution of the above mentioned problems instead of
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a sequence scan in the B-tree. The R-tree can be thought of as an extension of
the B-tree in a multidimensional space. It corresponds to a hierarchy of nested
n-dimensional minimum bounding rectangles (MBR). If N is an interior node,
it contains couples of the form (Ri, Pi), where Pi is a pointer to a child of the
node N . If R is its MBR, then the rectangles Ri corresponding to the children
Ni of N are contained in R. Rectangles at the same tree level can overlap. If N
is a leaf node, it contains couples of the form (Ri, Oi), so called index records,
where Ri contains a spatial object Oi.

The split algorithm has the significant affect on the index performance. Three
split techniques (Linear, Quadratic, and Exponential) proposed in [22] are based
on a heuristic optimization. The Quadratic algorithm has turned out to be the
most effective and other improved versions of R-trees are based on this method.
An MBR can overlap another MBR in the same level of the tree; the probability
increases linearly with increasing data dimension. This effect is known as curse
of dimensionality [43].

There are many variants of the R-tree, e.g. R∗-trees [8], R+-tree [39]. The
R∗-tree [8] differs from the R-trees mainly in the insertion algorithm. Although
original R-tree algorithms tried only to minimize the area covered by MBRs,
the R*-tree algorithms try to minimize overlapping between MBRs at the same
levels and maximize the storage utilization. The R+-tree [39] is a variant of the
R-tree which allows no overlap between regions corresponding to nodes at the
same tree level; however, an item can be stored in more than one leaf node.

Since some intervals of a range query include only one value in the case of
the triple table, we call the query as the narrow range query [30]. Therefore,
we utilize the Signature R-tree [30] allowing to handle the range query more
efficiently than the R-tree and its variants. Moreover, we use the Ordered R-
tree [31] since we can define an ordering of attributes. These data structures are
described in the following sections.

4.3 Signature R-tree

The Signature R-tree [30] contains MBRs in inner nodes (we suppose point
data in leaf nodes) and one signature related to each MBR. The signature is
created for tuples inserted in the subtree related to each MBR. As result, we can
use two types of filtering when a range query scans the tree: the first filtering
method tests whether an MBR is intersected by a query rectangle and the second
filtering method tests whether a signature can include tuples of the query. As
result, the Signature R-tree reads a lower number of nodes during the range
query processing. This R-tree variant is however proposed only for point data
and narrow range queries.

4.4 Ordered R-tree

The Ordered R-tree [31] is a simple combination of the R-tree and the B-tree.
It means, we can use a general multidimensional range query, however we can
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define an ordering for tuples inserted in the tree. Evidently, we can define only
one ordering in one tree. There are two consequences:

1. For some range queries (corresponding to ordering defined for the tree), all
leaf nodes intersected by the query rectangle include only result tuples. It is
not generally true for the R-tree and its variants, but the range query of the
B-tree provides the same behaviour.

2. We get tuples of the result sorted and it is not necessary to sort them after
the range query is processed.

In this article, we utilize mainly the first property.

5 Experiments

In our experiments6, we compare the B-tree, as the main index data structure
utilized in semantic DBMS, with the R-tree7, Signature R-tree, and Ordered R-
tree. All index data structures are implemented in C++8. We utilize a generated
synthetic data collection called LUBM including 133,573,856 triples [21], the size
of the text file is 22.2 GB.

Query Group Type Result set size #Queries #Iterations

1 Range query < 1; 1 > 6 10,000

2 Range query < 2; 1, 000 > 6 50

3 Range query < 1,001; 1,000,000 > 6 1

4 Range query < 1, 000, 001;∞) 6 1

5 Point query < 1; 1 > 33,234,949 1

Table 5. Specification of query groups

We test the performance of point and range queries processed over the index
data structures when a SPARQL query is evaluated. We use 5 groups of queries
determined by the selectivity (see Table 5)9. QG5 represents a sequence of point
queries processed during a join operation. In the case of QG1 and QG2, it is
necessary to repeat a sequence of queries since the processing time of one query
is unmeasurable. The number of iterations is written in the column #Iteration
of the table. The column #Queries contains a number of various queries in one
query group.

6 We run our experiments on 2 x Intel Xeon E5 2690 2.9GHz and 300GB RAM memory,
OS Windows Server 2008.

7 More precisely, the R∗-tree has been tested.
8 A part of the RadegastDB framework developed by DBRG – http://db.cs.vsb.cz/
9 A complete list of queries can be found in http://db.cs.vsb.cz/

TechnicalReports/indices for rdf data-query.pdf
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We built the B-trees, the R-tree, the Signature R-tree, and the Ordered
R-trees for the test data collection10. In Table 6 and Figure 3, we see basic
characteristics of these indices. Since these data structures include string ids
instead of strings, a term index is built. In the case of the Ordered R-tree, we
do not need more trees like in the case of the B-tree, however, in this article, we
want to test whether it is possible to find an optimal ordering for the Ordered
R-tree, therefore we build the tree for more orderings of the attributes. We can
see that the B-tree size is up-to 3× higher than the size of the R-tree-based
indices. The R-tree is build in 58% of the B-tree build time. On the other hand,
the build time for other R-tree-based indices is up-to 2× less efficient compared
to the B-tree.

Index Data Structure #Nodes Size [GB] Build Time [s]

Term index 4,543,671 8.67 3,794.7

B-tree
(s, p, o)

4,465,853 8.51 3,857.9(p, o, s)
(o, s, p)

R-tree 1,495,289 2.85 2,228.1

Signature R-tree 1,641,905 3.13 6,143.5

Ordered R-tree

(s, p, o) 1,541,677 2.94 6,404.1
(p, o, s) 1,499,602 2.86 7,193.5
(o, s, p) 1,433,703 2.73 6,791.1
(s, o, p) 1,541,677 2.94 7,232.2
(p, s, o) 1,579,935 3.01 7,535.6
(o, p, s) 1,429,151 2.73 6,933.0

Table 6. Statistics of index data structures

B-tree

R-tree

Signature R-tree

Ordered R-tree SPO

Ordered R-tree POS

Ordered R-tree OSP

Ordered R-tree SOP

Ordered R-tree PSO

Ordered R-tree OPS
Index size [GB]

0

1

2

3

4

5

6

7

8

9

Build time [s]
0E+0

1E+3

2E+3

3E+3

4E+3

5E+3

6E+3

7E+3

8E+3

Fig. 3. Index build time and index size

10 The page size is 2,048 B for all data structures.
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In Figure 4, we can see the query processing time for all query groups; the
processing time is the average time of all queries in one group. Similarly, Fig-
ure 5 includes DAC for all query groups. Evidently, the B-tree provides the most
efficient performance especially in the case of the higher selectivity. The reason
of this result is the minimal DAC of the B-tree since only leaf nodes includ-
ing result tuples are scanned. In the case of the lower selectivity (see GP4 in
Figure 4), results of all index data structures are similar.

B-tree

R-tree

Signature R-tree

Ordered R-tree SPO

Ordered R-tree POS

Ordered R-tree OSP

Ordered R-tree SOP

Ordered R-tree PSO

Ordered R-tree OPS
GP1 GP2 GP3 GP4 GP5

0,000000

0,000001

0,000010

0,000100

0,001000

0,010000

0,100000

1,000000

10,000000

100,000000

1000,000000

Fig. 4. Processing time for all query groups [s]

B-tree

R-tree

Signature R-tree

Ordered R-tree SPO

Ordered R-tree POS

Ordered R-tree OSP

Ordered R-tree SOP

Ordered R-tree PSO

Ordered R-tree OPS
GP1 GP2 GP3 GP4 GP5

1

10

100

1000

10000

100000

1000000

10000000

Fig. 5. DAC for all query groups

We see that the Signature R-tree and the Ordered R-tree outperform the
R-tree in most cases. Although the average processing time of the Signature R-
tree is lower compared to the Ordered R-tree, we can find a query in each query
group where it exists an ordering of the Ordered R-tree such that the Ordered
R-tree outperforms the Signature R-tree. Let us consider query processing times
in Figure 6. In the case of Q1 (S=’AssociateProfessor’, P=’type’, O=*),
the Ordered R-trees SPO and SOP outperform the Signature R-tree and other
Ordered R-trees, however in the case of Q7 (S=*, P=’PublicationAuthor’,

O=’AssistentProfessor’) the performance of these Ordered R-trees is the low-
est. Similarly, in the case of Q11 (S=*, P=*, O=’Course2’), the Ordered R-tree
OPS outperforms other R-tree variants and its performance is the same as the
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performance of the B-tree. Similarly, in the case of Q14 (S=*, P=’worksFor’,

O=*), the Ordered R-tree SOP outperforms other R-tree variants. However, we
must keep in mind that this effect depends on a query and a concrete ordering
of the Ordered R-tree.

Although, it is clear that the B-tree provides the most efficient processing
time, there are some improvements of multidimensional data structures. The
first one, the index size of a multidimensional data structure is up to 3× lower
the B-tree index size. The second one, in the case of the B-tree it is necessary
to change ordering of values in a triple when a query processor want to use an
index with different ordering than another index returns, it means an additional
time overhead in this case.

B-tree

R-tree

Signature R-tree

Ordered R-tree SPO

Ordered R-tree POS

Ordered R-tree OSP

Ordered R-tree SOP

Ordered R-tree PSO

Ordered R-tree OPS
Q1 Q7 Q11 Q14

0,000001

0,000010

0,000100

0,001000

0,010000

0,100000

1,000000

10,000000

100,000000

1000,000000

Fig. 6. Processing time for some queries [s]

B-tree

R-tree

Signature R-tree

Ordered R-tree SPO

Ordered R-tree POS

Ordered R-tree OSP

Ordered R-tree SOP

Ordered R-tree PSO

Ordered R-tree OPS
Q1 Q7 Q11 Q14

1

10

100

1000

10000

100000

1000000

10000000

Fig. 7. DAC for some queries

As result, let us consider a workload including queries accessing the most
tree nodes. If the cache size is lower than the number of B-tree nodes, a multidi-
mensional data structure would provide the higher performance than the B-tree
in the case the cache includes all nodes of the multidimensional data structure.
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6 Conclusion

In this article, we compared the performance of the B-tree with the R-tree, the
Signature R-tree, and the Ordered R-tree for the triple table and point and range
queries processed during the evaluation of a SPARQL query. The Signature R-
tree and the Ordered R-tree outperform the R-tree for most queries. Although
the average processing time of the Signature R-tree is lower compared to the
Ordered R-tree, in each query group, we can find a query where there is such an
ordering of the Ordered R-tree outperforming the Signature R-tree.

The B-tree provides the most efficient processing time; the average processing
time of the B-tree is 74% of the Signature R-tree’s processing time. However,
there are some specific improvements of multidimensional data structures. The
first one, index size of a multidimensional data structures is up to 3× lower than
the B-tree index size. The second one, in the case of the B-tree it is necessary
to change ordering of values in each triple when a query processor want to use
an index with different ordering than another index returns. Consequently, it
means an additional time overhead of the query processing.
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