
Charles University in Prague, MFF, Department of Software Engineering
Czech Technical University in Prague, FIT, Dept. of Software Engineering

VŠB–TU Ostrava, FEECS, Department of Computer Science
Czech Society for Cybernetics and Informatics

Proceedings of the Dateso 2015 Workshop

http://www.cs.vsb.cz/dateso/2015/
http://www.ceur-ws.org/Vol-1343/

April 14 – 16, 2015
Nepř́ıvěc u Sobotky, Jič́ın, Czech Republic

DATESO 2015
c© M. Nečaský, J. Pokorný, P. Moravec, editors

This work is subject to copyright. All rights reserved. Reproduction or publication of
this material, even partial, is allowed only with the editors’ permission.

Technical editor:
Pavel Moravec, pavel.moravec@vsb.cz
VŠB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science
Department of Computer Science

Page count: 141
Edition: 1st

First published: 2015

This proceedings was typeset by PDFLATEX.
Cover design by Pavel Moravec (pavel.moravec@vsb.cz) and Tomáš Skopal.

Originally published under ISBN 978-80-7378-285-6 by MATFYZPRESS publishing

house of Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186

75 Praha 8 – Karĺın, Czech Republic as its 479th publication.

Steering Committee

Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Karel Richta Czech Technical University, Prague
Jaroslav Pokorný Charles University, Prague

Program Committee

Martin Nečaský (chair) Charles University, Prague
Wolfgang Benn Technische Universität Chemnitz, Chemnitz, Germany
Václav Snášel VŠB-Technical University of Ostrava, Ostrava
Jaroslav Pokorný Charles University, Prague
Karel Richta Czech Technical University, Prague
Michal Valenta Czech Technical University, Prague
Vojtěch Svátek University of Economics, Prague
Peter Vojtáš Charles University, Prague
Dušan Húsek Inst. of Computer Science, Academy of Sciences, Prague
Michal Krátký VŠB-Technical University of Ostrava, Ostrava
Pavel Moravec VŠB-Technical University of Ostrava, Ostrava
Irena Holubová Charles University, Prague
Jǐŕı Dvorský VŠB-Technical University of Ostrava, Ostrava
Radim Bača VŠB-Technical University of Ostrava, Ostrava
Jan Martinovič VŠB-Technical University of Ostrava, Ostrava
Pavel Strnad Czech Technical University, Prague
Ondřej Macek Czech Technical University, Prague
Robert Pergl Czech Technical University, Prague
Martin Kruǐs Czech Technical University, Prague

Organizing Committee

Martin Nečaský (chair) Charles University, Prague
Jakub Kĺımek Charles University, Prague
Pavel Moravec VŠB-Technical University of Ostrava, Ostrava

Preface

DATESO 2015, the international workshop on current trends on Databases, In-
formation Retrieval, Algebraic Specification and Object Oriented Programming,
was held on April 14 – 16, 2015 in Nepř́ıvěc u Sobotky, Jič́ın, Czech Republic.

The 15th year was organized by Department of Software Engineering MFF
UK Praha, Department of Software Engineering, FIT ČVUT Praha, Department
of Computer Science VŠB-Technical University Ostrava, and Working group on
Computer Science and Society of Czech Society for Cybernetics and Informat-
ics. The DATESO workshops aim for strengthening connections between these
various areas of informatics.

The proceedings of DATESO 2015 are also available at DATESO Web site:
http://www.cs.vsb.cz/dateso/2015/ and CEUR Workshop Proceeding site:
http://www.ceur-ws.org/Vol-1343/ (ISSN 1613-0073). The Program Com-
mittee selected 12 papers (8 full and 4 short papers) from 19 submissions, based
on two independent reviews.

We wish to express our sincere thanks to all the authors who submitted
papers, the members of the Program Committee, who reviewed them on the basis
of originality, technical quality, and presentation. We are also thankful to the
Organizing Committee. Special thanks belong to Czech Society for Cybernetics
and Informatics.

Our thanks go also to Pavel Moravec who, as copy editor of DATESO Pro-
ceedings, helped to prepare this volume and provided technical support for the
conference preparation portal.

April, 2015 M. Nečaský, J. Pokorný, P. Moravec (Eds.)

Table of Contents

Full Papers

Dynamic Local Scheduling of Multiple DAGs in Distributed
Heterogeneous Systems . 1
Ondřej Votava, Peter Macejko, Jan Janeček

Data Structures for Indexing Triple Table . 13
Roman Meca, Michal Krátký, Peter Chovanec, Filip Křǐzka

Vocabulary for Linked Data Visualization Model . 28
Jakub Kĺımek, Jiř́ı Helmich

Parallel Approach to Context Transformations . 40
Michal Vašinek, Jan Platoš

Methodologies and Best Practices for Open Data Publication 52
Jan Kučera, Dušan Chlapek, Jakub Kĺımek, Martin Nečaský

Introduction to Optical Music Recognition: Overview and Practical
Challenges . 65
Jiř́ı Novotný, Jaroslav Pokorný

Critical Evaluation of Existing External Sorting Methods in the
Perspective of Modern Hardware . 77
Martin Krulǐs

Procedural Code Representation in a Flow Graph . 89
Michal Brabec, David Bednárek

Short papers

Biased k-NN Similarity Content Based Prediction of Movie Tweets
Popularity . 101
Ladislav Peška, Peter Vojtáš

UnifiedViews: Towards ETL Tool for Simple yet Powerfull RDF Data
Management . 111
Tomáš Knap, Petr Škoda, Jakub Kĺımek, Martin Nečaský

Aspect-oriented User Interface Design for Android Applications 121
Jiř́ı Šebek, Karel Richta

A Survey on Music Retrieval Systems Using Microphone Input 131
Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

Author Index . 141

Dynamic Local Scheduling of Multiple DAGs in
Distributed Heterogeneous Systems

Ondřej Votava, Peter Macejko, and Jan Janeček

Czech Technical University in Prague
{votavon1, macejp1, janecek}@fel.cvut.cz

http://cs.fel.cvut.cz

Dynamic Local Scheduling of Multiple DAGs in
Distributed Heterogeneous Systems

Ondřej Votava, Peter Macejko, and Jan Janeček1

Czech Technical University in Prague
{votavon1, macejp1, janecek}@fel.cvut.cz

http://cs.fel.cvut.cz

Abstract. Heterogeneous computational platform offers a great ratio
between the computational power and the price of the system. Static
and dynamic scheduling methods offer a good way of how to use these
systems efficiently and therefore many algorithms were proposed in the
literature in past years. The aim of this article is to present the dynamic
(on-line) algorithm which schedules multiple DAG applications without
any central node and the schedule is created only with the knowledge of
node’s network neigbourhood. The algorithm achieves great level of fair-
ness for more DAGs and total computation time is close to the standard
and well known competitors.

1 Introduction

Homogeneous (heterogeneous) computational platform consists of a set of iden-
tical (different) computers connected by a high speed communication network
[1, 2]. Research has been done last few years on how to use these platforms ef-
ficiently [3–5]. It is believed that scheduling is a good way on how to use the
computation capacity these systems offer [1, 6]. Traditional attitude is to pre-
pare the schedule before the computation begins [7, 8]. This requires information
about the network topology and parameters and also node’s computational abil-
ities. Knowing all of this information we can use the static (offline) scheduling
algorithm. Finding the optimal value of makespan – i.e. the time of the com-
putation in total – is claimed to be NP complete [9, 10]. Therefore research has
been done and many heuristics have been found [11, 12].

Compared to static scheduling, dynamic (online) scheduling allows us to
create the schedule as part of the computation process. This allows dynamic
algorithms to use the feedback of the system and modify the schedule in accor-
dance with current state of the system. Dynamic algorithms are often used for
scheduling multiple applications [13–16] at the same time and therefore fairness
of generated schedules is important.

The algorithm presented in this paper does not require the global knowledge
of the network, it uses the information gathered from node’s neighbors only.
The phase of creating the schedule is fixed part of the computation cycle. The
algorithm is intended to be used for scheduling more DAGs simultaneously and
tries to achieve fair division of tasks for all computing nodes.

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 1–12, CEUR-WS.org/Vol-1343.

2 Ondřej Votava, Peter Macejko, Jan Janeček2 Ondřej Votava et al.

The structure of this article, which is the enhanced version of [17], is as
follows, in the section two we describe the problem of scheduling and make a
brief summary of related work. In the section three we describe the algorithm
itself and in the following section we describe the testing environment and results
we obtained by running several simulations. In the fifth section we conclude the
results from section four, show the pros and cons of the presented algorithm and
discuss the future improvements.

2 Problem definition

The application model can be described as a directed acyclic graph AM = (V,E,B,C)
[12, 18], where:

V = {v1, v2, . . . , vv}, |V| = v is the set of tasks, task vi ∈ V represents the
piece of code that has to be executed sequentially on the same machine,

E = {e1, e2, . . . , ee}, |E| = e is the set of edges, the edge ej = (vk, vl) represents
data dependencies, i.e. the task vl cannot start the computation until the
data from task vk has been received, task vk is called the parent of vl, vl is
called the child of vk,

B = {b1, b2, . . . , bv}, |B| = v is the set of computation costs (e.g. number of
instructions), where bi ∈ B is the computation cost for the task vi,

C = {c1, c2, . . . , ce}, |C| = e is the set of data dependency costs, where cj = ck,l
is the data dependency cost (e.g. amount of data) corresponding to the edge
ej = (vk, vl).

The task which has no parents or children is called entry or exit task respec-
tively. If there are more than one entry/exit tasks in the graph a new virtual
entry/exit task can be added to the graph. Such a task would have zero weight
and would be connected by zero weight edges to the real entry/exit tasks.

c

b

i

i

i,j

j

b j

entry

exit

1 2 3

4 5 6 7

8 9 10

00

10 3020

2514
26

36
37

40 25 36 57

88 49 11

48

58

51
69

0 0

000

Fig. 1. Application can be described
using DAG.

p
1

p
2

p
3

p
5

p
8

p
76

p

p
4

Fig. 2. The computation system can be
represented as a general graph.

Dynamic Local Scheduling of Multiple DAGs in Distr. Heterogen. Systems 3Dynamic Local Scheduling of Multiple DAGs in Distr. Heterogen. Systems 3

Since the application can be described as DAG we use terms application,
DAG application or simply DAG as synonyms in this paper.

The computation system consist of a set of computing units all of which are
connected by a high speed communication network. It can be described using a
general graph CS = (P,Q,R,S), where:

P = {p1, p2, . . . , pp}, |P| = p is a set of the computers,
Q = {q1, q2, . . . , qp}, |Q| = p is the set of speeds of computers, where qi is the

speed of computer pi,
R is a matrix describing the communication costs, the size of R is p× p,
S is a matrix used to describe the communication startup costs, it is usually

one dimensional, i.e. it’s size is p× 1.

2.1 Merging application and computation model

Since the structure of the application and the characteristics of the computation
systems are known it is no problem to get the information about computation
time of each application’s node at any computation node. This information is
stored in a W matrix, whose dimensions are v×p, where the item at the position
[i, j] contains the information about the length of the computation of the task
i on a computation unit j. The value of W[i, j] is computed by the following
equation

W[i, j] =
bi
qj
, (1)

where bi is the computation cost of task vi and qj is the speed of computer pj
(e.g. instructions per second).

The total communication time for a message m (corresponding data depen-
dency for the edge (vk, vl)) that is send from the computer i to the computer j
can be computed by this equation

cm = S[i] + R[i][j] · ck,l. (2)

2.2 Our model description

The content of the matrix W is dependent on the properties of computation
nodes. However, the computers differ only in a certain ways. The “fast” com-
puters are k times faster than “slow” computers. On that account the columns
in the W are usually only multiples of one column. This information can be
reduced to the constant kp for each processor p. When the computation system
is allowed to change, the matrix W is not useable either since it does not reflect
any dynamic behaviour.

The structure, we decided to use, can be described as follows. We selected one
processor to serve as a reference – pref . The computation time of one instruction
on this processor lasts one time unit. The speedup of the processor pi is then
defined as

SUp(i) =
qi
qref

, (3)

4 Ondřej Votava, Peter Macejko, Jan Janeček4 Ondřej Votava et al.

where qi is the speed of processor pi and qref is the speed of the reference
processor.

The time duration of computation of a task vj on the processor pi is then
computed “on the fly” by the equation

timej,i =
bj

SUp(i)
. (4)

Finally, the computation platform is described as a set of speedups and the com-
munication matrices and the merging of application and computation model is
being done as a part of the computation. Even the communication matrices may
be reduced in our model. They contain only information about computation
node’s neighbours and differ for all nodes. Still, this is a problem for imple-
mentation part and does not affect the description model, as the “neighbour’s”
matrices are only a part of “global” communication matrices.

2.3 Related work

Task scheduling or task mapping has been in active research for a long time. Sev-
eral static algorithms were introduced and dynamic algorithms were published
too. Most of static scheduling algorithms are designed to work with one DAG.
List scheduling algorithms are very popular and they are often used. HEFT [19]
is a simple and effective algorithm used as a reference in our article. HEFT cre-
ates a list of tasks sorted by an upward rank1 and then it assigns tasks to the
processor so that the execution time of the task is minimized. Another algorithm
presented in [19] is Critical Path On a Processor (CPOP). This algorithm is more
complex and optimizes tasks on a critical path. By modifying list algorithms and
allowing the execution of tasks more than once tasks duplication algorithms were
introduces. HCPFD [2] compared to the HEFT obtains better makespan in most
cases. Task duplication achieves surprisingly good results when applied to the
computation model containing multi core computers [18].

The way of computing multiple DAGs is usually presented in dynamic algo-
rithms. In [20] there was introduced a static method how to schedule multiple
DAGs and the aim was not only to optimize makespan but also to achieve the
fair sharing of resources for the competing DAGs. The idea of generating a new
graph by appending whole DAGs to the current one is used in [21]. Compared to
[20] this algorithm is dynamic, i.e. the graph is build when a new DAG arrives
to the system.

Truly dynamic algorithm is described in [14]. This algorithm divides the
nodes into two groups. The first one contains nodes used for computation, the
second one contains scheduling nodes. Scheduling nodes are independent and
the knowledge about the activity of other scheduling nodes is received through
the statistics of usage of the computing nodes. The quality of such scheduling is
then dependent on the quality of statistics created by computation nodes.

1 See [19] for details

Dynamic Local Scheduling of Multiple DAGs in Distr. Heterogen. Systems 5Dynamic Local Scheduling of Multiple DAGs in Distr. Heterogen. Systems 5

Unlike the previous one the algorithm presented in [16] is based on one central
scheduling unit. The algorithm takes into account the time for scheduling and
dispatching and focuses on reliability costs. Another model of completely dis-
tributed algorithm is presented in [15]. This algorithm divides nodes into groups
and uses two levels of scheduling. The high level decides which group to use and
low level decides which node in the group to use.

The algorithm described in [22] works a bit different way. The node works
with it’s neighborhood and the distribution of task of parallel application is done
according to the load of the neighbours. If the load of a node is too high, the algo-
rithm allows the task to be migrated among the network. Genetic programming
technique is used to decide where to migrate the task.

The problem of task scheduling is loosely coupled with the network through-
put. The description of network used in this paper is not very close to the reality
and the problems connected to bottle necks or varying delay may cause prob-
lems. The behaviour of task scheduling applications running in the network,
which has different parameters, is very well described in [23]. According to this
article we expect there are no bottle necks in the networks.

3 Proposed algorithm

In this section we present the algorithm Dynamic Local Multiple DAG (DLMDAG).
The algorithm itself, described in Algorithm 1, is a dynamic task scheduling al-
gorithm that supports both homogeneous and heterogeneous computation plat-
forms.

The main idea of the algorithm is based on the assumption that the commu-
nication lasts only very short time compared to the computation (at least in one
order of magnitude). The computation node, which is the creator of a schedule
for a certain DAG application, sends a message to all of its neighbours where
it asks how long would the computation of these tasks last if they were com-
puted by the neighbour. Then it continues computing the task and during this
computation replies for the question arrive. According to the data (timestamps)
received, the node makes a schedule for the set of tasks (asked in previous step),
then it sends a message to it’s neighbours with the information about who should
compute which task and generates another question about the computation time
for the next set of tasks.

The algorithm description (Algorithm 1) uses these terms. The task is called
“ready” when all of its data dependencies are fulfilled. Ready tasks are stored in
a tasksReady priority queue. The criterion for ordering is the time computed by
computePriority. The task that is ready and is also scheduled should be stored
in a computableTasks queue. Each task’s representation contains one priority
queue for storing the pair information about finish time and neighbour at which
the finish time would be achieved. The queue is ordered by the time.

computePriority method is used to make the timestamps for the tasks. It is
computed when a DAG application comes to the computation node (pk) and it

6 Ondřej Votava, Peter Macejko, Jan Janeček6 Ondřej Votava et al.

Algorithm 1 The core
1: neighbours[], readyTasks {priority queue of tasks ready to compute}
2: computableTasks {queue of scheduled tasks for computing}
3: if not initialized then
4: neighbours = findNeighbours()
5: initialized = true
6: end if
7: if received DAG then
8: computePriority(DAG) {Priority of tasks by traversing DAG}
9: push(findReadyTasks(DAG), readyTasks)
10: end if
11: if received DATA then
12: correctDependecies(DATA)
13: push(findReadyTasks(DATA.DAG), readyTasks)
14: end if
15: if received TASK then
16: push(TASK, computableTasks)
17: end if
18: if received REQUEST then
19: for all task ∈ REQUEST do
20: task.time = howLong(task) {time for task + time for tasks in computableTasks}
21: end for
22: send(REQUEST-REPLY, owner)
23: end if
24: if received REQUEST-REPLY then
25: for all task ∈ REQUEST-REPLY do
26: push((task.time, sender), task.orderingQueue)
27: end for
28: end if
29: loop {The main loop of algorithm}
30: schedule = createSchedule(tasksReady) {Creates schedule and removes tasks from queue}
31: for all (task, proc) ∈ schedule do
32: send(task, proc)
33: end for
34: for all n ∈ neighbours do
35: send(REQUEST, n) {tasks from tasksReady}
36: end for
37: TASK = pop(computableTasks)
38: compute(TASK)
39: send(DATA, TASK.owner) {Nothing is send if local task}
40: end loop

is generated according to this equation

priority(vj) = timej,k + max
∀i∈parvj

priority(i), (5)

where parvj is the set of parents of node vj and priority(v0) = time0,k.
The final scheduling is based on the priority queue task.orderingQueue.

The scheduling step described in Algorithm 2 is close to HEFT [19]. One big
difference is that our algorithm uses the reduced list of tasks2 and is forced to
use all neighbours3 even if it would be slower than computing at local site.

The algorithm is called local. It is because it uses only information about
the node’s local neighborhood. Each node creates a set of neighbours in the
initialization stage of the algorithm. Therefore there are no matrices R and S
or there are these matrices but they are different for each computational node.

2 Only ready tasks are scheduled
3 If there are not enough ready tasks then not all neighbours are used.

Dynamic Local Scheduling of Multiple DAGs in Distr. Heterogen. Systems 7Dynamic Local Scheduling of Multiple DAGs in Distr. Heterogen. Systems 7

Algorithm 2 Scheduling phase
schedule {empty set for pairs}
num = min(|tasksReady|, |neighbours|)
for i = 0; i < num; i + + do

task = pop(tasksReady)
proc = pop(task.orderingQueue)
push((task, proc),schedule)
removeFrom(proc, tasksReady) {Once neighbour used it cannot be scheduled again}

end for
return schedule

The size of matrix R for the computational node pi is Rpi
= (si × si) where

s = |neighboursi| is the amount of neighbours of the node pi.

3.1 Time complexity

The time complexity of the algorithm can be divided into two parts. The compu-
tation part is connected to the sorting and scheduling phase of the algorithm and
the communication part is connected to the necessity of exchanging messages for
the scheduling phase. The DAG consists of v tasks and the computation node
has s neighbours. One question message is sent about every task to all of the
neighbours. Question contains information from one to s tasks and the precise
number is dependent on the structure of the DAG. The node which receives the
question message always sends a reply to it. As the node finishes the schedul-
ing phase of the algorithm another message with a schedule is sent to every
neighbour who is involved in the schedule. The last message (schedule informa-
tion) can be put together with the question’s one and there is from 3v/s to 3v
messages sent in total.

Computation part is based on the sorting operations of the algorithm. There
are two types of priority queues being used all of which are based on the
heap. The first one is the tasksReady. Every task from a DAG is put once
in this queue and the time complexity is O(v log v). The second priority queue
(task.orderingQueue) stores one piece of information for every neighbour. The
queue is used for every task and for every neighbour and the time complexity
obtained by this queue is O(v s log s) and therefore the time complexity of the
computational part of the algorithm is O(v logv + v s log s).

4 Performance and comparison

The algorithm was implemented in a simulation environment [24] and it was
executed several times for different scenarios. Makespan, unfairness and average
utilization of computing nodes were measured.

Makespan is the total computation time of the application, it is defined as

makespan(DAG) = finishT ime(vl)− startT ime(vs), (6)

where finishT ime(vl) is the time when the last task of DAG was computed and
startT ime(vs) is the time when the first task of DAG began the computation.

8 Ondřej Votava, Peter Macejko, Jan Janeček8 Ondřej Votava et al.

Since several DAG applications compete for the shared resources the execu-
tion time for each DAG is longer compared to the execution time when there was
the only one application in the system. The slowdown of the DAG represents
ratio of the execution time when only one DAG was in system and when there
were more in the system. It is described as

Slowdown(DAG) = Tshared(DAG)/Tsingle(DAG), (7)

where Tshared is the execution time when more than one DAG was scheduled and
Tsingle is the execution time when there was only this DAG scheduled. The sched-
ule is fair when all of the DAGs achieve almost the same slowdown[20] and the
schedule is unfair when there are big differences in the slowdown of DAGs. The
unfairness for the schedule S for a set of n DAGs A = {DAG1, DAG2, ..., DAGn}
is defined

Unfairness(S) =
∑

∀d∈A

|Slowdown(d)−AvgSlowdown|, (8)

where average slowdown is defined as

AvgSlowdown =
1

n

∑

∀d∈A

Slowdown(d) (9)

The utilization of a computation unit pj for the schedule S is computed by
this equation:

UtilS(pj) =
∑

∀t∈tasksS

makespan(t)/totalT imej , (10)

where tasksS is a set of tasks which were computed on a pj in the schedule S
and totalT imej is the total time of the simulation, which is the time when the
last task of all DAGs has finished.

Average utilization for the whole set of processors P and for the schedule S
is then defined as

AvgUtilS(P) =
1

p

p∑

i=1

UtilS(pi). (11)

4.1 Testing environment

Three computation platforms containing 5, 10 and 20 computers were created.
A full mesh with different communication speed for several lines was chosen as
a connection network – this created a network without bottle necks and allowed
the algorithm obtain minimal makespan time [23].

Nodes were divided into groups of 5 and the group used a gigabit connection
with a delay of 2 ms. In the network with ten nodes the groups were connected
by 100 MBit lines and in the network with 20 nodes the groups were connected
as follows:

Dynamic Local Scheduling of Multiple DAGs in Distr. Heterogen. Systems 9Dynamic Local Scheduling of Multiple DAGs in Distr. Heterogen. Systems 9

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

2 4 6 8 10

A
ve

ra
ge

 m
ak

es
pa

n

Number of DAGs

DLMDAG
HEFT par
CPOP par

Fig. 3. Makespan for different number
of DAGs running concurrently (all plat-
forms)

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10

A
ve

ra
ge

 u
nf

ai
rn

es
s

Number of DAGs

DLMDAG
HEFT par
CPOP par

Fig. 4. Unfairness for different concur-
rently running DAGs (all platforms)

– 4 groups of 5 nodes intraconnected by gigabit,
– 2 groups connected by 100 MBit,
– 3rd and 4th group connected by 10 MBit with others.

Sets of 2, 4, 6, 8 and 10 applications were generated using the method de-
scribed in [19]. The application contained 25 tasks with different computation
and data dependency costs. The schedule for each of the set was generated by
simulation4 of DLMDAG algorithm and by static algorithms HEFT and CPOP.

We used two methods of connecting several DAGs into one for the static
algorithms, the first one is sequence execution of DAGs in a row, the second
one is to generate virtual start and end nodes and connect DAGs to these nodes
with a zero weighted edges. DAGs were ordered in the sequential execution test
by the rule the shorter the makespan of DAG is the sooner it is executed. In
total there were 100 sets of 2 DAGs, 100 sets of 4 DAGs etc. and the results
we obtained we averaged. For the DLMDAG all DAGs arrived to the system at
time 0 and on the one node.

4.2 Results

Results of sequential execution of DAGs for HEFT and CPOP achieved much
longer makespans and therefore were not included into graphs. HEFT par and
CPOP par mean that connection of DAGs was created using virtual start and
end tasks.

The makespan achieved by DLMDAG is very close to the HEFT and CPOP
(fig. 3). The differences after averaging were just units of percents. The special
case was the architecture of five computers (fig. 8), in this case DLMDAG out-
performs the others. When there were 10 or 20 computers in the system (fig. 6),
DLMDAG achieved slightly worse results. Since HEFT and CPOP use the whole

4 Simulation tool OMNeT++[24] was used

10 Ondřej Votava, Peter Macejko, Jan Janeček10 Ondřej Votava et al.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

A
ve

ra
ge

 e
ffe

ct
iv

ne
ss

Number of DAGs

DLMDAG
HEFT par
CPOP par

Fig. 5. Utilization for different number
of DAGs running concurrently (all plat-
forms)

36000

38000

40000

42000

44000

46000

48000

50000

52000

54000

56000

2 4 6 8 10

A
ve

ra
ge

 m
ak

es
pa

n

Number of DAGs

DLMDAG
HEFT par
CPOP par

Fig. 6. Makespan for different numbers
of applications (20 PC platform)

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10

A
ve

ra
ge

 u
nf

ai
rn

es
s

Number of DAGs

DLMDAG
HEFT par
CPOP par

Fig. 7. Unfairness for different numbers
of applications (20 PC platform)

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

2 4 6 8 10

A
ve

ra
ge

 m
ak

es
pa

n

Number of DAGs

DLMDAG
HEFT par
CPOP par

Fig. 8. Makespan for diferent numbers
of applications (5 PC platform)

structure of applications DLMDAG works only with ready tasks and therefore it
may be unable to use the platform with more devices so efficiently. These results
are then dependent on the structure of the applications that were scheduled.
The more parallel application is, the better results DLMDAG obtains.

The unfairness (figures 4, 7) for DLMDAG is at the very low level and the
growth of it is slow. The unfairness level obtained by HEFT and CPOP in
comparison with DLMDAG is worse.

The utilization of nodes (figure 5) corresponds to the makespan achieved by
the algorithms. Growing the amount of DAGs in the system the utilization of
nodes increases for all algorithms. As mentioned earlier, DLMDAG achieves high
level of parallelization and therefore the average utilization of all nodes is also
increasing.

5 Conclusion

The algorithm presented in this article is dynamic, it does not use any central
point for scheduling neither it requires the information about the whole network.

Dynamic Local Scheduling of Multiple DAGs in Distr. Heterogen. Systems 11Dynamic Local Scheduling of Multiple DAGs in Distr. Heterogen. Systems 11

DLMDAG is based on the local knowledge of the network – only neighbours cre-
ate the schedule – and the schedule is created using several messages by which the
computation times are gathered on the scheduling node. The simulations of the
algorithm were executed and results obtained were compared to the traditional
offline scheduling algorithms.

DLMDAG is able to use the computation resources in a better way than
compared algorithms when there are more tasks in the system than computa-
tion units. As the number of computation nodes increases the result DLMDAG
achieves become worse than competitor’s.

Future work There are several possibilities to improve the proposed algorithm.
Initially the computation systems do change. The algorithm should be able to
modify the schedules to reflect the network changes. Subsequently the current
algorithm is fixed to the scheduling node and it’s neighbours and this may cause
performance problems, the algorithm could be able to move the application to
some other node with different neighbours.

References

1. D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, and P. Wong, “Theory and
practice in parallel job scheduling,” in Job Scheduling Strategies for Parallel Pro-
cessing (D. Feitelson and L. Rudolph, eds.), vol. 1291 of Lecture Notes in Computer
Science, pp. 1–34, Springer Berlin / Heidelberg, 1997. 10.1007/3-540-63574-2 14.

2. T. Hagras and J. Janecek, “A high performance, low complexity algorithm for
compile-time task scheduling in heterogeneous systems,” Parallel Computing,
vol. 31, no. 7, pp. 653 – 670, 2005. Heterogeneous Computing.

3. H. Kikuchi, R. Kalia, A. Nakano, P. Vashishta, H. Iyetomi, S. Ogata, T. Kouno,
F. Shimojo, K. Tsuruta, and S. Saini, “Collaborative simulation grid: Multiscale
quantum-mechanical/classical atomistic simulations on distributed pc clusters in
the us and japan,” in Supercomputing, ACM/IEEE 2002 Conference, p. 63

4. D. Kehagias, M. Grivas, G. Pantziou, and M. Apostoli, “A wildly dynamic grid-
like cluster utilizing idle time of common pc,” in Telecommunications in Modern
Satellite, Cable and Broadcasting Services, 2007. TELSIKS 2007. 8th International
Conference on, pp. 36 –39, sept. 2007.

5. A. Wakatani, “Parallel vq compression using pnn algorithm for pc grid system,”
Telecommunication Systems, vol. 37, pp. 127–135, 2008.

6. M. Maheswaran, T. D. Braun, and H. J. Siegel, “Heterogeneous distributed com-
puting,” in In Encyclopedia of Electrical and Electronics Engineering, pp. 679–690,
John Wiley, 1999.

7. Y. kwong Kwok and I. Ahmad, “Benchmarking the task graph scheduling algo-
rithms,” in In Proc. IPPS/SPDP, pp. 531–537, 1998.

8. J. Liou and M. Palis, “A comparison of general approaches to multiprocessor
scheduling,” Parallel Processing Symposium, International, vol. 0, p. 152, 1997.

9. J. Ullman, “Np-complete scheduling problems,” Journal of Computer and System
Sciences, vol. 10, no. 3, pp. 384 – 393, 1975.

10. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

12 Ondřej Votava, Peter Macejko, Jan Janeček12 Ondřej Votava et al.

11. T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, “A com-
parison of eleven static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems,” Journal of Parallel and Distributed
Computing, vol. 61, no. 6, pp. 810 – 837, 2001.

12. H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective and low-complexity
task scheduling for heterogeneous computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 13, pp. 260–274, 2002.

13. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic
matching and scheduling of a class of independent tasks onto heterogeneous com-
puting systems,” Heterogeneous Computing Workshop, vol. 0, p. 30, 1999.

14. M. Iverson and F. Ozguner, “Dynamic, competitive scheduling of multiple dags in
a distributed heterogeneous environment,” Heterogeneous Computing Workshop,
vol. 0, p. 70, 1998.

15. M. A. Iverson and F. Özgüner, “Hierarchical, competitive scheduling of multiple
dags in a dynamic heterogeneous environment,” Distributed Systems Engineering,
vol. 6, no. 3, p. 112, 1999.

16. X. Qin and H. Jiang, “Dynamic, reliability-driven scheduling of parallel real-time
jobs in heterogeneous systems,” Parallel Processing, International Conference on,
vol. 0, p. 0113, 2001.

17. O. Votava, P. Macejko, J. Kubr, and J. Janeček, “Dynamic Local Scheduling of
Multiple DAGs in a Distributed Heterogeneous Systems,” in Proceedings of the
2011 International Conference on Telecommunication Systems Management, (Dal-
las, TX), pp. 171–178, American Telecommunications Systems Management Asso-
ciation Inc., 2011.

18. J. Janeček, P. Macejko, and T. M. G. Hagras, “Task scheduling for clustered hetero-
geneous systems,” in IASTED International Conference - Parallel and Distributed
Computing and Networks (PDCN 2009) (M. Hamza, ed.), pp. 115–120, February
2009. ISBN: 978-0-88986-783-3, ISBN (CD): 978-0-88986-784-0.

19. H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms for hetero-
geneous processors,” in Heterogeneous Computing Workshop, 1999. (HCW ’99)
Proceedings. Eighth, pp. 3 –14, 1999.

20. H. Zhao and R. Sakellariou, “Scheduling multiple dags onto heterogeneous sys-
tems,” Parallel and Distributed Processing Symposium, International, 2006.

21. J. Barbosa and B. Moreira, “Dynamic job scheduling on heterogeneous clusters,”
in Parallel and Distributed Computing, 2009. ISPDC ’09. Eighth International
Symposium on, pp. 3 –10, 302009-july4 2009.

22. R. de Mello, J. Andrade Filho, L. Senger, and L. Yang, “Grid job scheduling
using route with genetic algorithm support,” Telecommunication Systems, vol. 38,
pp. 147–160, 2008. 10.1007/s11235-008-9101-5.

23. Y. Kitatsuji, K. Yamazaki, H. Koide, M. Tsuru, and Y. Oie, “Influence of network
characteristics on application performance in a grid environment,” Telecommuni-
cation Systems, vol. 30, pp. 99–121, 2005. 10.1007/s11235-005-4320-5.

24. A. Varga et al., “The omnet++ discrete event simulation system,” in Proceedings
of the European simulation multiconference (ESM’2001), vol. 9, p. 65, sn, 2001.

Data Structures for Indexing Triple Table?

Roman Meca, Michal Krátký, Peter Chovanec, and Filip Křižka

Department of Computer Science, VŠB – Technical University of Ostrava
Czech Republic

{roman.meca.st, michal.kratky, peter.chovanec, filip.krizka}@vsb.cz

Data Structures for Indexing Triple Table???

Roman Meca, Michal Krátký, Peter Chovanec, and Filip Křižka

Department of Computer Science, VŠB – Technical University of Ostrava
Czech Republic

{roman.meca.st, michal.kratky, peter.chovanec, filip.krizka}@vsb.cz

Abstract. Semantic-based approaches are relatively new technologies.
Some of these technologies are supported by specifications of W3 Con-
sortium, i.e. RDF, SPARQL and so on. There are many areas where
semantic data can be utilized, e.g. social networks, annotation of protein
sequences etc. From the physical database design point of view, several
index data structures are utilized to handle this data. In many cases, the
well-known B-tree is used as a basic index supporting some operations.
Since the semantic data are multidimensional, a common way is to use a
number of B-trees to index the data. In this article, we review other in-
dex data structures; we show that we can create only one index when we
utilize a multidimensional data structure like the R-tree. We compare a
performance of the B-tree indices with the R-tree and some its variants.
Our experiments are performed over a huge semantic database, we show
advantages and disadvantages of these data structures.

1 Introduction

Semantic-based approaches are new technologies trying to allow computers to
handle semantic information. These approaches have many specific applications.
The main advantage of a semantic system is that the computer can reveal unex-
pected facts, e.g. a new effective drug combination in medicine [6], unexpected
relationships in social networks [19] or artificial intelligence [28] can be discov-
ered. This is the reason why the semantic systems are a current research topic.

The W3 Consortium have released some specifications related to semantic
technologies1, e.g. RDF [32] as a model of the semantic data or SPARQL [25]
as a query language for the RDF data. In addition, more general specifications
are also usable for a semantic DBMS supporting SPARQL or another query
language, e.g. XML [9] or WSDL [12] for a communication with the DBMS.

In this article, we also list a lot of semantic DBMS with the query languages
they support and the indices they utilize. Since the semantic DBMS often utilize
a relational DBMS as a storage for the RDF triple table (representing the RDF
data), the B-tree [13] is often used as the main index. The main issue of this

? This work is partially supported by SGS, VŠB – Technical University of Ostrava,
No. SP2015/192 and No. SP2015/170, Czech Republic.

?? This work is an extented version of an article accepted at the DATESO workshop.
1 http://www.w3.org/standards/techs/rdf#w3c all

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 13–27, CEUR-WS.org/Vol-1343.

14 Roman Meca, Michal Krátký, Peter Chovanec, Filip Křižka

physical implementation is that a number of B-trees have to be built to support
queries over the triple table. However, there are other index data structures
capable to handle semantic data. In this article, we show that it is possible to
create only one index if we utilize a multidimensional data structure like the R-
tree [22] or some of its variants (namely the Signature R-tree [30] or the Ordered
R-tree [31]).

In Section 2, we present some basic terms related to semantic technologies.
In Section 3, we describe the basic physical design for the RDF data. Section 4
describes some negative issues of the B-tree as an index data structure for the
triple table. In addition, the R-tree, R∗-tree [8], and two their variants are de-
scribed. In Section 5, we summarize the advantages and disadvantages of these
data structures for various queries over the LUBM data collection [21]. Finally,
we conclude the article and outline the possibilities of our future work.

2 Semantic Technologies

In this section, we briefly introduce a theoretical basis of the RDF model [32]
and the SPARQL query language [25] standardized by W3C. We recommend the
book [20] for a more detailed review.

2.1 RDF Model

RDF (Resource Description Framework) is a general model representing infor-
mation on the Web; data are modeled as a directed labeled graph [32]. Each
edge represents a relationship between an object and a subject : two nodes of the
graph. The label of the edge is called property. An example of the graph is given
in Figure 1. This tuple (subject, property, object) is called an RDF triple (s,p,o).

The values of each triple usually include IRI (Internationalized Resource
Identifiers) [15] identifying an abstract or a physical resource. In [20], the author
introduces the following definition:

Definition 1 (RDF triple). Let us assume there are pairwise disjoint infinite
sets I, B, and L, where I represents the set of IRIs, B the set of blank nodes,
and L the set of literals. We call a triple (s, p, o) ∈ (I ∪B)I(I ∪B ∪L) an RDF
triple, where s represents the subject, p the predicate, and o the object of the
RDF triple.

A triple table is a set of RDF triples; it is a representation of the RDF graph.
In Table 1, we see a fragment of the triple table to the RDF graph in Figure 1.
A triple store or an RDF database is an engine enabling to store an RDF graph
and efficient processing of queries. However, we usually require other operations
like update, insert or delete.

Some RDF stores add a fourth element to the triple; this fourth element
contains the context of the triple [14]. There are RDF engines enabling to manage
these quads [16].

Data Structures for Indexing Triple Table 15

Fig. 1. An example of an RDF graph [18]

Subject Property Object

LongJump type Jump

Blanka Vlasic jumps HighJump

GoldenLeague type Meeting

Table 1. A fragment of an RDF triple table [18]

The RDF specification [32] does not define any way how to store and index
the triple table; therefore, there are many variants of the physical design of the
triple table and we describe them in Section 3.

2.2 SPARQL Query Language

Although there are many query languages for RDF data2, e.g. SPARQL/Update
(or SPALUR) [38], SPARQL 1.1 [25] is a de-facto standard query language for
RDF data. It is similar to SQL in many features. SPARQL 1.1 also includes
insert, update, and delete operations.

The basic query construct of the SELECT statement includes
SELECT <projection> WHERE <sequence of triple patterns>. A variable in
SPARQL defined by the symbol ? and a name represents the main difference com-
pared to SQL; they define unknown values of o, s or p in a pattern as well as
a relationship among triple patterns. We distinguish four types of the SPARQL
query (for more details see [25]):

– SELECT – returns the result relation defined by the projection and patterns.

2 http://www.w3.org/2001/11/13-RDF-Query-Rules/

16 Roman Meca, Michal Krátký, Peter Chovanec, Filip Křižka

– ASK – similar to the SELECT query; however, it returns the boolean value;
true if the result is not empty, otherwise false.

– CONSTRUCT – allows to format own result graph over the triples returned
by the patterns.

– DESCRIBE – returns the node (and its neighbours) defined by the patterns.

A form of <pattern> determines the selectivity of a query over the triple
table. We can distinguish a point query (s, p, o) returning 0 or 1 triple, or a
range query where the query (s, ∗, ∗) can returns more triples than the query
(s, p, ∗).
Example 1 (SPARQL Queries).

1. SELECT ?s ?p ?o WHERE { ?s ?p ?o }
This query selects the whole triple table, it represents the range query
(∗, ∗, ∗).

2. SELECT * WHERE { <Blanka Vlasic> <jumps> <HighJump> }
ASK { <Blanka Vlasic> <jumps> <HighJump> }
These two queries are similar; the SELECT query returns 0 or 1 triple, on
the other hand, the ASK query returns true in the case the triple exists in
the graph. These queries represent the point (s, p, o) query over the triple
table.

3. SELECT ?s WHERE { ?s <type> <Jump> }

ASK { ?s <type> <Jump> }

CONSTRUCT ?s <type> <Discipline> WHERE { ?s <type> <Jump> }
These three queries include the same selection: the range query (∗, <type>,
<Jump>). The SELECT query returns all subjects matched by the range
query, the ASK query returns true if any triple exists in the graph, and
the CONSTRUCT query returns triples (∗, <type>, <Discipline>) for all
triples retrieved by the selection.

4. SELECT ?p ?o WHERE { <organized> ?p ?o }
This query selects all triples matched by the range query (<organized>, ∗,
∗). The selectivity of this query is probably lower than the selectivity of the
queries 2 and 3; however, it is higher compared to the query 1.

Moreover, the selection includes zero or more join operations. In Figure 2, we
show two queries including more join operations. A query with one join is shown
in Figure 2(a). In this SELECT, we can see two output variables o1 and o2. In
Lines 2 and 3, the range queries (*, <type>, *) and (*, <jumps>, *) are defined.
Results of these range queries are then joined using the subject represented by
the j variable and objects for variables o1 and o2 are returned.

A more complex SPARQL query with join is shown in Figure 2(b). This
SELECT also contains the output variables o1 and o2. However, this query is
evaluated by a sequence of three joins: the first join involves sets defined by
queries in Lines 2 and 3, the second join involves the result of the previous join
and the result of the query in Line 4, and the last join involves the result of the
previous join and the result of the query in Line 5. The result of the complete
query includes subjects and objects for the variables s and o.

Data Structures for Indexing Triple Table 17

1. SELECT ?o1 ?o2 WHERE {

2. ?j <type> ?o1 .

3. ?j <jumps> ?o2

4. }

1. SELECT ?s ?o WHERE {

2. ?s <jumps> ?j1 .

3. ?j1 <type> ?j2 .

4. ?j2 <sc> ?j3 .

5. ?j3 <hasWorlRecord> ?o

6. }

type jumps

j

o1 o2

type

jumps

sc

hasWorlRecord
j1

s

j2

j3

o

(a) (b)

Fig. 2. Two SPARQL query with join and their graph representations

3 Existing Triple Stores

In Table 2, we show triple stores introduced from 2002 to 2014. These triple
stores include academic prototypes, commercial solutions as well as open source
projects. Although some details of their implementation are not known, we can
distinguish three basic types of the physical design for the triple table [18]:

1. Triple Table (TT) – in this case, triples are stored in a sequence array.

2. Property Table (PT) – in this case, we define a tuple (s, o1, o2, . . . , on) for
properties p1, p2, . . . pn. Tuples of this schema are stored in a sequence array.
We can define more property tables in that cases the number of properties
is higher than n.

3. Vertical Partitioning (VP) – the property table where n = 1.

Except these main approaches there are also some other variants and improve-
ments, for example Hierarchical Property Partitioning utilized in roStore [17].
In some works, we distinguish the Multiple indices approach, which means that
some combinations of various indices together with a modification of the above
described types are depicted. In Table 2, we can see the B-tree and its variants
are the most commonly used data structure indexing the triple table.

3 http://www.guha.com/rdfdb/
4 http://rdfstore.sourceforge.net/
5 http://www.bigdata.com/

18 Roman Meca, Michal Krátký, Peter Chovanec, Filip Křižka

Store Published
Last

update

Physical Index Supported
design data query
type structure language

JENA [34] 2002 2014 PT Hash-table, B-tree SPARQL

RDFSuite [3] 2001 2003 PT B-tree SPARUL

Sesame [10] 2002 2014 PT B-tree SPALUR

3store [23] 2003 2013 TT Hash-table RDQL/SPARQL

rdfDB3 2004 2010 TT B-tree SPARQL

RDFStore4 2004 2006 TT BerkeleyDB SPARQL

Redland [7] 2002 2014 TT Hash-table SPARQL

AllegroGraph[1] 2006 2014 B-tree SPARQL

sw-Store[2] 2009 2014 VP
B-tree,
Bitmap SPARQL

4store [24] 2009 2013 PT Hash-table SPALUR

YARS [26] 2005 2006 MI B-tree N3 extension

YARS2 [27] 2007 MI
Sparse index,

B-tree SPARQL

Kowari [42] 2005 2005 MI
AVL tree,

B-tree iTQL/RDQL

Hexastore [41] 2008 MI B-tree SPARQL

RDFJoin [35] 2008 VP B-tree SPARQL

RDFKB [36] 2009 MI B-tree -

BitMat [4] 2009 2013 MI 3D Bitmap SPARQL-like

RDF-3X [37] 2008 2013 MI B-tree SPARQL

Parliament [29] 2009 2014 MI B-tree, Heap table -

Virtuoso[16] 2009 2014 MI
B-tree,
Bitmap SPALUR

RDFCube[33] 2007 MI 3D Hash-table -

GRIN [40] 2007 MI B-tree SPARQL

BigData5 2008 2014 MI B-tree SPARQL 1.1

Oracle [11] 2005 2014 MI B-tree, R-tree SPARQL

Marmotta [5] 2013 2014 MI B-tree SPARQL

Table 2. Triple Stores. TT - triple table PT - property table VP - vertical partitioning
MI - multiple indices

Data Structures for Indexing Triple Table 19

4 Index Data Structures

4.1 B-tree

The B-tree is an one-dimensional paged data structure supporting point and
one-dimensional range queries as well as update operations [13]. As result, in
the case we want to support a general range query without a sequential scan of
all leaf nodes, we have to create more indices.

For example, in the case of a B-tree with the compound key (s, p, o), we
can effectively utilize range queries (s, p, ∗) and (s, ∗, ∗). On the other hand,
fast processing of the range query (∗, p, o) demands a sequential scan over all
leaf nodes of the B-tree. To cover all combination of searched dimensions with
efficient range query execution, three B-trees have to be created (see Table 3).
Consequently, this solution means that the size of indices is probably higher
than the table size. This issue is even more evident in the case of the Quad
table; in Table 4, we see that we need 6 indices to cover all range queries over
quads. There are two problematic issues related to this technique: the higher
space overhead and the additional overhead of the update operations since more
indices have to be updated.

Compound key of the B-tree
(s, p, o) (o, s, p) (p, o, s)

Supporting (s, p, o) (o, s, p) (p, o, s)
range (s, p, ∗) (o, s, ∗) (p, o, ∗)

queries (s, ∗, ∗) (o, ∗, ∗) (p, ∗, ∗)
(∗, ∗, ∗) (∗, ∗, ∗) (∗, ∗, ∗)

Table 3. B-tree indices for the triple table

Compound key of the B-tree
(s, p, o, c) (p, o, c) (o, c, s) (c, s, p) (c, p) (o, s)

(s, p, o, c) (p, ∗, ∗) (o, ∗, ∗) (c, ∗, ∗) (c, p) (o, s)
Supporting (s, p, o, ∗) (p, o, ∗) (o, c, ∗) (c, s, ∗)

range (s, p, ∗, ∗) (p, o, c) (o, c, s) (c, s, p)
queries (s, ∗, ∗, ∗)

(∗, ∗, ∗, ∗)
Table 4. B-tree indices for the quad table

4.2 R-tree

Since the multidimensional R-tree [22] supports a general multidimensional range
query, we can use it as a solution of the above mentioned problems instead of

20 Roman Meca, Michal Krátký, Peter Chovanec, Filip Křižka

a sequence scan in the B-tree. The R-tree can be thought of as an extension of
the B-tree in a multidimensional space. It corresponds to a hierarchy of nested
n-dimensional minimum bounding rectangles (MBR). If N is an interior node,
it contains couples of the form (Ri, Pi), where Pi is a pointer to a child of the
node N . If R is its MBR, then the rectangles Ri corresponding to the children
Ni of N are contained in R. Rectangles at the same tree level can overlap. If N
is a leaf node, it contains couples of the form (Ri, Oi), so called index records,
where Ri contains a spatial object Oi.

The split algorithm has the significant affect on the index performance. Three
split techniques (Linear, Quadratic, and Exponential) proposed in [22] are based
on a heuristic optimization. The Quadratic algorithm has turned out to be the
most effective and other improved versions of R-trees are based on this method.
An MBR can overlap another MBR in the same level of the tree; the probability
increases linearly with increasing data dimension. This effect is known as curse
of dimensionality [43].

There are many variants of the R-tree, e.g. R∗-trees [8], R+-tree [39]. The
R∗-tree [8] differs from the R-trees mainly in the insertion algorithm. Although
original R-tree algorithms tried only to minimize the area covered by MBRs,
the R*-tree algorithms try to minimize overlapping between MBRs at the same
levels and maximize the storage utilization. The R+-tree [39] is a variant of the
R-tree which allows no overlap between regions corresponding to nodes at the
same tree level; however, an item can be stored in more than one leaf node.

Since some intervals of a range query include only one value in the case of
the triple table, we call the query as the narrow range query [30]. Therefore,
we utilize the Signature R-tree [30] allowing to handle the range query more
efficiently than the R-tree and its variants. Moreover, we use the Ordered R-
tree [31] since we can define an ordering of attributes. These data structures are
described in the following sections.

4.3 Signature R-tree

The Signature R-tree [30] contains MBRs in inner nodes (we suppose point
data in leaf nodes) and one signature related to each MBR. The signature is
created for tuples inserted in the subtree related to each MBR. As result, we can
use two types of filtering when a range query scans the tree: the first filtering
method tests whether an MBR is intersected by a query rectangle and the second
filtering method tests whether a signature can include tuples of the query. As
result, the Signature R-tree reads a lower number of nodes during the range
query processing. This R-tree variant is however proposed only for point data
and narrow range queries.

4.4 Ordered R-tree

The Ordered R-tree [31] is a simple combination of the R-tree and the B-tree.
It means, we can use a general multidimensional range query, however we can

Data Structures for Indexing Triple Table 21

define an ordering for tuples inserted in the tree. Evidently, we can define only
one ordering in one tree. There are two consequences:

1. For some range queries (corresponding to ordering defined for the tree), all
leaf nodes intersected by the query rectangle include only result tuples. It is
not generally true for the R-tree and its variants, but the range query of the
B-tree provides the same behaviour.

2. We get tuples of the result sorted and it is not necessary to sort them after
the range query is processed.

In this article, we utilize mainly the first property.

5 Experiments

In our experiments6, we compare the B-tree, as the main index data structure
utilized in semantic DBMS, with the R-tree7, Signature R-tree, and Ordered R-
tree. All index data structures are implemented in C++8. We utilize a generated
synthetic data collection called LUBM including 133,573,856 triples [21], the size
of the text file is 22.2 GB.

Query Group Type Result set size #Queries #Iterations

1 Range query < 1; 1 > 6 10,000

2 Range query < 2; 1, 000 > 6 50

3 Range query < 1,001; 1,000,000 > 6 1

4 Range query < 1, 000, 001;∞) 6 1

5 Point query < 1; 1 > 33,234,949 1

Table 5. Specification of query groups

We test the performance of point and range queries processed over the index
data structures when a SPARQL query is evaluated. We use 5 groups of queries
determined by the selectivity (see Table 5)9. QG5 represents a sequence of point
queries processed during a join operation. In the case of QG1 and QG2, it is
necessary to repeat a sequence of queries since the processing time of one query
is unmeasurable. The number of iterations is written in the column #Iteration
of the table. The column #Queries contains a number of various queries in one
query group.

6 We run our experiments on 2 x Intel Xeon E5 2690 2.9GHz and 300GB RAM memory,
OS Windows Server 2008.

7 More precisely, the R∗-tree has been tested.
8 A part of the RadegastDB framework developed by DBRG – http://db.cs.vsb.cz/
9 A complete list of queries can be found in http://db.cs.vsb.cz/

TechnicalReports/indices for rdf data-query.pdf

22 Roman Meca, Michal Krátký, Peter Chovanec, Filip Křižka

We built the B-trees, the R-tree, the Signature R-tree, and the Ordered
R-trees for the test data collection10. In Table 6 and Figure 3, we see basic
characteristics of these indices. Since these data structures include string ids
instead of strings, a term index is built. In the case of the Ordered R-tree, we
do not need more trees like in the case of the B-tree, however, in this article, we
want to test whether it is possible to find an optimal ordering for the Ordered
R-tree, therefore we build the tree for more orderings of the attributes. We can
see that the B-tree size is up-to 3× higher than the size of the R-tree-based
indices. The R-tree is build in 58% of the B-tree build time. On the other hand,
the build time for other R-tree-based indices is up-to 2× less efficient compared
to the B-tree.

Index Data Structure #Nodes Size [GB] Build Time [s]

Term index 4,543,671 8.67 3,794.7

B-tree
(s, p, o)

4,465,853 8.51 3,857.9(p, o, s)
(o, s, p)

R-tree 1,495,289 2.85 2,228.1

Signature R-tree 1,641,905 3.13 6,143.5

Ordered R-tree

(s, p, o) 1,541,677 2.94 6,404.1
(p, o, s) 1,499,602 2.86 7,193.5
(o, s, p) 1,433,703 2.73 6,791.1
(s, o, p) 1,541,677 2.94 7,232.2
(p, s, o) 1,579,935 3.01 7,535.6
(o, p, s) 1,429,151 2.73 6,933.0

Table 6. Statistics of index data structures

B-tree

R-tree

Signature R-tree

Ordered R-tree SPO

Ordered R-tree POS

Ordered R-tree OSP

Ordered R-tree SOP

Ordered R-tree PSO

Ordered R-tree OPS
Index size [GB]

0

1

2

3

4

5

6

7

8

9

Build time [s]
0E+0

1E+3

2E+3

3E+3

4E+3

5E+3

6E+3

7E+3

8E+3

Fig. 3. Index build time and index size

10 The page size is 2,048 B for all data structures.

Data Structures for Indexing Triple Table 23

In Figure 4, we can see the query processing time for all query groups; the
processing time is the average time of all queries in one group. Similarly, Fig-
ure 5 includes DAC for all query groups. Evidently, the B-tree provides the most
efficient performance especially in the case of the higher selectivity. The reason
of this result is the minimal DAC of the B-tree since only leaf nodes includ-
ing result tuples are scanned. In the case of the lower selectivity (see GP4 in
Figure 4), results of all index data structures are similar.

B-tree

R-tree

Signature R-tree

Ordered R-tree SPO

Ordered R-tree POS

Ordered R-tree OSP

Ordered R-tree SOP

Ordered R-tree PSO

Ordered R-tree OPS
GP1 GP2 GP3 GP4 GP5

0,000000

0,000001

0,000010

0,000100

0,001000

0,010000

0,100000

1,000000

10,000000

100,000000

1000,000000

Fig. 4. Processing time for all query groups [s]

B-tree

R-tree

Signature R-tree

Ordered R-tree SPO

Ordered R-tree POS

Ordered R-tree OSP

Ordered R-tree SOP

Ordered R-tree PSO

Ordered R-tree OPS
GP1 GP2 GP3 GP4 GP5

1

10

100

1000

10000

100000

1000000

10000000

Fig. 5. DAC for all query groups

We see that the Signature R-tree and the Ordered R-tree outperform the
R-tree in most cases. Although the average processing time of the Signature R-
tree is lower compared to the Ordered R-tree, we can find a query in each query
group where it exists an ordering of the Ordered R-tree such that the Ordered
R-tree outperforms the Signature R-tree. Let us consider query processing times
in Figure 6. In the case of Q1 (S=’AssociateProfessor’, P=’type’, O=*),
the Ordered R-trees SPO and SOP outperform the Signature R-tree and other
Ordered R-trees, however in the case of Q7 (S=*, P=’PublicationAuthor’,

O=’AssistentProfessor’) the performance of these Ordered R-trees is the low-
est. Similarly, in the case of Q11 (S=*, P=*, O=’Course2’), the Ordered R-tree
OPS outperforms other R-tree variants and its performance is the same as the

24 Roman Meca, Michal Krátký, Peter Chovanec, Filip Křižka

performance of the B-tree. Similarly, in the case of Q14 (S=*, P=’worksFor’,

O=*), the Ordered R-tree SOP outperforms other R-tree variants. However, we
must keep in mind that this effect depends on a query and a concrete ordering
of the Ordered R-tree.

Although, it is clear that the B-tree provides the most efficient processing
time, there are some improvements of multidimensional data structures. The
first one, the index size of a multidimensional data structure is up to 3× lower
the B-tree index size. The second one, in the case of the B-tree it is necessary
to change ordering of values in a triple when a query processor want to use an
index with different ordering than another index returns, it means an additional
time overhead in this case.

B-tree

R-tree

Signature R-tree

Ordered R-tree SPO

Ordered R-tree POS

Ordered R-tree OSP

Ordered R-tree SOP

Ordered R-tree PSO

Ordered R-tree OPS
Q1 Q7 Q11 Q14

0,000001

0,000010

0,000100

0,001000

0,010000

0,100000

1,000000

10,000000

100,000000

1000,000000

Fig. 6. Processing time for some queries [s]

B-tree

R-tree

Signature R-tree

Ordered R-tree SPO

Ordered R-tree POS

Ordered R-tree OSP

Ordered R-tree SOP

Ordered R-tree PSO

Ordered R-tree OPS
Q1 Q7 Q11 Q14

1

10

100

1000

10000

100000

1000000

10000000

Fig. 7. DAC for some queries

As result, let us consider a workload including queries accessing the most
tree nodes. If the cache size is lower than the number of B-tree nodes, a multidi-
mensional data structure would provide the higher performance than the B-tree
in the case the cache includes all nodes of the multidimensional data structure.

Data Structures for Indexing Triple Table 25

6 Conclusion

In this article, we compared the performance of the B-tree with the R-tree, the
Signature R-tree, and the Ordered R-tree for the triple table and point and range
queries processed during the evaluation of a SPARQL query. The Signature R-
tree and the Ordered R-tree outperform the R-tree for most queries. Although
the average processing time of the Signature R-tree is lower compared to the
Ordered R-tree, in each query group, we can find a query where there is such an
ordering of the Ordered R-tree outperforming the Signature R-tree.

The B-tree provides the most efficient processing time; the average processing
time of the B-tree is 74% of the Signature R-tree’s processing time. However,
there are some specific improvements of multidimensional data structures. The
first one, index size of a multidimensional data structures is up to 3× lower than
the B-tree index size. The second one, in the case of the B-tree it is necessary
to change ordering of values in each triple when a query processor want to use
an index with different ordering than another index returns. Consequently, it
means an additional time overhead of the query processing.

References

[1] J. Aasman. Allegro Graph: RDF Triple Database. Tech. rep. Technical Re-
port 1, Franz Incorporated, 2006. url: http://www.franz.com/agraph/
allegrograph/.

[2] D.J. Abadi et al. “SW-Store: a vertically partitioned DBMS for semantic
web data management”. In: The VLDB Journal 18.2 (2009), pp. 385–406.

[3] S. Alexaki et al. “The ICS-FORTH RDFSuite: Managing voluminous RDF
description bases”. In: Proceedings of 2nd Internacional Workshop on the
Semantic Web (SemWeb’01). 2001.

[4] M. Atre, J. Srinivasan, and J.A. Hendler. BitMat: A Main Memory RDF
Triple Store. Tech. rep. 2009. url: http://www.cs.rpi.edu/~atrem/
bitmat_techrep.pdf.

[5] Reto Bachmann-Gmur. Instant Apache Stanbol. Packt Publishing Ltd,
2013. isbn: 978-1-78328-123-7.

[6] Amos Bairoch et al. “The universal protein resource (UniProt)”. In: Nu-
cleic acids research 33 (2005), pp. D154–D159.

[7] D. Beckett. “The design and implementation of the Redland RDF appli-
cation framework”. In: Computer Networks 39.5 (2002), pp. 577–588.

[8] Norbert Beckmann et al. “The R∗-Tree: An Efficient and Robust Access
Method for Points and Rectangles”. In: Proceedings of the ACM Inter-
national Conference on Management of Data (SIGMOD 1990). Vol. 19.
AMC, 1990, pp. 322–331.

[9] Tim Bray et al. “Extensible markup language (XML)”. In: World Wide
Web Journal 2.4 (1997), pp. 27–66.

[10] J. Broekstra, A. Kampman, and F. Van Harmelen. “Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema”. In: Pro-
ceedings of the Semantic Web-ISWC. Vol. 2342. Springer, 2002.

26 Roman Meca, Michal Krátký, Peter Chovanec, Filip Křižka

[11] E.I. Chong et al. “An efficient SQL-based RDF querying scheme”. In:
Proceedings of 31th International Conference on Very Large Data Bases
(VLDB 2005). VLDB Endowment. 2005, pp. 1216–1227.

[12] Erik Christensen et al. Web services description language (WSDL) 1.1.
Recommendation. W3C, 2001. url: http://www.w3.org/TR/wsdl.

[13] Douglas Comer. “Ubiquitous B-tree”. In: ACM Computing Surveys (CSUR)
11.2 (1979), pp. 121–137.

[14] R. Cyganiak, A. Harth, and A. Hogan. N-quads: Extending n-triples with
context. Tech. rep. 2008. url: http://sw.deri.org/2008/07/n-quads/.

[15] Martin Dürst and Michel Suignard. Internationalized resource identifiers
(IRIs). Tech. rep. RFC 3987, January, 2005. url: http://www.ietf.org/
rfc/rfc3987.txt.

[16] Orri Erling and Ivan Mikhailov. “Virtuoso: RDF support in a native RDBMS”.
In: (2010), pp. 501–519.

[17] David Faye et al. “RDF triples management in roStore”. In: Actes de
IC2011 (2012), pp. 755–770.

[18] David Célestin Faye, Olivier Curé, and Guillaume Blin. “A survey of RDF
storage approaches”. In: ARIMA Journal 15 (2012). url: http://arima.
inria.fr/015/015002.html.

[19] Tim Finin et al. “Social networking on the semantic web”. In: Learning
Organization journal 12.5 (2005), pp. 418–435.

[20] S. Groppe. Data management and query processing in semantic web databases.
Springer, 2011. isbn: 978-3-642-19356-9.

[21] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. “LUBM: A benchmark for
OWL knowledge base systems”. In: Web Semantics: Science, Services and
Agents on the World Wide Web 3.2 (2005), pp. 158–182.

[22] Antonin Guttman. “R-trees: a dynamic index structure for spatial search-
ing”. In: Proceedings of the ACM International Conference on Management
of Data, (SIGMOD ’84). Vol. 14. 2. 1984, pp. 47–57.

[23] S. Harris and D.N. Gibbins. “3store: Efficient bulk RDF storage”. In: vol-
ume 89 of CEUR Workshop Proceedings (2003).

[24] S. Harris, N. Lamb, and N. Shadbolt. “4store: The design and implementa-
tion of a clustered RDF store”. In: Proceedings of 5th International Work-
shop on Scalable Semantic Web Knowledge Base Systems (SSWS2009).
2009, pp. 94–109.

[25] S. Harris and A. Seaborne. “SPARQL 1.1 query language”. In: W3C Rec-
ommendation (2013). url: http://www.w3.org/TR/sparql11-query/.

[26] A. Harth and S. Decker. “Optimized index structures for querying rdf from
the web”. In: Proceedings of 3th Latin American Web Congress, (LA-WEB
2005). IEEE. 2005.

[27] A. Harth et al. “Yars2: A federated repository for querying graph struc-
tured data from the web”. In: The Semantic Web 4825 (2007), pp. 211–
224.

[28] M Tim Jones. Artificial Intelligence A System Approach. Laxmi Publica-
tions, Ltd., 2008. isbn: 978-0763773373.

Data Structures for Indexing Triple Table 27

[29] D. Kolas, I. Emmons, and M. Dean. “Efficient linked-list rdf indexing in
parliament”. In: Proceedings of the 5th International Workshop on Scalable
Semantic Web Knowledge Base Systems. Vol. 9. 2009, pp. 17–32.

[30] Michal Krátký et al. “Efficient processing of narrow range queries in multi-
dimensional data structures”. In: Proceedings of 10th International Database
Engineering and Applications Symposium, (IDEAS’06). IEEE. 2006.

[31] Filip Křižka, Michal Krátký, and Radim Bača. “On support of order-
ing in multidimensional data structures”. In: Proceedings of Advances in
Databases and Information Systems (ADBIS 2010). Vol. 6295. LNCS.
Springer. 2010, pp. 575–578.

[32] Frank Manola, Eric Miller, Brian McBride, et al. “RDF primer”. In: W3C
recommendation 10 (2004). url: http://www.w3.org/TR/rdf-primer/.

[33] Akiyoshi Matono, SaidMirza Pahlevi, and Isao Kojima. “RDFCube: A
P2P-Based Three-Dimensional Index for Structural Joins on Distributed
Triple Stores”. In: Databases, Information Systems, and Peer-to-Peer Com-
puting. Vol. 4125. LNCS. Springer, 2007. isbn: 978-3-540-71660-0.

[34] B. McBride. “Jena: A semantic web toolkit”. In: Internet Computing,
IEEE 6.6 (2002), pp. 55–59.

[35] J.P. McGlothlin and L.R. Khan. RDFJoin: A scalable data model for per-
sistence and efficient querying of RDF datasets. Tech. rep. 2009.

[36] J.P. McGlothlin and L.R. Khan. “RDFKB: efficient support for RDF infer-
ence queries and knowledge management”. In: Proceedings of the 2009 In-
ternational Database Engineering & Applications Symposium. ACM. 2009,
pp. 259–266.

[37] T. Neumann and G. Weikum. “RDF-3X: a RISC-style engine for RDF”.
In: Proceedings of the VLDB Endowment. Vol. 1. 1. VLDB Endowment,
2008, pp. 647–659.

[38] A. Seaborne et al. “SPARQL/Update: A language for updating RDF graphs”.
In: W3C Member Submission 15 (2008).

[39] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. “The R+-
Tree: A Dynamic Index for Multi-Dimensional Objects”. In: Proceedings
of 13th International Conference on Very Large Data Bases (VLDB 1997).
Morgan Kaufmann, 1987.

[40] Octavian Udrea, Andrea Pugliese, and VS Subrahmanian. “GRIN: A graph
based RDF index”. In: Proceedings of the 22nd national conference on
Artificial intelligence, (AAAI’07). Vol. 1. 2007, pp. 1465–1470.

[41] C. Weiss, P. Karras, and A. Bernstein. “Hexastore: sextuple indexing for
semantic web data management”. In: Proceedings of the VLDB Endowment
1.1 (2008), pp. 1008–1019.

[42] D. Wood, P. Gearon, and T. Adams. “Kowari: A platform for semantic web
storage and analysis”. In: Proceedings of XTech 2005 Conference. 2005.

[43] Cui Yu. High-Dimensional Indexing. Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, 2002. isbn: 3-540-44199-9.

Vocabulary for Linked Data Visualization
Model?

Jakub Kĺımek1 and Jǐŕı Helmich2

1 Czech Technical University in Prague, Faculty of Information Technology
Thákurova 9, 160 00 Praha 6, Czech Republic

klimek@fit.cvut.cz
2 Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
helmich@ksi.mff.cuni.cz

Vocabulary for Linked Data Visualization Model?

Jakub Klímek1 and Jiří Helmich2

1 Czech Technical University in Prague, Faculty of Information Technology
Thákurova 9, 160 00 Praha 6, Czech Republic

klimek@fit.cvut.cz
2 Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
helmich@ksi.mff.cuni.cz

Abstract. There is already a vast amount of Linked Data on the web. What is
missing is a convenient way of analyzing and visualizing the data that would
benefit from the Linked Data principles. In our previous work we introduced the
Linked Data Visualization Model (LDVM). It is a formal base that exploits the
principles to ensure interoperability and compatibility of compliant components.
In this paper we introduce a vocabulary for description of the components and an
analytic and visualization pipeline composed of them. We demonstrate its viability
on an example from the Czech Linked Open Data cloud.

Keywords: Linked Data, RDF, visualization, vocabulary

1 Introduction

Vast amount of data represented in a form of Linked Open Data (LOD) is now available
on the Web. Unfortunately, not so many users are capable of using the data in a useful
way yet. The data is represented in RDF and often uses commonly known vocabularies,
which brings opportunities for data analysis and visualization that were not there before.
However, the appropriate tools that would exploit these new benefits are still lacking.

Figure 1 shows datasets transformed to Linked Data by our research group over
the past few years. The circles are the individual datasets and the edges mean there
is a decent amount of links among entities of the two datasets. This gives the users
some very rough ideas of what they can find in those datasets. Each dataset should
also be described by its metadata, which gives more information about what is inside.
However, the Linked Data principles offer more. For each of our datasets a SPARQL
endpoint – an open endpoint to a database where everyone can place a structured query -
is available. This in combination with commonly used Linked Data vocabularies means
that anyone can simply ask whether a particular dataset contains interesting data. The
obvious issue here is that non expert users do not know SPARQL so they do not know
how to ask the right question. For example, if a user is interested in opening hours
of a particular institution of public power, he could query the appropriate dataset that

? This work was partially supported by a grant from the European Union’s 7th Framework
Programme number 611358 provided for the project COMSODE

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 28–39, CEUR-WS.org/Vol-1343.

Vocabulary for Linked Data Visualization Model 29

ARES

Business

Entities

COI.CZ

Institution

s of public

power

(OVM)

Consolida

ted Law

NUTS

codes

LAU

regions

Demogra

phy

Budgets

Exchange

rates

CPV 2008

Research

projects

Czech

Public

Contracts

Court

decisions
TED

Public

Contracts

OVM

Agendas

Governmental

Business-entities

Geographical

Statistical

Czech

Ministry of

Finance

data

RUIAN

Czech

Business

Entity IDs

Geocoordi

nates

Czech

Social

Security

Administr

ation

Contracts,

Invoices,

Payments

Elections

results

Fig. 1. Czech Linked Open Data Cloud

he sees in our Czech LOD cloud, if he knew how. This situation is somehow similar
to programming and common algorithms. For every programming language there are
libraries of algorithms implemented by experts who know how to do that, packaged for
use by people who do not. Because on the Web of Data there are vocabularies that are
de facto standards for representation of certain types of data such as opening hours of
locations in general3, if the data is in the dataset, it would be found by a general query
suited for this, perhaps written by an expert. This means that a regular user could find our
dataset of institutions of public power and assume that it uses the standard vocabulary.
Then he could use the query from a library of queries suited for common tasks using the
common vocabularies and execute this query on a dataset of his choosing. He would get
the result, possibly even displayed in a user friendly way, again thanks to the standard
vocabularies and all this without understanding SPARQL, RDF, Linked Data, etc.

Previously, we introduced the Linked Data Visualization Model (LDVM) [4], which
allows users to create and reuse analytic and visualization components that leverage the
Linked Data principles. We also showed a tool Payola [6] implementing the model and
in [7] we demonstrated that expert users can prepare analyses and visualizations and
allow non-experts to use them to get data from the LOD cloud4.

3
http://www.heppnetz.de/ontologies/goodrelations/v1.html#OpeningHoursSpecification

4
http://lod-cloud.net/

30 Jakub Kĺımek, Jǐŕı Helmich

In this paper we introduce the LDVM vocabulary, which allows LDVM implementa-
tions to store and exchange configuration of individual LDVM components as well as
whole analytic and visualization pipelines in RDF and in compliance with the Linked
Data principles. The vocabulary contains support for pipeline nesting so that complete
pipelines created by experts can be wrapped as another component to be used in pipelines
by non-experts. By publishing the vocabulary we also open our approach to Linked
Data analysis and visualization so that anyone who is interested can easily create a
reusable component or pipeline and share it with others. The technical benefits are easy
sharing, open format easily adoptable by other implementations, easier management
of configurations – all the configurations can be maintained by SPARQL queries and
the possibility to configure the components and pipelines programmatically. In addition,
there are all the generally known Linked Data benefits such as ability to better provide
context through linking to other sources, better provenance tracking, etc.

This paper is structured as follows. In section 2 we briefly describe the principles of
LDVM. In section 3 we introduce the LDVM vocabulary, which is the main contribution
of this paper. In section 4 we show the usage of the vocabulary on examples. In section 5
we survey related work and in section 6 we conclude.

2 Linked Data Visualization Model

In our previous work we defined the Linked Data Visualization Model (LDVM), an
abstract visualization process customized for the specifics of Linked Data. In short,
LDVM allows users to create data visualization pipelines that consist of four stages:
Source Data, Analytical Abstraction, Visualization Abstraction and View. The aim of
LDVM is to provide means of creating reusable components at each stage that can be
put together to create a pipeline even by non-expert users who do not know RDF. The
idea is to let expert users to create the components by configuring generic ones with
proper SPARQL queries and vocabulary transformations. In addition, the components
are configured in a way that allows the LDVM implementation to automatically check
whether two components are compatible or not. If two components are compatible, then
the output of one can be connected to the input of the other in a meaningful way. With
these components and the compatibility checking mechanism in place, the visualization
pipelines can then be created by non-expert users.

2.1 Model Components

There are four stages of the visualization model populated by LDVM components.
Source Data stage allows a user to define a custom transformation to prepare an arbitrary
dataset for further stages, which require their input to be RDF. In this paper we only
consider RDF data sources such as RDF files or SPARQL endpoints, e.g. DBPedia. The
LDVM components at this stage are called data sources. The Analytical Abstraction
stage enables the user to specify analytical operators that extract data to be processed
from one or more data sources and then transform it to create the desired analysis.
The transformation can also compute additional characteristics like aggregations. For
example, we can query for resources of type dbpedia-owl:City and then compute the

Vocabulary for Linked Data Visualization Model 31

number of cities in individual countries. The LDVM components at this stage are called
analyzers. In the Visualization Abstraction stage of LDVM we need to prepare the data
to be compatible with the desired visualization technique. We could have prepared the
analytical abstraction in a way that is directly compatible with a visualizer. In that case,
this step can be skipped. However, the typical use case for Visualization Abstraction is
to facilitate reuse of existing analyzers and existing visualizers that work with similar
data, only in different formats. For that we need to use a LDVM transformer. In View
stage, data is passed to a visualizer, which creates a user-friendly visualization. The
components, when connected together, create a analytic and visualization pipeline which,
when executed, takes data from a source and transforms it to produce a visualization at
the end. However, not every component can produce meaningful results from any input.
Typically, each component is designed for a specific purpose, e.g. visualizing map data,
and it does not make sense with other data. This means that only components that are
somehow compatible can create a meaningful pipeline.

2.2 Component Compatibility

Now that we described the four basic types of LDVM components, let us take a look at
the notion of their compatibility, which is a key feature of LDVM. We first introduced
the idea of compatibility checking in [4] and then further refined it in [7]. However, as
the implementation progressed we developed this feature even further.

The idea is based on the ability to check whether a component can work with the
data it has on its input. We can check this using e.g. a SPARQL query, but we can
do that only when the pipeline is already running, when we actually have the data to
check. However, we want to use the component compatibility in design time to rule out
component combinations that do not make any sense and to help the users to use the
right components before they actually run the pipeline. Therefore, we need a way to
check the compatibility without the actual data. For this, we use two constructs - an input
descriptor and an output data sample. The input descriptor describes what is expected in
the input data. For simplicity, let us use a set of SPARQL queries for the descriptor. A
descriptor is bound to an input of its component.

In order to evaluate the descriptors in design time, we require that each LDVM
component that produces data (data source, analyzer, transformer) also provides a static
sample of the resulting data. For the data sample to be useful, it should be as small as
possible, so that the input descriptors of other components execute as fast as possible.
Also, it should contain the maximum amount of classes and properties whose instances
can be produced by the component, making it as descriptive as possible. For example,
when an analyzer transforms data about cities and their population, its output data sample
will contain a representation of one city with all the properties that the component can
possibly produce given it has all the inputs it needs. Note that, e.g. for data sources, it is
also possible to implement the evaluation of descriptors over the output data sample as
evaluation directly on the represented SPARQL endpoint.

Each LDVM component has a set of features, where each feature represents a part of
the expected component functionality. A component feature can be either mandatory or
optional. For example, a visualizer that displays points and their descriptions on a map
can have 2 features. One feature represents the ability to display the points on a map.

32 Jakub Kĺımek, Jǐŕı Helmich

This one will be mandatory, because without the points, the whole visualisation lacks
purpose. The second feature will represent the ability to display a description for each
point on the map. It will be optional, because when there is no data for the description,
the visualization still makes sense - there are still points on a map. Whether a component
feature can be used or not depends on whether there is the data needed for it on the input,
therefore, each feature is described by a set of input descriptors.

We say that a feature of a component in a pipeline is usable when all queries in all
descriptors are evaluated true on their respective inputs. A component is compatible
with the mapping of outputs of other components to its inputs when all its mandatory
features are usable. The usability of optional features can be further used to evaluate the
expected quality of the output of the component. For simplicity, we do not elaborate on
the output quality in this paper. The described mechanism of component compatibility
can be used in design time for checking of validity of the visualization pipeline. It can
also be used for suggestions of components that can be connected to a given component
output. In addition, it can be used in run time for verification of the compatibility using
the actual data that is passed through the pipeline. Finally, this concept can be also
used for periodic checking of data source content, e.g. whether the data has changed its
structure and therefore became unusable or requires pipeline change.

3 LDVM Vocabulary

In our current take on implementation of LDVM we aim to have individual components
running as independent services that exchange only information needed to access the
input and output data. Also we aim for easy configuration of individual components as
well as easy configuration of the whole pipeline. In accordance with the Linked Data
principles, we now use RDF as the format for storage and exchange of configuration so
that any component that works with RDF can use LDVM components both individually
and in a pipeline. For this purpose we have devised a vocabulary for LDVM, which is the
main contribution of this paper. In Figure 2 there is a UML class diagram depicting the
structure of the vocabulary. Boxes represent classes, edges represent object properties
(links) and properties listed inside of the class boxes represent data properties. We chose
the ldvm5 prefix for the vocabulary, which is developed on GitHub6.

3.1 Templates and Instances

There are blue and green classes. The blue classes belong to template level of the
vocabulary and green classes belong to the instance level. The easiest way to imagine the
division is to imagine a pipeline editor with a toolbox. In the toolbox, there are LDVM
component templates with their default configuration. When a designer wants to use a
LDVM component in a pipeline, he drags it onto the editor canvas, creating an instance.
There can be multiple instances of the same LDVM component template in a single
pipeline, each with configuration that overrides the default one. The template holds input
descriptors and output data samples, which are used for the compatibility checking. The

5
http://linked.opendata.cz/ontology/ldvm/

6
https://github.com/payola/ldvm

Vocabulary for Linked Data Visualization Model 33

Fig.2.L
D

V
M

Vocabulary

34 Jakub Kĺımek, Jǐŕı Helmich

instance configuration and input and output mappings are then used for compatibility
checking of a finished pipeline, which also depends on the content of the data sources.
Also, they are used during pipeline execution to verify compatibility on the actual data.
Each instance is connected to its template using the ldvm:instanceOf property.

3.2 Component Types

There are four basic component types as described in subsection 2.1 - data sources,
analyzers, transformers and visualizers. They have their representation on both the
template level - descendants of the ldvm:ComponentTemplate class - and instance
levels - descendants of the ldvm:ComponentInstance class. From the implementation
point of view, transformers are just analyzers with one input and one output, so the
difference is purely semantic. This is why transformers are subclass of analyzers.

3.3 Data Ports

Components have input and output data ports. On the template level we distinguish
the inputs and outputs of a component. To ldvm:InputDataPortTemplate the in-
put descriptors of features can be applied. ldvm:OutputDataPortTemplate has the
ldvm:outputDataSample links to the output data samples. Both are subclasses of
ldvm:DataPortTemplate. The data ports are mapped to each other - output of one
component to input of another - as instances of ldvm:DataPortInstance using the
ldvm:boundTo property. This data port instance mapping forms the actual visualiza-
tion pipeline, which can be then executed. Because data ports are not LDVM com-
ponents, their instances are connected to their templates using a separate property
ldvm:dataPortInstanceOf.

3.4 Features and Descriptors

On the template level, features and descriptors (see subsection 2.2) of a component
are represented. Each component template can have multiple features connected us-
ing the ldvm:feature property. The features themselves - instances of either the
ldvm:MandatoryFeature class or the ldvm:OptionalFeature class - can be de-
scribed using standard Linked Data techniques and vocabularies such as dcterms and
skos. Each feature can have descriptors, instances of ldvm:Descriptor connected
using the ldvm:descriptor property. The descriptors have their actual SPARQL
queries as literals connected using the ldvm:query property. In addition, the input
data port templates to which the particular descriptor is applied are denoted using the
ldvm:appliesTo property.

3.5 Configuration

Now that we have the LDVM components, we need to represent their configuration.
On the template level, components have their default configuration connected using the
ldvm:componentConfigurationTemplate property. On the instance level, compo-
nents point to their configuration, when it is different from the default one, using the

Vocabulary for Linked Data Visualization Model 35

ldvm:componentConfigurationInstance property. The configuration itself is the
same whether it is on the template level or the instance level and therefore we do not dis-
tinguish the levels here and we only have one class ldvm:ComponentConfiguration.

The structure of the configuration of a LDVM component is completely dependent
on what the component needs to function. It is also RDF data and it can use various vo-
cabularies. It can be even linked to other datasets according to the Linked Data principles.
Therefore it is not a trivial task to determine the boundaries of the configuration data in
the RDF data graph in general. On the other hand, each component knows precisely what
is expected in its configuration and in what format. This is why we need each component
to provide a SPARQL query that can be used to obtain its configuration data so that
the LDVM implementation can extract it. That SPARQL query is connected to every
configuration using the mandatory ldvm:configurationSPARQL property.

3.6 Pipeline

Finally, the pipeline itself is represented by the ldvm:Pipeline class instance. It links
to all the instances of LDVM components used in the pipeline.

3.7 Nested Pipelines

A key feature for collaboration of expert and non-expert users is pipeline nesting. An
expert can create a pipeline that is potentially complex in number of components, their
configuration and binding, but could be reused in other pipelines as a black box data
source, analyzer or transformer. The intuitive way of achieving this goal is to let the
expert to create the pipeline without a visualizer and potentially even without a data
source. This pipeline would then create the black box with its own inputs represented
by the missing input mappings of the inner pipeline and outputs represented by the
outputs of the inner components to which no input is bound. However, there is one
conceptual problem. This inner pipeline is made of component instances and we want to
create a component template (reusable black box) out of it. For this, we need a property
ldvm:nestedPipeline that indicates, that a pipeline is nested in the component
template. In addition, we need to map the input data port templates of the new component
template to be bound to the input data port instances of the components of the inner
pipeline. Also, we need the output instances of the components of the inner pipeline
to be bound to the output data port templates of the new component template. This is
indicated by the ldvm:nestedBoundTo property.

4 Examples

In this section we will introduce examples of how actual templates and instances use
LDVM. We use the Turtle RDF syntax7 and due to space limitations we shorten full
URLs and omit human readable labels in the data, which we otherwise recommend
according to the "label everything" principle.

7
http://www.w3.org/TR/turtle/

36 Jakub Kĺımek, Jǐŕı Helmich

4.1 SPARQL Analyzer Template

In this section we show how a SPARQL analyzer component template uses LDVM
vocabulary. See Listing 1.1.

1 a-sparql:SparqlAnalyzerConfiguration a rdfs:Class ;
2 rdfs:subClassOf ldvm:ComponentConfiguration .
3 a-sparql:query a rdf:Property ;
4 rdfs:domain a-sparql:SparqlAnalyzerConfiguration ;
5 rdfs:range xsd:string .
6 a-sparql-r:Configuration a a-sparql:SparqlAnalyzerConfiguration ;
7 a-sparql:query "CONSTRUCT {GRAPH ?g {?s ?p ?o}} WHERE {GRAPH ?g {?s ?p ?o}}" ;
8 ldvm:configurationSPARQL """
9 PREFIX a-sparql: <http://linked.opendata.cz/ontology/ldvm/analyzer/sparql/>

10
11 CONSTRUCT {
12 ?config a-sparql:query ?query;
13 dcterms:title ?title .
14 }
15 WHERE {
16 ?config a a a-sparql:SparqlAnalyzerConfiguration;
17 OPTIONAL {?config a-sparql:query ?query . }
18 OPTIONAL {?config dcterms:title ?title . }
19 }
20 """ .
21 a-sparql-r:Input a ldvm:InputDataPortTemplate .
22 a-sparql-r:Output a ldvm:OutputDataPortTemplate .
23 a-sparql-r:Descriptor a ldvm:Descriptor ;
24 ldvm:query """ASK {?s ?p ?o}""" ;
25 ldvm:appliesTo a-sparql-r:Input .
26 a-sparql-r:Feature a ldvm:MandatoryFeature ;
27 ldvm:descriptor a-sparql-r:Descriptor .
28 a-sparql-r:SparqlAnalyzerTemplate a ldvm:AnalyzerTemplate ;
29 ldvm:componentConfigurationTemplate a-sparql-r:Configuration ;
30 ldvm:inputTemplate a-sparql-r:Input ;
31 ldvm:outputTemplate a-sparql-r:Output ;
32 ldvm:feature a-sparql-r:Feature .

Listing 1.1. SPARQL Analyzer example

First, note that each LDVM component should define its own mini-vocabulary needed
for its configuration. In the case of an analyzer that executes a SPARQL query, we need
to configure the query. Therefore, we create a class representing the configuration of the
SPARQL analyzer - see line 1 - a subclass of ldvm:ComponentConfiguration. Then
we define the property to be used for the SPARQL query - see line 3 and we instantiate
the the configuration as a default configuration - see line 6. Note the query that actually
gets the whole configuration. This one would actually get every configuration of every
SPARQL analyzer in the data. The LDVM implementation adds a special BIND clause
that fixates the ?config variable on the URI of the specific configuration. In addition,
the component template has an input (line 21), output (line 22) and a mandatory feature
(line 26) with its descriptor (line 23) that returns true whenever there is some RDF data
on the input. Finally, we create the new component template itself on line 28.

Vocabulary for Linked Data Visualization Model 37

4.2 Nested Pipeline Example

In this section we show how a nested pipeline instance can be wrapped into a new
analyzer template. It is a simple pipeline of 3 analyzers where the first two take the
input data from individual inputs, transform it and pass it to the third one. The third one
merges the data and passes it to the output.

Fig. 3. Analyzer template containing nested pipeline

See Figure 3 where we chose a graphical representation rather than a textual one
where boxes are entities, the class of the entities is written in bold and the actual URI
of the entity is shortened. The new analyzer template has two inputs and one output
and contains the nested pipeline. There is a link to a new output data sample from the
output. There are two instances of the SPARQL analyzer template (see subsection 4.1),

38 Jakub Kĺımek, Jǐŕı Helmich

which transform the data from the individual inputs, their inputs are bound to them using
the ldvm:nestedBoundTo property. The third member of the pipeline has one input
bound to the output of the SPARQL analyzers and one output bound to the output of the
template itself.

At the same time, Figure 3 is an example of a very simple pipeline instance, which
is the one nested in the new component template. What is missing due to lack of space
is the instance configuration of a component, which can overwrite the one specified
at template level. The configuration itself, however, looks the same at both levels and
depends completely on the component being configured.

5 Related Work

The problem of Linked Data not being accessible to non-experts is well-known. With the
LDVM Vocabulary we aim at an open web-services like environment that is independent
of the specific implementation of the LDVM components. This of course requires
proper definition of interfaces and the LDVM vocabulary is the base for that. However,
the approaches so far usually aim at a closed browser environment that is able to
analyze and visualize the Linked Data Cloud similarly to our first version of Payola
[6]. They do not provide configuration and description using a reusable vocabulary. The
approaches include Hide the stack [5], where the authors describe a browser meant
for end-users, which is based on templates based on SPARQL queries. Also recent is
LDVizWiz [1], which is a very LDVM-like approach to detecting categories of data in
SPARQL endpoints and extracting basic information about entities in those categories.
An lightweight application of LDVM in enterprise is described in LinDa [9]. Yet another
similar approach that analyzes SPARQL endpoints to generate faceted browsers is
rdf:SynopsViz [3]. In [2] the authors use their LODeX tool to summarize LOD datasets
according to the vocabularies used. For more tools for Linked Data visualization see
[7]. The most relevant related work to the specific topic of a vocabulary supporting
Linked Data visualization is Fresnel - Display Vocabulary for RDF [8]. Fresnel specifies
how a resource should be visually represented by Fresnel-compliant tools like LENA
8 and Longwell 9. Therefore, Fresnel vocabulary could be perceived as a vocabulary
for describing LDVM visualization abstraction. This is partly because the vocabulary
was created before the Linked Data era and therefore focuses on visualizing RDF data
without considering vocabularies and multiple sources.

6 Conclusions

In this paper we briefly described our Linked Data Visualization Model (LDVM) and pro-
posed a Linked Data vocabulary for description of its components and their configuration.
The vocabulary supports description of inputs and outputs of individual components,
which allows LDVM implementations to check whether components are compatible
with each other. In addition, the vocabulary supports creation of new LDVM compatible

8
https://code.google.com/p/lena/

9
http://simile.mit.edu/issues/browse/LONGWELL

Vocabulary for Linked Data Visualization Model 39

component templates and representation of analytic and visualization pipelines based on
those components. This support includes creation of component templates from pipeline
instances, which facilitates cooperation between expert and non-expert users of LDVM
implementations. Expert users can create complex pipelines and provide them as black
box components to the non-experts who can then use them in their pipelines. We showed
the vocabulary usage on an example of a component template and example of a nested
pipeline. There are multiple advantages of representing the templates, their configuration
and whole pipelines in RDF according to the LDVM vocabulary. For example, the
data processed by the pipelines can be linked to the actual pipelines, the templates and
pipelines can be easily manipulated by SPARQL queries and shared among users.

References

1. G. A. Atemezing and R. Troncy. Towards a linked-data based visualization wizard. In ISWC
2014, 5th International Workshop on Consuming Linked Data (COLD 2014), 20 October 2014,
Riva del Garda, Italy, Riva Del Garda, ITALY, 10 2014.

2. F. Benedetti, S. Bergamaschi, and L. Po. Online Index Extraction from Linked Open Data
Sources. In A. L. Gentile, Z. Zhang, C. d’Amato, and H. Paulheim, editors, Proceedings of the
2nd International Workshop on Linked Data for Information Extraction (LD4IE), number 1267
in CEUR Workshop Proceedings, pages 9–20, Aachen, 2014.

3. N. Bikakis, M. Skourla, and G. Papastefanatos. rdf:SynopsViz – A Framework for Hierarchical
Linked Data Visual Exploration and Analysis. In V. Presutti, E. Blomqvist, R. Troncy, H. Sack,
I. Papadakis, and A. Tordai, editors, The Semantic Web: ESWC 2014 Satellite Events, Lecture
Notes in Computer Science, pages 292–297. Springer International Publishing, 2014.

4. J. M. Brunetti, S. Auer, R. García, J. Klímek, and M. Nečaský. Formal Linked Data Visualiza-
tion Model. In Proceedings of the 15th International Conference on Information Integration
and Web-based Applications & Services (IIWAS’13), pages 309–318, 2013.

5. A.-S. Dadzie, M. Rowe, and D. Petrelli. Hide the Stack: Toward Usable Linked Data. In
G. Antoniou, M. Grobelnik, E. Simperl, B. Parsia, D. Plexousakis, P. De Leenheer, and J. Pan,
editors, The Semantic Web: Research and Applications, volume 6643 of Lecture Notes in
Computer Science, pages 93–107. Springer Berlin Heidelberg, 2011.

6. J. Klímek, J. Helmich, and M. Nečaský. Payola: Collaborative Linked Data Analysis and
Visualization Framework. In 10th Extended Semantic Web Conference (ESWC 2013), pages
147–151. Springer, 2013.

7. J. Klímek, J. Helmich, and M. Nečaský. Application of the Linked Data Visualization Model
on Real World Data from the Czech LOD Cloud. In C. Bizer, T. Heath, S. Auer, and T. Berners-
Lee, editors, Proceedings of the Workshop on Linked Data on the Web co-located with the 23rd
International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014., volume
1184 of CEUR Workshop Proceedings. CEUR-WS.org, 2014.

8. E. Pietriga, C. Bizer, D. R. Karger, and R. Lee. Fresnel: A Browser-Independent Presentation
Vocabulary for RDF. In I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika,
M. Uschold, and L. Aroyo, editors, The Semantic Web - ISWC 2006, 5th International Semantic
Web Conference, ISWC 2006, Athens, GA, USA, November 5-9, 2006, Proceedings, volume
4273 of Lecture Notes in Computer Science, pages 158–171. Springer, 2006.

9. K. Thellmann, F. Orlandi, and S. Auer. LinDA - Visualising and Exploring Linked Data. In
Proceedings of the Posters and Demos Track of 10th International Conference on Semantic
Systems - SEMANTiCS2014, Leipzig, Germany, 9 2014.

Parallel Approach to Context Transformations

Michal Vašinek, Jan Platoš

Department of Computer Science, FEECS, VŠB-Technical University of Ostrava,
17.listopadu, 708 33, Ostrava - Poruba,

michal.vasinek@vsb.cz,jan.platos@vsb.cz,

Parallel Approach to Context Transformations

Michal Vašinek, Jan Platoš

Department of Computer Science, FEECS, VŠB-Technical University of Ostrava,
17.listopadu, 708 33, Ostrava - Poruba,

michal.vasinek@vsb.cz,jan.platos@vsb.cz,

Abstract. Context transformation is a process that turns input data
into one with lower zero order entropy. The main weakness of algorithms
presented sofar is the complexity of replacing procedure. In this paper we
describe properties related to the parallelization of replacing procedure
and we propose a modified version of a basic context transformation
algorithm, that uses a parallel approach.

Keywords: compression, context, transformation, entropy, parallel com-
puting

1 Introduction

There are two main classes of algorithms employed in the data compression. The
first class of algorithms deals directly with the compression and their purpose is
to decrease the size of the input message. Examples [3] of such algorithms are
Huffman coding, Arithmetic coding, Lempel Ziv algorithms family, PPM and
many others. The second class of algorithms behaves more like preprocessors for
the first class, these algorithms are usually called transformations, examples are
Burrows-Wheeler transformation [1] or MoveToFront [2] transformation that are
used in bzip2 file compressor.

The purpose of transformations is not to decrease message size but to change
the internal message structure that could be more easily handled by some of
the first class algorithms. In [5] and [6] we propose a reversible transformation
method called a ‘Context transformation’, that we use to reduce zero-order en-
tropy of input messages. Transformed data are then compressed using entropy
coding algorithms, like Huffman coding. In this paper we describe properties
related to the parallelization of context transformation algorithms.

We use several notation conventions: we use Σ to denote set of message
symbols, characters in equations are greek symbols from Σ and unless stated
otherwise, they can represent any member of Σ, i.e. α = β as well as α 6= β it
should be clear from the context. When we present examples of transformations
we use symbols from english alphabet to denote particular transformations like
ab→ ac, then each character a, b, c, . . . are distinct characters a 6= b 6= c 6=

The rest of the paper is organized as follows. Section 2 contains description
of the proposed Context transformations and their properties. Section 3 analyses
complexity of the transformation with respect to the number of symbols in the

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 40–51, CEUR-WS.org/Vol-1343.

Parallel Approach to Context Transformations 41

alphabet for both proposed transformation types. Section 4 describes the ability
of the transformations to work in parallel. Section 5 contains design of the parallel
algorithm and presents results achieved on the selected dataset. Last Section 6
concludes the paper and discusses achieved results.

2 Context Transformations

The context transformation is a method that takes two digrams, the digram αβ
that is present in the input message and the digram αγ that is not present in the
input message. Transformation replaces all occurences of αβ for αγ. The symbol
α is called a context symbol and it is present in both digrams.

Definition 1 Context transformation(CT) is a mapping CT (αβ → αγ,w) :
Σn → Σn, Σ is the alphabet of the input message w and n is the length of the
input message, that replaces all digrams αβ for digram αγ, where p(α, γ) = 0
and β 6= γ.

We may consider also the transformation of the form βα → γα, such trans-
formation would correspond to the same transformation like in Definition 1 if
we perform replacement on the mirror message. There is one rule that must be
followed and it is that such transformation must be applied on the input message
from right to left, respectively from left to right in the case of βα → γα. This
rule ensures that for each context transformation an inverse transformation that
transforms the new message back to the input message exists. The proof of this
rule can be found in [5] and [7]. Context transformations are a subset of more
general set of generalized context transformations:

Definition 2 Generalized context transformation(GCT) is a mapping GCT (αβ
↔ αγ,w) :Σn → Σn, Σ is the alphabet of the input message w and n is the
length of the input message, that exchanges all digrams αβ for digram αγ and
vice-versa.

GCT transformation can be applied in any direction, but CT ⊂ GCT only
when they are applied in the same direction. In this paper we describe GCT
transformations applied from right so it is consistent with the former notion of
context transformations.

The main difference between a context and a generalized context transfor-
mation is that we can swap any two digrams beginning with alpha, hence we
are no more restricted on cases when one of digrams is not present in a message.
Example of each transformation is presented in Fig. 1.

The following paragraphs contains brief discussion of the context transforma-
tion process and its implication to zero order Shanonn entropy [4]. The reader
can find the detailed description in [5] and [7]. When we will speak about entropy
we mean the Shannon’s entropy over alphabet Σ of individual symbols defined
by:

42 Michal Vašinek, Jan Platoš

Fig. 1. Examples of two different types of transformations, p(b) > p(c) > p(d), p(a, c) >
p(a, b), p(b, c) > p(a, b): a) Sequence of context transformations ab → ad, ac → ab, b)
Generalized context transformation ab↔ ac

H = −
∑

x∈Σ
p(x)log(p(x)) (1)

where p(x) is probability of symbol x. Context transformations are based on
the fact that the structured data, like a human-written texts or programming
codes has its inner structure and the most of the information is not hidden in the
entropy of input data alphabet but it depends more on occurences of digrams,
trigrams, words, . . .

Suppose example string ‘kakaoo’, frequencies of its digrams can be repre-
sented by a matrix, we call such matrix a ‘Context matrix’. Entry of a context
matrix is non-negative integer that represents frequency of digram represented
by row symbol followed by column symbol. For our example string, the context
matrix is shown in Table 1.

k a o

k 0 2 0

a 1 0 1

o 0 0 1

Table 1. The context matrix that represents the string ‘kakaoo’

Since the probability distribution of symbols is uniform, the entropy of our
example string is for given alphabet maximal. From context matrix we see that
there are several accessible transformations, first we select a context transfor-
mation that replaces all digrams ‘ka’ for a digram ‘kk’, so the condition of zero
and non-zero entry is fulfilled.

The resulted string is ‘kkkkoo’ and its context matrix is shown in Table 2.
We can see two different consequences of this transformation:

– the alphabet size decreased,

Parallel Approach to Context Transformations 43

– the entropy decreased.

k a o

k 3 0 1

a 0 0 0

o 0 0 1

Table 2. The context matrix that represents the transformed string ‘kkkkoo’

When we use a generalized context transformation instead of a simple context
transformation we arrive in two different strings based on which transformation
direction was applied. When GCT is applied from left then GCT→(w) = kkaaoo
and from right like in a context transformation case GCT←(w) = kkkkoo.

We may select another transformation, for example ‘oo’ for ‘ok’, leaving w in
the state ‘kkkkok’, that has even lower entropy. What we examine in this paper
is, if we can run these two transformations simultaneously, respectively under
what conditions these can be perfomerd in parallel.

2.1 Transformations and their consequences on Huffman coding

Compression schema based on CT or GCT consist of two phases, in the first
phase the input message is transformed using (G)CT, and finaly in the second
phase, the message is compressed using some zero-order entropy coder.

Fig. 2. Compession schema based on context transformations.

Suppose static Huffman coding as a zero-order entropy coder, if p(β) > p(γ)
then for lengths of their corresponding Huffman codes holds that |c(β)| ≤ |c(γ)|.
If p(α, γ) 6= 0 and p(α, β) = 0 (resp. p(α, β) < p(α, γ)) and transformation
CT (αγ → αβ) (resp. GCT (αβ ↔ αγ)) is applied, then all symbols γ that are
part of digrams αγ will be coded by the code of length |c(β)| instead of the code
of length |c(γ)|.

44 Michal Vašinek, Jan Platoš

3 Complexity analysis

Presented algorithms are all greedy approaches, algorithms iteratively search for
the best entropy reducing transformations and then apply transformation on the
source. Formally we divide each iteration in two steps:

1. Search procedure - find the best transformation according the actual context
matrix,

2. Replacing procedure - apply selected transformation on the input string w.

n ← input size
w ← input string
compute matrix()
repeat

transformation = search procedure()
H0 = entropy()
H1 = entropy(transformation)
if n ∗ (H0−H1) < LIMIT then

return
end if
replacing procedure(transformation,w)

until true

Fig. 3. Basic structure of context transformation algorithms

The infinite loop in Fig. 3 terminates when there are no more transformations
that are able to reduce entropy more, than by a limit given by LIMIT variable.
The LIMIT variable is set up to the size of transformation description. In our
algorithms LIMIT = 24 because we store description of each transformation as
a triplet of byte values αβγ.

Both parts of the algorithm can be parallelized, but the operation that is
the most time consuming is the replacing procedure as is depicted in Table 3. In
the Section 5 we present a modified version of the basic algorithm, that uses the
fact, that some transformations can be performed simultaneously and we try to
parallelize the replacing procedure.

Search(ms) Replacement(ms)

1.144 28.813

Table 3. Average time per file needed for search and replacement procedures. Dataset
assasin(6097 files).

Parallel Approach to Context Transformations 45

In the next sections we analyse complexities of both parts and we show that
for source string w of length |w| → ∞ the only significant part remains to be
replacing procedure.

3.1 Search procedure

Algorithm in Fig. 3 is a basic greedy algorithm that searches for and eventually
performs context transformations in such a way that the resulted entropy of al-
phabet Σ is lower than in the untransformed case Search procedure operates on
the context matrix, where rows and columns are sorted according their frequen-
cies. The algorithm iterates through rows of the matrix from the most probable
one to the least probable one.

The simplified version of the search procedure is presented in the following
pseudocode:

cm← context matrix
∆H = 0← the change of zero order entropy
T ← searched transformation
for row = 1 to dim(cm) do

for col 1 = 1 to dim(cm) do
for col 2 = col 1 + 1 to dim(cm) do
∆Htemp = compute dH(row, col 1, col 2)
if ∆Htemp −∆H < 0 then
∆H = ∆Htemp;
T = [row, col 1, col 2]

end if
end for

end for
end for

Fig. 4. Outline of the search procedure

The function compute dH has constant complexity because it computes only
change of entropy, probabilities will be modified only for symbols β and γ, so we
don’t need to recompute entropy of all symbols, but is is sufficient to recompute
entropies of β and γ. The complexity of the search procedure is dependent only
on the size of the alphabet and its worst case complexity is O(t|Σ|3), because
we have to perform 1/2|Σ|3 searches. In our algorithm design the maximum
allowable size of the alphabet is |Σ| = 256, since we interpret as a letter only a
one byte values. That concludes that the upper limit of operations needed for
one search is fixed and in the worst case it is given by |Σ|3.

There are several techniques how the search procedure can be designed with
lower complexity, i.e. precomputation and storage of n best transformations at
the beginning and then only updating the modified ones, leads to the number of
entropy recomputation given by |Σ|3 + 2t|Σ|2.

46 Michal Vašinek, Jan Platoš

3.2 Replacing procedure

The second step, the replacing procedure is very simple, it passes data t times
and exchanges both digrams. Let t be a number of performed GCTs and n is
the length of the input, then the complexity of replacing procedure is O(tn).

The inverse transformation consists only from replacing procedure and so it
also has the complexity O(tn). If the generalized context transformation is of the
form αβ ↔ αγ then its inverse transformation is of the same form, but is taken
in the opposite direction. The experimentally observed t was in range 100-1000
of transformations.

3.3 Comparison

When we let the complexitities functions to be equal we arrive at the limit when
one computation of a replacement procedure becomes more significant than the
one computation of a search procedure. We have to arrive at the limit because
the search procedure is independent of the input size:

c1tn = c2|Σ|3 + c3t|Σ|2 (2)

Constants ci represents implementation specific coefficients. The number of
transformations t on both sides of the equation can be rearranged leaving us
with:

n =
c2|Σ|3 + c3t|Σ|2

c1t
=
c2|Σ|3
c1t

+
c3|Σ|2
c1

(3)

as a number of transformations t → ∞ the first term on the right side
becomes zero:

lim
t→∞

n =
c3|Σ|2
c1

(4)

when |Σ| is finite, then for all source strings of length m, where m > n, the
replacing procedure will be more computationally intensive than the search pro-
cedure.

c1tm > c2|Σ|3 + c3t|Σ|2 (5)

4 Parallel transformations

In this section we describe conditions needed for parallelization of the context
and generalized context transformations.

4.1 Commuting transformations

Let’s consider two different transformations T1 and T2, we say that these two
transformations commute, if they satisfy following definition:

Parallel Approach to Context Transformations 47

Definition 1. Two different transformations T1 and T2 commute if:

T1(T2(w)) = T2(T1(w)) (6)

In our model example of the string w = kakaoo the two presented transfor-
mations commute, since if T1 is ‘ko’ to ‘kk’ transformation and T2 is ‘oo’ to ‘ok’
transformation then T2(T1(‘kakaoo′)) = T1(T2(‘kakaoo′)) = kkkkok.

As an example of non-commuting transformations let’s consider transfor-
mation T1 again and transformation T3 that replaces digrams ‘ao’ to ‘aa’. Ap-
plying these two transformations in both ways will lead to different results.
T3(T1(w)) =′ kkkkao′ but T1(T3(w)) =′ kkkkoo′ so we see that T1(T3(w)) 6=
T3(T1(w))

4.2 Parallel transformations

Commutativity is not sufficient property to decide if two transformations could
be run in parallel. As may be seen along with property that they have an inverse
transformation to them.

Let’s consider again our example word w = kakaoo and two transformations
T4, representing ak → aa and T5 representing ao → aa. These two transforma-
tions commute and transform together the word ‘kakaoo’ into the word ‘kaaaao‘,
but when we perform inverse transformation, we can get different results, since
we don’t know which of two inverse transformations will replace digram ‘aa’ first.

Before we show how to handle inverse transformations, we introduce two sets,
an abstract set Di and set Ki, that will be later used to prove a theorem about
parallel transformations:

Definition 2. Let Di be a set of all unique digrams that are modified(created
or destroyed) by transformation Ti(αβ ↔ αγ) and let the set Ki be a set of all
transformation digrams Ki = {αβ, αγ}.

The set Di contains digrams αβ, αγ and all digrams of type βX and γX,
where X ∈ Σ. Suppose two sets D1 and D2 and let D1 ∩ D2 6= ∅, these two
sets share at least one common digram d, suppose that d ∈ K1 ∪K2, it means
that transformations T1 and T2 will interfere on this particular digram i.e. when
transformation T1 modifies digram αβ on αγ then the second transformation
won’t be able to modify digram αβ as it would do in the case when there is
no other transformation T1. From the above reasoning we form a lemma about
parallel transformations:

Lemma 1. Two transformations T1 and T2 can be run in parallel if:

D1 ∩D2 = ∅ (7)

Proof. Since D1 ∩ D2 = ∅ then no digrams that are modified by both trans-
formations T1 and T2 exist and so these two transformations can be applied
together. ut

48 Michal Vašinek, Jan Platoš

Lemma 1 gives us a simple condition that we use in our algorithms to con-
struct a set of parallel transformations, but it is a weak condition, because there
still exists parallel transformations, but D1 ∩D2 6= ∅, i.e. suppose T1(ab ↔ ac)
and T2(db↔ dc), for these two transformations D1 ∩D2 = {bX, cX}.

Theorem 1. Two transformations T1 and T2 can be run in parallel if:

D1 ∩K2 = ∅ (8)

and

D2 ∩K1 = ∅ (9)

Proof. Suppose that transformation T1 is of the form T1(αβ ↔ αγ), it has
correspoding sets D1 = {αβ, αγ, βX, γX} and K1 = {αβ, αγ}.

If T2 contains in its K2 one of the elements from D1 then it means that the
transformation T1 can modify some of the elements that would be otherwise
transformed(replaced) by T2, so the two transformations can be run in parallel
only if D1 ∩K2 = ∅.

Similar reasoning can be used to prove theorem for equation (9). If T2 contains
in its D2 one of the elements from K1, i.e. αβ then if T2 will change any occurence
of αβ first, the first transformation won’t be able to modify it to αγ, so such
transformations cannot be parallelized and for parallel transformations must
hold D2 ∩K1 = ∅.

Now suppose that D1 ∩ K2 = ∅, but D2 ∩ K1 6= ∅, then some element
i.e. αβ is in the set D2, we know that transformations are not parallel when
αβ ∈ K1 ∧ αβ ∈ K2, now we prove that they cannot be parallelized also if
αβ ∈ D2\K2, bacause then T2 is of the form Xα↔ XY , but when α is modified
on Y then instead of αβ will be Y β and transformation T1 cannot modify it.
The same is valid in the case when D1 ∩ K2 6= ∅, but D2 ∩ K1 = ∅. So both
conditions in Theorem 1 must be valid together. ut

Because our parallel algorithm is based on Lemma 1, we show several other
properties that parallel transformations based on Lemma 1 have.

Theorem 2. Two different transformations T1 and T2 can be run in parallel if:

T1(T2(w)) = T2(T1(w)) = wT (10)

and

T−11 (T−12 (wT)) = T−12 (T−11 (wT)) = w (11)

Proof. Suppose the transformation T←(αβ ↔ αγ), where the arrow at the in-
dex is a label for transformation direction i.e. from right to left ←; it has its
coresponding set of modified digrams D← = {αβ, αγ, βX, γX}, next suppose
the transformation T→(αβ ↔ αγ) and its coresponding set of digrams D→ =
{αβ, αγ, βX, γX}, we see that D← = D→, but we know that T→(T←(w)) = w,
so transformations T and T−1 share the same set D.

Parallel Approach to Context Transformations 49

If T1(T2(w)) = T2(T1(w)) = wT then it means that there are no interfering
digrams, because if there would be such digrams then the equality would not
hold, so D←,1 ∩ D←,2 = ∅, but we showed that D← = D→ so also intersect
of inverse transformations sets is empty and T−11 and T−12 will also recover w
correctly. ut

Lemma 1 and Theorem 2 describes the same phenomenom and they can be
generalized for the arbitrary set of parallel transformations:

Theorem 3. The set of transformations T can be run in parallel if for all pairs
of transformations Ti and Tj holds that:

Di ∩Dj = ∅ (12)

Proof. Suppose the set T can be run in parallel, and suppose two transformations
Ti, Tj ∈ T such that Di∩Dj 6= ∅, then it means that there exist some digram αβ
common for Ti and Tj and these transformations cannot be run in parallel, but
this is in contradiction with hypothesis that T is parallel, so the set Di∩Dj = ∅.

ut

There is one important fact to emphasize that emerged as a consequence of
Theorem 2, it is a statement about inverse transformations:

Corollary 1. Let T = {T1, T2, . . . , Tn} is a set of parallel transformations, then
the set T−1 = {T−11 , T−12 , . . . , T−1n } is parallel as well.

Proof. In Theorem 2 we proved that Di = D−1i and because for the set T holds
that for all sets Di, Dj is Di ∩ Dj = ∅, then also D−1i ∩ D−1j = ∅ and the

transformation set T−1 can be run in parallel.

Corollary 1 is very important result because it tells us that we may parallelize
not only the set T but also its inverse T−1 so an inverse transformation algorithm
is parallelizable as well.

With the knowledge of Lemma 1 we know how to construct set T , now we
explore how large the set possibly can be for particular alphabet Σ:

Theorem 4. The maximal size MT of the set of parallel transformations T for
particular alphabet Σ is:

M = b |Σ|
2
c (13)

Proof. There are two basic types of the set D, one type coresponds to the trans-
formation of the form αα↔ αβ and the second type coresponds to the transfor-
mation αβ ↔ αγ. The first set D1 = {αβ, αα, αX, βX} = {αX, βX} influences
two rows of the context matrix meanwhile the second set D2 = {αβ, αγ, βX, γX}
influences three rows. So when only transformations of the first type are selected
into T then at most b|Σ|/2c transformations can be run in parallel. ut

Theorem 5. Relation to be parallel between transformations is not transitive.

50 Michal Vašinek, Jan Platoš

Proof. Suppose a sets of digrams Di∈{0,1,2}. Let D0 ∩D1 = ∅ and D1 ∩D2 = ∅,
if transitivity holds then D0 ∩D2 = ∅, but this is not generally true. Consider
following example, let T0(ab ↔ ac),T1(ad ↔ ae), transformations are clearly
parallelizable. Let T2(ac↔ af), D1 ∩D2 = ∅, but D0 ∩D2 6= ∅. ut

5 Parallel version of the basic context transformation
algorithm

As we saw in the section about parallel transformations, there is a distinct num-
ber of rows affected by each transformation. This knowledge allows us, based
on Lemma 1, collect parallel transformations in the first step and afterwards
perform them simultaneously. Individual transformations are perfomed simulta-
neously in shared memory. The process is outlined in Fig.5.

cm← context matrix
t array = []← parallel transformations
t size← array size
for row = 1 to dim(cm) do

for col = 1 to dim(cm) do
i = 0
while parallel transformation(t array, row, col) and i < t size do
append transformation(t array, get transformation())
i = i+ 1

end while
for transformation in t array do
perform parallel(transformation)

end for{This section is run in parallel}
end for

end for

Fig. 5. Parallel modification of basic transformation algorithm

We tested algorithm on the computer machine equipped by four proccessors.
Parallel algorithm was more then three times faster than the serial one. The
results are shown in Table 4.

Table 4. Average processing time per file. Dataset assasin.

Serial(ms) Parallel(ms) Speed-up

45.383 13.397 3.387

Serial and parallel algorithms can have different transformation paths(i.e.
different transformations or the order in which transformations are performed).

Parallel Approach to Context Transformations 51

In the serial version of the algorithm, there can be also performed transforma-
tions inaccessible to the parallel algorithm, so the resulted entropy is lower in
the serial case as is presented in Table 5.

No transformation Serial Parallel

4.938 4.054 4.106

Table 5. Entropy comparison. Dataset assasin.

6 Conclusion

We showed a basic properties that have to be fulfilled to run replacing procedure
of context transformation algorithms in parallel. The presented parallel version
of the basic context transformation algorithm significantly increases the speed of
processing of individual data files. On the other hand, usage of parallel algorithm
can lead to minor increase of the resulted entropy.

There are two directions in which we would like to continue our research, the
first direction is to prepare parallel algorithms according Theorem 1 instead of
Lemma 1 and since algorithms presented sofar performs transformations using
only digrams, in the future work we will also focus on development of algorithms
operating on different context lengths.

Acknowledgment

This work was supported by the SGS in VSB - Technical University of Ostrava,
Czech Republic, under the grant No. SP2015/146.

References

1. Burrows, M. and Wheeler D.J., A block sorting lossless data compression algorithm,
1994

2. Bentley, J, L. and Sleator, D. D. and Tarjan, R. E. and Wei, Victor K. A locally
adaptive data compression scheme Commun. ACM, vol 4, pp. 320-330, 1986

3. Salomon, D., Data Compression: The Complete Reference, Springer, NewYork, 2007.
4. Shannon, C. E., A mathematical theory of communication Bell System Technical

Journal, vol. 27, pp. 379-423 and 623-656, 1948.
5. Vašinek, M., Kontextové mapy a jejich aplikace Master Thesis, VŠB - Technical

University of Ostrava, 2013
6. Vašinek, M. and Platoš, J., Entropy reduction using context transformations Data

Compression Conference(DCC), pp. 431-431, 2014
7. Vašinek, M., Context Transformations Ph.D. Workshop of Faculty of Electrical En-

gineering and Computer Science, 2014

Methodologies and Best Practices for Open
Data Publication

Jan Kučera1,2, Dušan Chlapek1, Jakub Kĺımek2, Martin Nečaský2

1 University of Economics, Prague, Czech Republic
{jan.kucera, chlapek}@vse.cz

2 Charles University in Prague, Czech Republic
{klimek, necasky}@ksi.mff.cuni.cz

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Methodologies and best practices for Open Data

publication

J. Kučera1, 2, D. Chlapek1, J. Klímek2, M. Nečaský2

1 University of Economics, Prague, Czech Republic

{jan.kucera,chlapek}@vse.cz
2 Charles University in Prague, Czech Republic

{klimek,necasky}@ksi.mff.cuni.cz

Abstract. Publication and reuse of machine-readable data on the Web is one of

the current trends in data management that is mainly manifested by the Open

Data movement. This movement is especially strong in the government and

public sector domain where many Open Government Data initiatives have been

launched in a large number of countries across the globe. In the European Un-

ion the recent update of the PSI Directive aims at fostering the reuse of data and

information held by the public sector bodies by promoting publication of data in

open machine-readable formats together with the relevant metadata. Even

though the support of governments and the EU to Open Data and PSI reuse

seems to be strong, public sector bodies are facing many challenges when pub-

lishing Open Government Data and the desired reuse is not always evident. In

order to overcome these challenges Open (Government) Data publication meth-

odologies are being proposed and the best practices in this domain are being

formulated. In this paper we discuss the current challenges related to the OGD

publication and reuse, we provide an overview of the existing methodologies

and the best practices for publication of Open Government Data, we present an

OGP publication methodology developed in the COMSODE project.

1 Introduction

With many Open Government Data initiatives being executed in a large number of

countries across the globe (see for example [36]) and the recent update of the PSI

Directive [8] we can see a significant shift towards provision of data held by the pub-

lic sector bodies in machine readable formats together with the relevant metadata.

According to [23] Open Data is “data that can be freely used, reused and redis-

tributed by anyone – subject only, at most, to the requirement to attribute and sharea-

like.” In this paper we refer to Open Data published by public sector bodies (PSBs) on

the web in machine-readable formats as Open Government Data (OGD).

Open Government Data promise significant benefits that can range from increased

efficiency and effectiveness of the public sector bodies to greater trust and improved

transparency [25]. Significant economic impacts are expected from the reuse of OGD

as well. However current studies often provide only estimates and there is still lack of

empirical evidence [30]. Even though the support of the top management is a neces-

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 52–64, CEUR-WS.org/Vol-1343.

Methodologies and Best Practices for Open Data Publication 53

sary prerequisite of a successful OGD initiative it does not guarantee the reuse of the

released data [25]. One of the reasons might be that the public sector bodies some-

times view the OGD from different perspective than the potential users [32].

It is evident that there are many issues related to publication and reuse of OGD. In

order to help the involved stakeholders to deal with these issues methodologies and

best practice guidelines for OGD publication have been developed or are currently

under development. In this paper we discuss the current challenges related to the

OGD publication and reuse and we provide an overview of some of the current meth-

odologies proposing the best practices of the OGD publication. We also present the

Methodology for publishing datasets as open data [18] developed in the COMSODE

project which tries to address some of the known problems in this domain and we

introduce two projects in that this methodology is utilized.

This paper is structured as follows. This introduction is followed by a section dis-

cussing the current problems and issues related to the OGD publication. Next exam-

ples of the existing OGD publication methodologies are presented. Methodology for

publishing datasets as open data is introduced in the next section. Conclusions are

presented at the end of this paper.

2 Challenges of the OGD publication

Public sector bodies are facing a number of challenges when publishing Open Gov-

ernment Data. Some of the challenges might further hinder reuse of the data. For ex-

ample unclear licensing of datasets might prevent the re-users from developing sus-

tainable business models on top of the published data. Both Ubaldi [30] and Janssen,

Charalabidis and Zuiderwijk [12] provide a comprehensive discussion of the chal-

lenges in the OGD domain. Kučera and Chlapek [14] point out that there are not only

benefits that could be reaped out of the OGD reuse but there are also risks that need to

be mitigated.

Table 1 summarizes the current challenges related to the OGD publication dis-

cussed in the literature. We classify the challenges into the following groups:

 Political and social challenges (SOC) – challenges related to the political support,

decision making and social problems;

 Economic challenges (ECO) – challenges and problems related to benefits and

costs of OGD and to its measurement; potential problems related to the financing

of the OGD initiatives belong to this group too;

 Organizational challenges and challenges related to the internal processes (ORG)

– problems related to the organizational structures and the internal processes

through which the OGD are delivered by the PSBs;

 Legal challenges (LEG) – problems related to the legal openness of OGD as well

as the legislative issues;

 Technical challenges (TCH) – issues and challenges related to the technology, data

formats or infrastructure needed to publish OGD.

54 Jan Kučera, Dušan Chlapek, Jakub Kĺımek, Martin Nečaský

Table 1. Challenges related to the OGD publication.

ID Problem/issue Group Refs.

CL1
Too many OGD initiatives – users in Netherland some-

times feel frustrated by too many OGD initiatives.
SOC [12]

CL2

Misinterpretation or contradictory conclusions – differ-

ent users might draw different conclusions out of the

data or the data might be misinterpreted.

SOC
[14],

[12]

CL3
Provided feedback might not always have the neces-

sary level of quality to be used for improvements.
SOC [12]

CL4
Some of the published datasets have little value for the

users or the possible use is not always obvious.
ECO [12]

CL5
Some PSBs seek benefits for themselves rather than the

benefits to the society.
ECO [12]

CL6
Fees might represent a barrier to the re-use. However

some PSBs are required to sell data to cover their costs.
ECO

[30],

[12]

CL7
Not enough resources, especially in case of the small

public sector bodies
ECO [12]

CL8 No systematic OGD cost measurement ECO
[30],

[17]

CL9 No systematic OGD benefits assessment ECO [17]

CL10

No standard process or policy for the OGD publication.

Responsible persons might not always know how to

proceed with the OGD publication.

ORG

[30],

[13],

[12]

CL11

Lack of interaction between OGD users and publishers

– PSBs not always respond to the provided feedback or

questions of the users. There might be lack of the ap-

propriate processes and tools [12].

ORG

[30],

[12],

[29]

CL12
There is not always a centralized OGD portal available

to the PSBs.
ORG [12]

CL13

Publication of OGD requires an appropriate structure

of processes, roles and responsibilities. However these

are not always in place and setting up the right organi-

zational structure requires significant effort.

ORG [30]

CL14

Published datasets are in many cases not regularly

updated and thus the provided data might be obsolete

or non-valid.

ORG
[29],

[12]

CL15

There is a risk of violation of protection of the personal

information or other protected information when pub-

lishing OGD. Concerns about the possible violation of

legislation acts as a barrier to the OGD publication.

LEG
[12],

[17]

CL16

Published datasets have missing, unclear or restrictive

terms of use. This results in legal uncertainty of the

potential users.

LEG
[30],

[12]

Methodologies and Best Practices for Open Data Publication 55

ID Problem/issue Group Refs.

CL17
Same or similar datasets do not always share the same

format or schema.
TCH

[30],

[12]

CL18
Sometimes users need to register to access data. Such

practice is seen as discriminatory by [28].
TCH [12]

CL19
Published data does not represent the primary data but

only processed data.
TCH [12]

CL20

Quality of the published data is often not good enough.

Common data quality issues are related to the accuracy,

completeness and timeliness of the data.

TCH
[12],

[29]

CL21 It is difficult to find the required data. TCH

[30],

[12],

[29]

CL22
Missing description of the data formats and schemas.

Missing explanation of the data. Missing standards.
TCH [12]

CL23

In some cases it might be difficult to publish OGD due

to the underlying ICT infrastructure (e.g. in case of the

"legacy" applications).

TCH
[30],

[12]

CL24 Lack of suitable software tools for OGD publication. TCH [12]

List of the challenges related to the OGD publication presented in the table 1 is by no

means comprehensive. Although some of the problems discussed above might be

addressed by the PSBs themselves, e.g. by putting more emphasis on quality of the

published data and metadata (CL14, CL20, CL21) and the user engagement (CL11),

some of the challenges will probably require more systematic changes. Charging for

data is one of such issues. In its recent notice [7] the European Commission recom-

mends regular assessment of the potential costs and benefits of a zero-cost policy and

a marginal cost policy. However according to [32] if the civil servants are responsible

for the income of the relevant PSBs it might lead to maximization of the fees. In some

cases PSBs even see the commercial re-users as competitors and believe in selling

their data [32].

Some of the challenges presented above might not be unique to the OGD domain,

e.g. insufficient data quality. However OGD utilize the web as a medium for the data

provision and consumption and due to this it contributes to the data on the web phe-

nomenon [16]. Current draft of the W3C Data on the Web Best Practices points to the

fact that the openness and flexibility of the web can lead to new challenges [16]. The

fact that the publishers and the users might be unknown to each other is one of them

[16]. According to [24] the concept of quality is cross-disciplinary, however there is

no single agreed up-on definition of quality. Data quality might be understood within

the contexts of the fitness of the data for its intended use [5]. However if the OGD

publishers are not aware of the potential users it might be difficult to specify the in-

tended use of the published data which in turn might affect the assessment of the data

quality. This illustrates that in case of the OGD some of the already known problems

related to data management are put into the new context which might require specific

solutions.

56 Jan Kučera, Dušan Chlapek, Jakub Kĺımek, Martin Nečaský

However the approach of the PSBs to OGD is not the only barrier to the OGD re-

use. According to [26] there is a lack of knowledge of how the data can be utilized

among the potential users and thus more success stories are required. More attention

should be also paid to the OGD based business plans as a business plan is a precondi-

tion of any long-term OGD reuse [26].

3 Open Government Data publication methodologies

Challenges discussed in the previous section show that publishing data on the web for

reuse is not just a matter of providing the data in machine-readable formats. There are

various other problems that are not-technical in nature, like the challenges related to

the licensing, user engagement or appropriate internal processes and organizational

structures. In order to help the stakeholders to deal with the known challenges and

problems methodologies and best practice guidelines for OGD publication have been

developed or are currently under development. In this paper OGD publication meth-

odology is defined as a set of methods, procedures or practices for publication of

Open Government Data.

Existing OGD publication methodologies that are discussed in this paper are listed

in table 2. For each of the methodologies its name is provided as well as its authors or

publisher and the country of origin. Relevant references are also provided.

Table 2. OGD publication methodologies.

Name Author/publisher Country Refs.

Best Practices for Publishing Linked

Data
W3C International [11]

Czech Open Government Data Pub-

lication Methodology

D. Chlapek, J.

Kučera, M. Nečaský

Czech Re-

public
[4]

Government Data Openness and Re-

Use
M. Álvarez Espinar Spain [2]

Guide for disclosure of public data Difi Norway [6]

Guidelines on Open Government

Data for Citizen Engagement (2nd

edition)

United Nations International [31]

Open Data Certificate
The Open Data Insti-

tute
International [21]

Open Data Field Guide Socrata USA [27]

Open Data Handbook
Open Knowledge

Foundation
International [23]

Open Data Handbook (Flanders) Flemish government
Belgium/

Flanders
[9]

Open Data Institute Guides
The Open Data Insti-

tute
International [22]

Methodologies and Best Practices for Open Data Publication 57

Name Author/publisher Country Refs.

Open Data Ireland: Best Practice

Handbook

D. Lee, R. Cyganiak,

S. Decker
Ireland [15]

Open Government Data Toolkit World Bank International [35]

Methodology for publishing datasets

as open data
COMSODE International [18]

Methodological Guidelines for Pub-

lishing Linked Data

B. Villazón-Terrazas,

O. Corcho
Spain [33]

National Guidelines for valorizing

Public Sector Information

Agenzia per l’Italia

Digitale
Italy [1]

Project Open Data The White House USA [34]

It is obvious that OGD publication methodologies are being developed both at the

international level as well as at the national or local level. Space limitations do not

allow us to discuss each of the methodologies in detail but they differ in scope, focus

and structure. For example Open Data Handbook developed by the Open Knowledge

Foundation [23] provides an introduction to the concept of Open Data and it provides

basic recommendations for its publication. Compared to the Open Data Handbook the

Open Data Ireland: Best Practice Handbook [15] provides more detailed recommen-

dation and it also compares current international and Irish practices.

It is interesting that the United Nations and the World Bank, both well-known in-

ternational organizations, developed their OGD methodologies. United Nations pro-

vides quite a comprehensive set of recommendations aimed at establishing and exe-

cuting an OGD initiative [31]. The World Bank often refers to other methodologies or

papers instead of developing its own recommendations. However it developed the

Open Data Readiness Assessment tool which helps to assess the OGD readiness of a

government [35].

In the USA the Project Open Data is supervised by the White House but it is open

to anyone who wishes to participate (see [34]). On the other hand Open Data Field

Guide [27] was developed by a private company Socrata which also provides solu-

tions for OGD portals.

Alongside the USA there ale local/national OGD publication methodologies in the

Czech Republic, Flanders (Belgium), Italy, Ireland, Norway and Spain. However it is

necessary to say that the list of the methodologies in table 2 might not be comprehen-

sive as a more detailed study aimed at the OGD initiatives across the globe would be

necessary.

Some of the methodologies are aimed primarily at Linked Data or Linked Open

Data (see [3]). Namely Best Practices for Publishing Linked Data [11] and Methodo-

logical Guidelines for Publishing Linked Data [33]. However Linked Open Data is

mentioned or addressed by other methodologies as well, for example [9], [15], or

[18].

Open Data Certificate is a tool for assessment of the quality of the open datasets

[21]. There are four levels of the certificate [20]: Raw, Pilot, Standard and Expert.

The certificate is awarded to a dataset according to what practices are being followed

by its publisher. Because the required practices for the respective certificate levels are

58 Jan Kučera, Dušan Chlapek, Jakub Kĺımek, Martin Nečaský

described, the Open Data Certificate can be considered as an OGD publication meth-

odology. However there are currently no step-by-step guidelines to implementation of

the required practices.

4 Methodology for publishing datasets as open data

4.1 Overview of the methodology

Methodology for publishing datasets as open data (COMSODE methodology) repre-

sents one of the outcomes of the project Components Supporting the Open Data Ex-

ploitation (COMSODE) [18]. It is a generic methodology that covers both technical

and non-technical issues related to the publication of OGD. It is mainly aimed at

PSBs that have already decided to publish some of their data as Open Data (although

the question “Why should I publish Open Data?” is being discussed in the methodol-

ogy there are no specific guidelines for gaining the top management support).

The COMSODE methodology consists of the five building blocks:

 Phases – a phase represents a stage of the Open Data publication process. Phases

reflect the lifecycle of an open dataset and they are further divided into task.

 Cross-cutting activities – activities that should be performed in every phase of the

open data publication process are called the cross-cutting activities. Cross-cutting

activities are also divided into tasks.

 Artefacts – artefacts represent the inputs and outputs of the tasks.

 Roles – a role represents a responsibility assigned to one or more persons in an

organization. In the context of the methodology roles are being assigned with re-

sponsibilities for the tasks of the phases of the cross-cutting activities.

 Practices – practices provide more detailed guidelines to execution of the tasks

specified by the methodology.

The following phases of the open data publication process are proposed in the

COMSODE methodology [18]:

1. (P01) Development of open data publication plan,

2. (P02) Preparation of publication,

3. (P03) Realization of publication,

4. (P04) Archiving.

Objectives of the first phase (P01) are to identify potential datasets for opening up, to

analyze and prioritize the datasets taking into account risks, benefits and cost and to

develop an open data publication plan for the selected datasets. In the second phase

(P02) the selected datasets are prepared for publication, tasks in this phase involve for

example transformation of the data into machine-readable formats, creation of

metadata or selecting the appropriate license. Once the datasets are prepared for pub-

lication, tasks of the third phase (P03) can be executed. Maintenance of the datasets is

also performed during this phase. The goal of the last phase (P04) is to manage end-

Methodologies and Best Practices for Open Data Publication 59

of-life stage of the dataset lifecycle. Activities of this phase are triggered when it is no

longer possible to maintain or even make available some of the previously published

open datasets, e.g. due to the changes in legislation.

Four cross-cutting activities were identified that should be performed throughout

the whole publication process [18]:

1. (CA01) Data quality management,

2. (CA02) Communication management,

3. (CA03) Risk management,

4. (CA04) Benefits management.

The cross-cutting activities are aimed at management of the data quality (CA01), the

communication and collaboration between the publisher and the (potential) users of

its data (CA02) and at management of the benefits (CA03) and potential risks (CA04)

related to publication of OGD.

Feedback from the re-users is an important part of the OGD ecosystem [13], [26].

Therefore, it is not viewed just as a single step in the publication process but rather as

a cross-cutting activity that should be performer throughout the whole publication

process. This approach is depicted in figure 1. More details about how the feedback

should be processed and how the users should be engaged is described in [18].

Figure 1. Feedback loop in the COMSODE methodology, source: [18]

4.2 Challenges addressed by the methodology

COMSODE methodology addresses some of the challenges of the OGD publication

discussed in the section no. 2:

60 Jan Kučera, Dušan Chlapek, Jakub Kĺımek, Martin Nečaský

 Identification of datasets for opening up – the methodology provides recommenda-

tion for identification of datasets for opening up and it also promotes publication of

datasets that are perceived as “high-value datasets” (addresses the challenge CL4).

 It discusses the potential OGD benefits including the benefits for the whole econ-

omy which might help to avoid situations when PSBs too much focus on their in-

ternal benefits (CL5). However, benefits for the PSBs are discussed as well.

 The methodology provides recommendations for the effort estimation which might

help to manage costs of the OGD initiative (CL8). There is a separate cross-cutting

activity aimed at the management of benefits (CL9).

 The methodology proposes an OGD publication process and it sets responsibilities

for the proposed tasks. This might help to establish standard process and organiza-

tion structure supporting the OGD publication (CL10, CL13).

 In order to prevent the lack of interaction between OGD users and publishers

(CL11) the cross-cutting activity (CA03) Communication management should be

performed.

 The methodology is independent on the availability of the central data portal

(CL12). However if the central data portal is available, PSBs are free to utilize it.

 A separate cross-cutting activity is introduced in order to ensure that the published

data has the desired level of quality (CL20). Maintenance of the data and metadata

is addressed by specific tasks and the related practices (CL14).

 A separate cross-cutting activity is introduced in order to manage the OGD related

risks including the risk of the personal data protection violation (CL15).

 The methodology proposes recommended practices for dataset licensing (CL16).

 There are several practices in the methodology aimed at ensuring high level of

technical openness of the datasets. These practices include but are not limited to

the reuse of the existing schemas and ontologies (CL17) and documenting the

schemas in a machine-readable way (CL22).

 The methodology promotes data cataloging which should help to improve discov-

erability of the datasets (CL21).

However, there are some remaining issues that are not addressed by the current ver-

sion of the COMSODE methodology, namely:

 Social issues – the methodology is aimed mainly at the individual public sector

bodies. Solving the social issues would probably require actions on the government

level (consolidation/coordination of the OGD initiatives, CL1) or actions aimed at

the re-users (building knowledge and skills how the data can be use and how to

provide feedback that can be effectively used for improvements, CL2-3).

 Fees (CL6) – the methodology provides no guidelines reading fees.

 Limited resources, especially in case of the small PSBs (CL7) – the methodology

does not provide any recommendations specifically tailored for particular types of

PSBs. This challenge is therefore not addressed.

 The actual design of the data portals is outside the scope of the methodology and

thus it does not provide any recommendation regarding registration of the users on

Methodologies and Best Practices for Open Data Publication 61

the portals (CL18). Dealing with the legacy applications is also beyond the scope

of the methodology (CL23).

The COMSODE methodology promotes a risk based approach to the OGD publica-

tion. This means that if some data cannot be published in its primary form due the

possible breach of the personal data protection, it proposes to anonymize the data. It

does not prevent publication of the primary data (CL19), but it respects that the publi-

cation of some primary data is not always possible.

The COMOSDE methodology is software tool independent. It only proposes a

Reference architecture of software tools for open data publication [19]. However, a

platform called the Open Data Node is developed in the COMSODE project [10].

4.3 Methodology in use

The COMSODE methodology has been utilized in a project aimed at opening up data

of the Supreme Audit Office of the Czech Republic. As a first step a project plan fol-

lowing the phases P01-03 of the methodology was prepared. Identification of suitable

datasets for opening up and development of the open data publication plan was per-

formed in January and February 2015. The publication of the selected datasets is ex-

pected to a happen in June 2015. A selected subset of the datasets will also be pub-

lished as Linked Open Data.

In January 2015 the Ministry of Interior of the Czech Republic launched a project

aimed at supporting the Czech PSBs in their OGD initiatives. The COMSODE meth-

odology serves as one of the most significant inputs upon which the Czech Open

Government Data standards will be developed.

5 Conclusions

The Open Government Data promise significant benefits to citizens, business as well

as to the public sector. However, PSBs often face challenges when publishing OGD.

Based on the literature review, 24 challenges related to the OGD publication and re-

use were identified. These challenges include the political and social challenges, eco-

nomic, legal and technical challenges as well as the organizational challenges and

challenges related to the internal processes. Even though some of the identified chal-

lenges might not be completely unique to the OGD domain, e.g. the insufficient data

quality, OGD might represent a unique context for these challenges which might re-

quire specific solutions.

In order to help the stakeholders to deal with the known challenges and problems,

methodologies and best practice guidelines for OGD publication have been developed

or they are currently under development. We were able to identify 16 OGD publica-

tion methodologies at both international and national or local level. Further analysis

of these methodologies might provide a better understanding of the current best prac-

tices for publication and reuse of the Open Government Data.

Methodology for publishing datasets as open data is one of the existing OGD pub-

lication methodologies. This methodology is one of the generic OGD publication

62 Jan Kučera, Dušan Chlapek, Jakub Kĺımek, Martin Nečaský

methodologies. It proposes an OGD publication process organized into four phases:

(P01) Development of open data publication plan, (P02) Preparation of publication,

(P03) Realization of publication, (P04) Archiving. The phases are accompanied by

four cross-cutting activities: (CA01) Data quality management, (CA02) Communica-

tion management, (CA03) Risk management, (CA04) Benefits management. This

methodology is currently used to in a project aimed at opening up data of the Supreme

Audit Office of the Czech Republic and is expected to be used as one of the key re-

sources upon which the Czech Open Government Data standards will be developed

by the Ministry of Interior of the Czech Republic.

Acknowledgements. The research is supported by the EU ICT FP7 project

COMSODE under GA No. 611358.

6 References

1. Agenzia per l’Italia Digitale. Linee guida nazionali per la valorizzazione del patrimonio in-

formativo pubblico [National Guidelines for valorizing Public Sector Information] (2014),

http://www.agid.gov.it/sites/default/files/linee_guida/patri

moniopubblicolg2014_v0.7finale.pdf

2. Álvarez Espinar, M.: Government Data Openness and Re-Use (2014),

http://transparencia.gencat.cat/web/sites/transparencia/.con

tent/pdfs/governobert/governobert_2_en.pdf

3. Berners-Lee, T.: Linked Data - Design Issues (2006),

http://www.w3.org/DesignIssues/LinkedData.html

4. Chlapek, D., Kučera, J., Nečaský, M.: Metodika publikace otevřených dat veřejné správy

ČR [Czech Open Government Data Publication Methodology] (2012),

http://www.mvcr.cz/soubor/metodika-publ-opendata-verze-1-0-

pdf.aspx

5. Data Management Association, The: Guide to the Data Management Body of Knowledge.

Technical Publications (2010)

6. Difi: Del og skap verdier - Veileder i tilgjengeliggjøring av offentlige data [Difi Guide for

disclosure of public data] (2013), http://data.norge.no/document/del-og-

skap-verdier-veileder-i-tilgjengeliggj%C3%B8ring-av-

offentlige-data

7. European Union: Comission Notice. Guidelines on recommended standard licences, da-

tasets and charging for the reuse of documents (2014/C 240/01) (2014), http://eur-

lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:52014XC0724%2801%29

8. European Union: Directive 2013/37/EU of the European parliament and the Council of 26

June 2013 amending Directive 2003/98/EC on the re-use of public sector information

(2013), http://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:32013L0037

9. Flemish government: Open Data Handleiding [Open Data Handbook] (2014),

http://www.opendataforum.info/images/Open_Data_Handboek_2014

1119.pdf

Methodologies and Best Practices for Open Data Publication 63

10. Hanečák, P.: Open Data Node – what it is, what it does, what is next (2014),

http://www.comsode.eu/index.php/2014/06/open-data-node-what-

it-is-what-it-does-what-is-next/

11. Hyland, B., Atemezing, G., Villazón-Terrazas, B.: Best Practices for Publishing Linked

Data (2014), http://www.w3.org/TR/ld-bp/

12. Janssen, M., Charalabidis, Y. and Zuiderwijk, A.: Benefits, Adoption Barriers and Myths

of Open Data and Open Government. Information Systems Management, vol. 29, no. 4,

pp. 258-268 (2012)

13. Janssen, M. and Zuiderwijk, A.: Open data and transformational government. In: Proceed-

ings of the Transforming Government Workshop 2012 (tGov2012), pp. 1-7. Brunel Uni-

versity, London, United Kingdom (2012)

14. Kučera, J. and Chlapek, D.: Benefits and Risks of Open Government Data. Journal of Sys-

tems Integration, vol. 5, no. 1, pp. 30-41 (2014)

15. Lee, D., Cyganiak, R., Decker, S.: Open Data Ireland: Best Practice Handbook (2014),

http://www.per.gov.ie/open-data/

16. Lóscio, B.F., Burle, C., Calegari, N.: Data on the Web Best Practices. W3C First Public

Working Draft (2015), http://www.w3.org/TR/2015/WD-dwbp-20150224/

17. National Audit Office: Implementing transparency (2012),

http://www.nao.org.uk/wp-

content/uploads/2012/04/10121833.pdf

18. Nečaský, M. Chlapek, D., Klímek, J., Kučera, J., Maurino, A., Rula, A., Konecny, M.,

Vanova, L.: Deliverable D5.1: Methodology for publishing datasets as open data (2014),

http://www.comsode.eu/wp-content/uploads/D5.1-

Methodology_for_publishing_datasets_as_open_data.pdf

19. Nečaský, M. Chlapek, D., Klímek, J., Kučera, J., Maurino, A., Rula, A.: Deliverable D5.1:

Methodology for publishing datasets as open data. Documentation of practices (2014),

http://www.comsode.eu/wp-content/uploads/Annex1_D5.1-

Documentation_of_practices.pdf

20. Open Data Institute, The: About the Open Data Certificate,

https://certificates.theodi.org/about

21. Open Data Institute, The: Open Data Certificate,

https://certificates.theodi.org/

22. Open Data Institute, The: Guides, http://theodi.org/guides

23. Open Knowledge Foundation: The Open Data Handbook (2012),

http://opendatahandbook.org/

24. Russell, G.R., Miles, M.P.: The definition and perception of quality in ISO-9000 firms. In:

Review of Business, vol. 9, no.3, pp. 13-16 (1998)

25. Share-PSI: Uses of Open Data Within Government for Innovation and Efficiency: Report

(2014), https://www.w3.org/2013/share-psi/workshop/samos/report

26. Share-PSI: Encouraging open data usage by commercial developers: Report (2015),

https://www.w3.org/2013/share-psi/workshop/lisbon/report

27. Socrata: Open Data Field Guide (2014), http://www.socrata.com/open-data-field-guide/

28. Sunlight Foundation: Ten Principles for opening up government information (2010),

http://sunlightfoundation.com/policy/documents/ten-open-

data-principles/

29. Tinhold, D.: The Open Data Economy. Unlocking Economic Value by Opening Govern-

ment and Public Data (2013), https://www.capgemini-

consulting.com/ebook/The-Open-Data-

Economy/files/assets/downloads/publication.pdf

64 Jan Kučera, Dušan Chlapek, Jakub Kĺımek, Martin Nečaský

30. Ubaldi, B.: Open Government Data: Towards Empirical Analysis of Open Government

Data Initiatives. OECD Working Papers on Public Governance, vol. 22. OECD Publishing

(2013)

31. United Nations: Guidelines on Open Government Data for Citizen Engagement (2013),

http://workspace.unpan.org/sites/Internet/Documents/Guidenli

nes%20on%20OGDCE%20May17%202013.pdf

32. Van Herreweghe, N.: Open Data Dag In Vlaanderen, Conclusions (2014),

http://www.w3.org/2013/share-psi/workshop/lisbon/oddv

33. Villazón-Terrazas, B. and Corcho, O.: Methodological Guidelines for Publishing Linked

Data (2011),

http://delicias.dia.fi.upm.es/wiki/images/7/7a/07_MGLD.pdf

34. White House: Project Open Data, https://project-open-data.cio.gov/

35. World Bank: Open Government Data Toolkit (2014),

http://data.worldbank.org/open-government-data-toolkit

36. World Wide Web Foundation, The: Open Data Barometer – Second Edition (2015),

http://www.opendatabarometer.org/assets/downloads/Open%20Dat

a%20Barometer%20-%20Global%20Report%20-%202nd%20Edition%20-

%20PRINT.pdf

Introduction to Optical Music Recognition:
Overview and Practical Challenges

Jǐŕı Novotný and Jaroslav Pokorný

Department of Software Engineering, Faculty of Mathematics and Physics
Charles University, Malostranské nám. 25, Prague, Czech Republic

{novotny, pokorny}@ksi.mff.cuni.cz

Introduction to Optical Music Recognition:
Overview and Practical Challenges

Jǐŕı Novotný and Jaroslav Pokorný

Department of Software Engineering, Faculty of Mathematics and Physics
Charles University, Malostranské nám. 25, Prague, Czech Republic

{novotny, pokorny}@ksi.mff.cuni.cz

Abstract. Music has been always an integral part of human culture.
In our computer age, it is not surprising that there is a growing inter-
est to store music in a digitized form. Optical music recognition (OMR)
refers to a discipline that investigates music score recognition systems.
This is similar to well-known optical character recognition systems, ex-
cept OMR systems try to automatically transform scanned sheet music
into a computer-readable format. In such a digital format, semantic in-
formation is also stored (instrumentation, notes, pitches and duration,
contextual information, etc.). This article introduces the OMR field and
presents an overview of the relevant literature and basic techniques. Prac-
tical challenges and questions arising from the automatic recognition of
music notation and its semantic interpretation are discussed as well as
the most important open issues.

Key words: optical music recognition, document image analysis, ma-
chine learning

1 Introduction

Computer perception of music notation forms a constantly growing research field
called optical music recognition (OMR). The main goal of all OMR systems is to
automatically decode and interpret the symbols of music notation from scanned
images. Results of the recognition are represented in a digital format suitable to
store the semantic information (notes, pitches, dynamics and so on). The main
advantage of such representation of music scores is the possibility of different
applications such as: audio playback, reediting, musicological analyses, conver-
sions to different formats (e.g. Braille music notation) and the preservation of
cultural heritage [23]. More recent applications are for example: concert-planning
systems sensitive to the emotional content of music [7] or automatic mapping of
scanned sheet music to audio recordings [18].

Over the years, music had been traditionally written down with ink and
paper. During the 1980s, early computer music typesetting programs were de-
veloped, which revolutionized the way how music can be recorded. Nowadays,
the most common approach to transform music data into a computer-readable
format (used by professional musicians) combines musical keyboard input (e.g.

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 65–76, CEUR-WS.org/Vol-1343.

66 Jǐŕı Novotný, Jaroslav Pokorný2 Jǐŕı Novotný, Jaroslav Pokorný

MIDI piano) with computer keyboard and mouse. It is a time-consuming pro-
cedure, which requires advanced keyboard-playing skills. The musical keyboard
is utilized to enter the notes playing voice by voice and then the computer key-
board and mouse is used to correct mistakes and to add another information
such as articulation marks, slurs and dynamics.

The majority of music scores exist only in the paper-based form and many
contemporary composers and musicians still prefer to use pen and paper as the
most efficient way to record their ideas. OMR systems can thus greatly simplify
the music data acquisition and save a lot of human time.

In this article, we survey the area of OMR, its fundamental approaches and
problems. Section 1.1 introduces a few aspects of music notation, and Section 1.2
reviews the historical context of OMR. A general framework for the music recog-
nition is presented in Section 2. Challenges making the OMR difficult in practice
are discussed in Section 3. Section 4 debates several opened questions of the OMR
research and finally, we conclude this paper in Section 5.

1.1 Music Notation

Music notation has evolved over the period of centuries as the composers and
musicians tried to express their musical ideas by written symbols [33]. In this ar-
ticle, we focus exclusively on the Western music notation (also known as common
music notation — CMN) [10,39], although certain OMR systems are developed
to recognize other types of notation (e.g. medieval music notation [13,42]).

Understanding of any music notation requires knowledge of the information
the notation attempts to capture. In the case of CMN, there are four types of
information involved [10]: a pitch, time, loudness (also dynamics) and timbre
(tone quality). Figure 1 shows selected music notation marks. Clefs (Fig. 1a)
determine the pitches for each line and space of the staff (Fig. 1b), accidentals
(Fig. 1e) temporarily modify the pitch of following notes. The pitch of notes
itself (Fig. 1c) is indicated by their vertical placement on the staff, and their
appearance affects the relative duration. Ornaments (Fig. 1f) change the pitch
pattern of individual notes. Rests (Fig. 1d) indicate a relative duration of silence.
Dynamics (Fig. 1g) signify the varying loudness. Articulations (Fig. 1h) change
the timbre or duration of a note. In practice, certain symbols have almost unlim-
ited variations in representation (e.g. beams connecting notes into note groups
or slurs indicating phrasing). The most used CMN symbols and their graphical
aspects are listed e.g. in the Essential Dictionary of Music Notation [21].

Music Scores. For the music recognition purposes, it is useful to realize, that
music scores can be divided into three categories: entirely printed music scores
(Figure 2a), scores written by hand over the preprinted staff lines (Figure 2b) and
entirely handwritten music scores (Figure 2c). Although the majority of OMR
systems operates with printed scores only [35], OMR systems for handwritten
music have been researched as well (e.g. [1, 17, 27, 36, 37, 45]). Also it should be
noted, that scores of different visual qualities exist — from the clear music sheets
to the degraded ones (mentioned e.g. in [9, 11]).

Introduction to Optical Music Recognition 67Introduction to Optical Music Recognition 3

(a) Clefs. (b) Staff. (c) Notes. (d) Rests.

(e) Accidentals. (f) Ornaments. (g) Dynamics. (h) Articulations.

Fig. 1: Selected common music notation symbols.

(a) Entirely printed. (b) Preprinted staff lines. (c) Entirely handwritten.

Fig. 2: Examples of different sheet music categories.

1.2 Historical Background

The OMR research began in 1966, when Pruslin [32] first attempted the auto-
matic recognition of sheet music. His system was able to recognize note heads
and chords. In 1970, Prerau [31] introduced the concept of image segmentation
to detect primitive elements of music notation. These two OMR founding works
were later reviewed by Kassler [24].

With the availability of inexpensive optical scanners, the OMR research ex-
panded in the late 1980s. An interesting contribution was a Japanese keyboard-
playing robot WABOT-2 [25], developed in 1984. It was the first robot able to
recognize simple music scores and play them on the organ. A critical survey of
the OMR systems developed between 1966 and 1990 can be found in [8].

The first commercial OMR products appeared in the early 1990s [23,35]. Also,
the first attempts to handle handwritten scores were made (e.g. [37,45]). In 1997,
Bainbridge summarized the existing techniques and proposed an extensible music
recognition system [2] not restricted to particular primitive shapes and semantic
features. Together with Bell [3], they formulated a general framework for OMR
systems, which has been adopted by many researchers since then [35].

During the last years, several important studies have been performed: Jones
et al. [23] presented a study about music sheet digitization, recognition and
restoration. Moreover, they listed available OMR software and provided an eval-
uation of three OMR systems. Noteworthy contributions to the OMR have been

68 Jǐŕı Novotný, Jaroslav Pokorný4 Jǐŕı Novotný, Jaroslav Pokorný

made by Rebelo et al. [30, 34, 36]. In 2012, they published probably the most
recent review of the OMR field [35], including an overview of the state-of-the-art
techniques and a discussion about the open issues.

2 General Framework

Automatic recognition of music scores is a complex task affecting many areas of
computer science. Different OMR systems use various strategies, but the most
common algorithms decompose the problem into four smaller tasks [35]:

1. Image Preprocessing
2. Segmentation
3. Object Recognition
4. Semantic Reconstruction

Terminology is not always the same: the segmentation is also called primitive
detection or musical object location, and the recognition phase is sometimes called
musical feature classification [2, 3].

2.1 Image Preprocessing

The main goal of the preprocessing phase is to adjust the scanned image to make
the recognition process more robust and efficient. Different methods are typically
used: enhancement, blurring and morphological operations [22] and noise removal
(e.g. [20,22,40,42]), deskewing [17,20,22,27,42] and binarization (e.g. [9,17,20,
22, 27, 30, 42]). In the following text, only the binarization is introduced as it is
the most crucial step for the vast majority of OMR systems.

Binarization. Binarization algorithms convert the input image into a binary
one, where objects of interest (music symbols, staves, etc.) are separated from
the background. This is motivated by the fact, that music scores have inherently
binary nature (colors are not used to store music information in CMN).

Binarization is usually an automated process driven without special knowl-
edge of the image content. It facilitates the subsequent tasks by reducing the
volume of information that is needed to be processed. For example, it is much
easier to design an algorithm for staff detection, primitive segmentation and
recognition in binary images than in grayscale or color ones.

In general, there are two types of binarization approaches. The first are global
thresholding methods, which apply one particular threshold to the entire image.
The Otsu’s method [29] is often assessed to be the best and fastest [38,44]. Global
thresholding works well when extracting objects from uniform backgrounds, but
usually fails on non-uniform images. Nevertheless, it is used in several OMR
research articles (e.g. [22, 34, 42]) because of its simplicity and time efficiency.
The second category is represented by adaptive binarization techniques, which
select a threshold individually to each pixel using information from the local

Introduction to Optical Music Recognition 69Introduction to Optical Music Recognition 5

neighborhood. These methods can eliminate non-uniform backgrounds at the
expense of longer processing time. One of the most popular adaptive thresholding
method is the Niblack’s [28] that computes a local threshold from the mean and
standard deviation in pixel’s surroundings. Adaptive thresholding is also used
in some OMR systems (e.g. [40]). Overview of binarization techniques used in
OMR can be found in [9, 38].

2.2 Segmentation

The segmentation stage parses music scores into the elementary primitives. It is
usually initiated by establishing the size of the music notation being processed.
This is an important step before any shape recognition. Staff lines are a reliable
feature of music notation used to estimate two important reference values: staff
line thickness and staff space height, which are further used to deduce the size
of other music symbols. The most common way of their approximation is based
on the run-length encoding (RLE), which is a simple form of data compression.
For instance, lets assume the binary sequence {1 1 1 0 0 1 1 1 1 0 0 0 0}. It can
be represented in RLE as {3 2 4 4} (supposing 1 starts the original sequence,
otherwise the first number in the encoded sequence would be 0). Binarized music
scores can be encoded column by column with RLE, then the relative lengths
can be easily estimated: the most common black run approximates the staff
line thickness and the most common white run estimates the staff space height.
However, more robust approximations exist [12].

Staff Lines. Staff line detection is fundamental in OMR, because the staff
creates a two dimensional coordinate system essential to understand the CMN.
Unfortunately, staff lines are not guaranteed to be perfectly horizontal, straight
or of uniform thickness in scanned images (even in printed music scores). Precise
staff detection is a tricky problem that still represents a challenge.

The simplest algorithms use horizontal projections [19,20]. A horizontal pro-
jection maps a binary image into a histogram by accumulating the number of
black pixels in each row. If the lines are straight and horizontal, staff can be
detected as five consequent distinct peaks (local maxima) in the histogram. Fig-
ure 3 shows an excerpt of music and its horizontal projection. In practice, several
horizontal projections on images with slightly different rotation angles are com-
puted to deal with not completely horizontal staff lines. The projection with the
highest local maxima is then chosen.

Another strategies use vertical scan lines [13] or Hough Transform or grouping
of vertical columns [35]. Although there are many staff line detection techniques,
they all have certain limitations. Dalitz [15] surveyed the existing methods and
proposed a method based on skeletonization. Handwritten staff lines are usually
detected using different kinds of techniques (e.g. [1, 43]).

Symbol Segmentation. Once the staff lines have been detected, the music
primitives must be located and isolated. This can be performed in two manners:

70 Jǐŕı Novotný, Jaroslav Pokorný6 Jǐŕı Novotný, Jaroslav Pokorný

Fig. 3: The horizontal projection of a music score excerpt.

either remove the staff lines or ignore them. Although the majority of researchers
remove the staff lines in order to isolate the musical symbols as connected com-
ponents, there are some authors who suggest the opposite (e.g. [4,22]). The most
simple line removal algorithm removes the line piecewise — following it along
and replacing the black line pixels with white pixels unless there is evidence of
an object on either side of the line [3]. The staff line removal procedure must
be careful not to broke any object. Despite that, the algorithms often cause
fragmentation, especially to objects that touch the staff lines tangentially.

The score is then divided into regions of interest to localize and isolate the
musical primitives. The best approach is hierarchical decomposition [35]. At first,
a music score is analyzed and split by staves. Then, the primitive symbols (note
heads, stems, flags, rests, etc.) are extracted [22, 27, 34]. Particular procedures
vary system to system. For example, some approaches consider note heads, stems
and flags to be separate objects, whereas other concepts consider these primitives
as a whole object representing a single note. More details can be found in [34].

2.3 Object Recognition

Segmented symbols are further processed and given to the classifier that tries
to recognize them (assign them a label from predefined groups). Unfortunately,
music shapes are inherently complex — they are often formed by several touching
and overlapping graphical components. In addition, the staff line removal can
break some objects (they are sometimes already fragmented because of the music
score quality itself). Hence, the object recognition phase is very delicate and it
is usually combined with the segmentation step [35].

Objects are classified according to their distinctive features. Some authors
suggest classification using projection profiles [19], others apply template match-
ing to recognize symbols [22] or propose a recognition process entirely driven by
grammars formalizing the music knowledge [14]. Statistical classification meth-
ods using support vector machines (SVMs), neural networks (NN), k -nearest
neighbours (kNN) and hidden Markov models (HMM) classifiers were investi-
gated by Rebelo et al. [34]. Handwritten music symbols are sometimes segmented
and recognized using the mathematical morphology, applying a skeletonization
technique and an edge detection algorithm [26]. Despite the number of recog-

Introduction to Optical Music Recognition 71Introduction to Optical Music Recognition 7

nition techniques available, research on symbol segmentation and recognition is
still important and necessary, because all OMR systems depend on it [35].

2.4 Semantic Reconstruction

The inevitable task of all OMR systems is to reconstruct the musical seman-
tics from previously recognized graphical primitives and store the information
in a suitable data structure. This necessarily requires an interpretation of spa-
cial relationships between objects found in the image. Relations in CMN are
essentially two dimensional and the positional information is very critical. For
example, a dot can change note’s duration if it is placed on the right of a note
head, or it can alter the articulation if it is placed above the note.

These musically syntactic rules can be formalized using the grammars [2,
14, 19, 31]. Grammar rules specify semantically valid music notation events and
a way, how the graphical primitives should be segmented. Alternative techniques
build the semantic reconstruction on a set of rules and heuristics (e.g. [16, 26]).

The last and fundamental aspect of OMR systems is the transformation
of semantically recognized scores in a coding format that is able to model and
store music information. Many computer formats are available, but none of them
has been accepted as a standard. The best known formats are: MIDI (Musical
Instrument Digital Interface), NIFF (Notation Information File Format), SMDL
(Standard Music Description Language) and MusicXML1. MIDI is mainly used
as an interchange format between digital instruments and computers. Although
its capability of modeling music scores is very limited (e.g. the relationships
among symbols cannot be represented), most of the music editors can operate
with MIDI files. NIFF was developed in 1994 to exchange data between different
music notation software. NIFF is able to describe visual and logical aspects of
music, however nowadays it is considered to be obsolete. SMDL strictly separates
visual and logical sites and it is rather a standardized formal scheme than a
practical file format. MusicXML is designed especially for sharing and archiving
of music sheets. It covers the logical structure and also graphical aspects of music
scores. It is becoming more and more popular and it targets to be the standard
open format for exchanging digital sheet music. A more detailed review and
comparison of music notation file formats can be found in [6].

3 Practical Challenges

Despite the fact that OMR systems have been researched thoroughly over the
last few decades and even several commercial tools exist, the practical results are
still far from ideal [35]. Proposed techniques are typically tailored to different
properties of music scores, which makes them difficult to combine in one general
OMR system robust enough to overcome all the practical issues. In this section,
we focus on reasons that makes the OMR systems challenging in practice and
we also discuss some open problems of the research area.

1 http://www.musicxml.com/

72 Jǐŕı Novotný, Jaroslav Pokorný8 Jǐŕı Novotný, Jaroslav Pokorný

3.1 Preprocessing

Preprocessing is the initial step of all OMR systems, which obviously affects the
subsequent stages. However, no goal-directed studies investigating the impact
of this phase on the recognition have been carried out [35]. Binarization often
produces artifacts and its advantages in the complete OMR process are not
clear. There are few attempts to use prior knowledge when performing a bina-
rization process [30]. Such algorithm extracts content-related information from
a grayscale image and uses it to guide the binarization. Cardoso et al. [12] en-
courage the idea of using grayscale images rather then the binary ones. A special
care must be also given to highly degraded music scores [9].

In our opinion, it is also worth considering the possibility to analyze the
color information when processing handwritten scores with preprinted staff lines,
because the color of the composer’s ink may slightly vary from the color of the
staff lines. It could possibly result in a more efficient staff removal algorithm.
This and similar image analysis topics are in our research interest.

3.2 Music Notation Inherent Problems

Music notation itself implies many difficult-to-process variants and possibilities
of music representation typically responsible for serious recognition errors. Two
different practical troubles are shown in Figure 4. The long curves connecting
notes of distinct pitches (slurs) can have an arbitrary shape, thus they represent
a great challenge for OMR systems. The last bar of the examples presents an-
other difficulty: the notes pass to another staff, while their beams are crossing
(moreover, they superimpose the crescendo sign and the slur).

There are plenty of similar problematic properties in CMN, for example:
a smaller staff placed above the main staff indicating how a part of music can
be alternatively played (ossia), simplifications for a better human readability
that can be interpreted ambiguously (e.g. omitting the number 3 in triplets or
alternating the left and right hands across the staves in the piano literature)
or ornamental note groups that do not fit the prescribed meter. It should be
also noted, that not all notation formats are able to represent such features.
Nevertheless, these kinds of difficulties are nothing exceptional in real music
sheets and hence cannot be omitted in a practical OMR system.

3.3 Handwritten Scores

Handwritten music sheets produce specific kinds of problems. Although they
are also mentioned in the literature [1, 17, 27, 36, 37, 45], the results are still
not usable for practical applications. In general, the major problem of OMR
systems are fragmented and connected (touching or overlapping) music symbols.
Handwritten music scores contain even more broken and merged symbols — it
could be a part of composer’s written style or just a consequence of quickly-
made strokes. Figure 5 shows a huge variability of written styles of four different
composers. These facts make the recognition of handwritten scores complicated.

Introduction to Optical Music Recognition 73Introduction to Optical Music Recognition 9

Fig. 4: Example of variations in notation (from Maurice Ravel’s Scarbo).

Fig. 5: An example of composer variability in handwritten scores.

4 Open Problems

One of the most important open issues of the OMR research is the lack of
an available ground-truth database that could serve as a benchmark. Such a
data set would contain a large amount of music scores of different types and
qualities (clean scans, photocopies, degraded manuscripts, etc.) together with
their ground-truth representation in a uniform notation format. Compilation of
such corpus is extremely time-consuming, because the music sheets have to be
processed by hand. Available data sets (e.g. [30]) are typically very limited or
designed only for specific tasks [35]. Maybe a solution would be to design an
automatic method able to procedurally simulate different types of writing styles
and paper degradation levels from a given notation file. Available electronic
scores then would be easily transformed to images of different qualities.

Another significant problem is the absence of common methodologies and
metrics that would compare the results of OMR systems. This is a more compli-
cated issue than it might seem at first glance, because OMR systems can target
different goals (audio playback, score archiving, . . .) and the outputs can be
stored in very unlike formats. However, performance evaluation and related top-
ics have been also studied in the literature. For example, Szwoch [41] proposed
a method able to compare and evaluate the results of recognition systems stored
in MusicXML format. More on this topic can be found in [5, 11].

In addition, we think, that music knowledge should be incorporated more to
support the recognition and reconstruction processes. For example, considering
the advanced analysis of music harmony or building a composer-adaptive system

74 Jǐŕı Novotný, Jaroslav Pokorný10 Jǐŕı Novotný, Jaroslav Pokorný

(adaptive to the composer’s writing style as well as to the music style). To the
best knowledge of the authors, no studies concerning these or similar topics exist.
Together with the image analysis issues, this is one of the subjects on which we
would like to focus our research.

5 Conclusion

During the last decades, OMR has been actively studied and a lot of achieve-
ments have been done. Even so, the problem is not solved and represents a great
challenge in many ways. Possible OMR applications are still relevant today,
which makes the research area constantly growing.

In this article, we have introduced the OMR field, its main goals and practical
applications. We have also presented an overview of the most common method-
ologies including the idea of a generalized framework. The most delicate and
challenging problems that all OMR systems have to face have been discussed as
well. We hope, that our contribution helps to motivate the researchers, because
there are many demanding problems waiting to be solved.

References

[1] Alirezazadeh, F., Ahmadzadeh, M.R.: Effective staff line detection, restoration
and removal approach for different quality of scanned handwritten music sheets.
Journal of Advanced Computer Science and Technology 3(2), 136–142 (2014)

[2] Bainbridge, D.: Extensible Optical Music Recognition. Ph.D. Thesis, Department
of Computer Science, University of Canterbury, Christchurch, NZ (1997)

[3] Bainbridge, D., Bell, T.: The Challenge of Optical Music Recognition. Computers
and the Humanities 35(2), 95 – 121 (2001)

[4] Bellini, P., Bruno, I., Nesi, P.: Optical music sheet segmentation. In: Web Deliv-
ering of Music, 2001. Proceedings. First International Conference on. pp. 183–190
(Nov 2001)

[5] Bellini, P., Bruno, I., Nesi, P.: Assessing Optical Music Recognition Tools. Com-
put. Music J. 31(1), 68–93 (Mar 2007)

[6] Bellini, P., Nesi, P.: Modeling Music Notation in the Internet Multimedia Age.
In: George, S.E. (ed.) Visual Perception of Music Notation: On-Line and Off Line
Recognition, pp. 272–303. IGI Global (2004)

[7] Billinge, D., Addis, T.: Towards Constructing Emotional Landscapes with Music.
In: George, S.E. (ed.) Visual Perception of Music Notation: On-Line and Off Line
Recognition, pp. 227–271. IGI Global (2004)

[8] Blostein, D., Baird, H.S.: A Critical Survey of Music Image Analysis. In: Baird,
H.S., Bunke, H., Yamamoto, K. (eds.) Structured Document Image Analysis, pp.
405–434. Springer Berlin Heidelberg (1992)

[9] Burgoyne, J.A., Pugin, L., Eustace, G., Fujinaga, I.: A Comparative Survey of
Image Binarisation Algorithms for Optical Recognition on Degraded Musical
Sources. pp. 509–512. Austrian Computer Society (2007)

[10] Byrd, D.: Music Notation by Computer. Ph.D. thesis, Indiana University, Com-
puter Science Department (1984)

Introduction to Optical Music Recognition 75Introduction to Optical Music Recognition 11

[11] Byrd, D., Simonsen, J.G.: Towards a Standard Testbed for Optical Music Recog-
nition: Definitions, Metrics, and Page Images. University of Copenhagen, Copen-
hagen (2013)

[12] Cardoso, J., Rebelo, A.: Robust Staffline Thickness and Distance Estimation in
Binary and Gray-Level Music Scores. In: Pattern Recognition (ICPR), 2010 20th
International Conference on. pp. 1856–1859 (Aug 2010)

[13] Carter, N.: Segmentation and Preliminary Recognition of Madrigals Notated in
White Mensural Notation. Machine Vision and Applications 5(3), 223–229 (1992)

[14] Coüasnon, B., Camillerapp, J.: Using grammars to segment and recognize music
scores. International Association for Pattern Recognition Workshop on Document
Analysis Systems pp. 15–27 (1994)

[15] Dalitz, C., Droettboom, M., Pranzas, B., Fujinaga, I.: A Comparative Study
of Staff Removal Algorithms. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 30(5), 753–766 (May 2008)

[16] Droettboom, M., Fujinaga, I., MacMillan, K.: Optical Music Interpretation. In:
Caelli, T., Amin, A., Duin, R., de Ridder, D., Kamel, M. (eds.) Structural, Syn-
tactic, and Statistical Pattern Recognition, Lecture Notes in Computer Science,
vol. 2396, pp. 378–387. Springer Berlin Heidelberg (2002)

[17] Fornés, A., Lladós, J., Sánchez, G.: Primitive Segmentation in Old Handwritten
Music Scores. In: Proceedings of the 6th International Conference on Graphics
Recognition: Ten Years Review and Future Perspectives. pp. 279–290. Springer-
Verlag, Berlin, Heidelberg (2006)

[18] Fremerey, C., Müller, M., Kurth, F., Clausen, M.: Automatic Mapping of Scanned
Sheet Music to Audio Recordings. In: Bello, J.P., Chew, E., Turnbull, D. (eds.)
ISMIR 2008, 9th International Conference on Music Information Retrieval, Drexel
University, Philadelphia, PA, USA, September 14-18, 2008. pp. 413–418 (2008)

[19] Fujinaga, I.: Optical music recognition using projections. M.A p. Thesis (1988)
[20] Fujinaga, I.: Staff Detection and Removal. In: George, S.E. (ed.) Visual Perception

of Music Notation: On-Line and Off Line Recognition, pp. 1–39. IGI Global (2004)
[21] Gerou, T., Lusk, L.: Essential Dictionary of Music Notation. Alfred Music Pub-

lishing (1996)
[22] Göcke, R.: Building a System for Writer Identification on Handwritten Music

Scores (2003)
[23] Jones, G., Ong, B., Bruno, I., NG, K.: Optical Music Imaging: Music Document

Digitisation, Recognition, Evaluation, and Restoration. Interactive Multimedia
Music Technologies pp. 50–79 (2008)

[24] Kassler, M.: Optical Character Recognition of Printed Music: A Review of Two
Dissertations. Perspectives of New Music 11 (1972)

[25] Matsushima, T.: Automated recognition system for musical score: The vision
system of WABOT-2. Bulletin of Science and Engineering Research Laboratory
(1985)

[26] Ng, K.C., Cooper, D., Stefani, E., Boyle, R.D., Bailey, N.: Embracing the Com-
poser: Optical Recognition of Handwritten Manuscripts. In: Proceedings of the
International Computer Music Conference. pp. 500–503 (1999)

[27] Ng, K.: Optical Music Analysis for Printed Music Score and Handwritten Music
Manuscript. In: George, S.E. (ed.) Visual Perception of Music Notation: On-Line
and Off Line Recognition, pp. 108–127. IGI Global (2004)

[28] Niblack, W.: An Introduction to Digital Image Processing. Strandberg Publishing
Company, Birkeroed, Denmark, Denmark (1985)

[29] Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. Systems,
Man and Cybernetics, IEEE Transactions on 9(1), 62–66 (Jan 1979)

76 Jǐŕı Novotný, Jaroslav Pokorný12 Jǐŕı Novotný, Jaroslav Pokorný

[30] Pinto, T., Rebelo, A., Giraldi, G., Cardoso, J.: Music Score Binarization Based
on Domain Knowledge. In: Vitri, J., Sanches, J., Hernndez, M. (eds.) Pattern
Recognition and Image Analysis, Lecture Notes in Computer Science, vol. 6669,
pp. 700–708. Springer Berlin Heidelberg (2011)

[31] Prerau, D.: Computer pattern recognition of standard engraved music notation.
Ph.D. Dissertation, Massachusetts Institute of Technology (1970)

[32] Pruslin, D.: Automatic recognition of sheet music. Sc.D. Dissertation, Mas-
sachusetts Institute of Technology (1966)

[33] Read, G.: Music Notation: A Manual of Modern Practice. Taplinger Publishing
Company (1979)

[34] Rebelo, A., Capela, G., Cardoso, J.: Optical recognition of music symbols: A
comparative study. International Journal on Document Analysis and Recognition
(IJDAR) 13(1), 19–31 (2010)

[35] Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A., Guedes, C., Cardoso, J.:
Optical music recognition: state-of-the-art and open issues. International Journal
of Multimedia Information Retrieval 1(3), 173–190 (2012)

[36] Rebelo, A.M.: Robust Optical Recognition of Handwritten Musical Scores based
on Domain Knowledge. Ph.D. thesis, University of Porto (2012)

[37] Roach, J.W., Tatem, J.E.: Using Domain Knowledge in Low-level Visual Process-
ing to Interpret Handwritten Music: An Experiment. Pattern Recognition 21(1),
33–44 (Jan 1988)

[38] Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantita-
tive performance evaluation. Journal of Electronic Imaging 13(1), 146–168 (2004)

[39] Stone, K.: Music Notation in the Twentieth Century: A practical guidebook. Nor-
ton New York (1980)

[40] Szwoch, M.: Guido: A Musical Score Recognition System. In: Document Analysis
and Recognition, 2007. ICDAR 2007. Ninth International Conference on. vol. 2,
pp. 809–813 (Sept 2007)

[41] Szwoch, M.: Using MusicXML to Evaluate Accuracy of OMR Systems. In: Sta-
pleton, G., Howse, J., Lee, J. (eds.) Diagrammatic Representation and Inference,
Lecture Notes in Computer Science, vol. 5223, pp. 419–422. Springer Berlin Hei-
delberg (2008)

[42] Tardón, L.J., Sammartino, S., Barbancho, I., Gómez, V., Oliver, A.: Optical Mu-
sic Recognition for Scores Written in White Mensural Notation. J. Image Video
Process. 2009, 6:3–6:3 (Feb 2009)

[43] Timofte, R., Van Gool, L.: Automatic Stave Discovery for Musical Facsimiles.
In: Lee, K., Matsushita, Y., Rehg, J., Hu, Z. (eds.) Computer Vision ACCV
2012, Lecture Notes in Computer Science, vol. 7727, pp. 510–523. Springer Berlin
Heidelberg (2013)

[44] Trier, O., Jain, A.: Goal-Directed Evaluation of Binarization Methods. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 17(12), 1191–1201 (Dec
1995)

[45] Wolman, J., Choi, J., Asgharzadeh, S., Kahana, J.: Recognition of Handwritten
Music Notation. Proceedings of the International Computer Music Conference pp.
125–127 (1992)

Critical Evaluation of Existing External Sorting
Methods in the Perspective of Modern

Hardware?

Martin Krulǐs

Parallel Architectures/Applications/Algorithms Research Group
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, Prague, Czech Republic
krulis@ksi.mff.cuni.cz

Critical Evaluation of Existing External Sorting
Methods in the Perspective of Modern Hardware

Martin Krulǐs?

Parallel Architectures/Applications/Algorithms Research Group
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, Prague, Czech Republic
krulis@ksi.mff.cuni.cz

Abstract. External sorting methods which are designed to order large
amounts of data stored in persistent memory are well known for decades.
These methods were originally designed for systems with small amount of
operating (internal) memory and magnetic tapes used as external mem-
ory. Data on magnetic tapes has to be accessed in strictly serial man-
ner and this limitation shaped the external sorting algorithms. In time,
magnetic tapes were replaced with hard drives which are now being re-
placed with solid state drives. Furthermore, the amount of the operating
memory in mainstream servers have increased by orders of magnitude
and the future may hold even more impressive innovations such as non-
volatile memories. As a result, most of the assumptions of the external
sorting algorithms are not valid any more and these methods needs to
be innovated to better reflect the hardware of the day. In this work, we
critically evaluate original assumptions in empirical manner and propose
possible improvements.

Keywords: sorting, external sorting, hard disk, parallel

1 Introduction

Sorting is perhaps the most fundamental algorithm which reaches well beyond
computer science. Along with relational JOIN operation, it is one of the most
often employed data processing steps in most database systems. Despite the fact
that the amount of operating memory of current desktop and server computers is
increasing steadily, many problems still exist where the sorting operation cannot
be performed entirely in the internal memory. In such situations, the data has to
be stored in persistent storage such as hard drives and external sorting algorithms
must be employed.

External sorting algorithms were designed in rather long time ago, when
magnetic tapes were typical representatives of external memory. Even though
the magnetic tapes are rarely used at present (except for specialized applications
such as data archiving), the fundamental principles of these algorithms are still

? This paper was supported by Czech Science Foundation (GAČR) project
P103/14/14292P.

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 77–88, CEUR-WS.org/Vol-1343.

78 Martin Krulǐs

being used. These principles are based on assumptions which no longer hold,
most importantly the following:

• External memory has to be accessed sequentially or the sequential access is
significantly more efficient.

• There is only a small amount of internal memory and the external memory
is several orders of magnitude larger.

• External memory is slower than the internal memory by many orders of
magnitude.

In this work, we would like to subject these assumptions to an empirical eval-
uation in order to critically asses their validity. We have performed a number
of tests designed to determine performance properties of mainstream systems,
hard drives, and solid state drives. Based on the results of these experiments,
we propose a modification of existing methods in order to improve their perfor-
mance.

In the remainder of the paper, we will assume that the data being sorted
are represented as a sequence of items, where all items have the same size.
An item has a value called key, which is used for sorting. We have used only
numerical keys in our experiments; however, we have no additional assumptions
about the keys than their relative comparability. Furthermore, we expect that
a sorting algorithm produces a sequence of items where the keys are arranged in
ascending order.

The paper is organized as follows. Section 2 summarizes related work. Tradi-
tional approach to the external sorting is revised in Section 3. Section 4 presents
the experimental results that asses the individual operations required for exter-
nal sorting. Finally, Section 5 proposes modifications to existing methods.

2 Related Work

The external sorting (i.e., sorting of the data that does not fit the internal
memory and has to be stored in the external persistent memory) is one of the key
problems of data processing. Sorting operations are widely employed in various
domains [8] and they also form essential parts of other algorithms. Perhaps the
first study of problems that require intensive utilization of external memory was
presented in thesis of Demuth [5] more than 50 years ago, which focused mainly
on the data sorting.

A rather broad study of various problem instances and of various sorting
algorithms was conducted by Knuth [8] in 1970s. This study is presented in the
Art of Computer Programming books, which are still considered to be one of the
best educational materials regarding algorithms and data structures. Volume 3
is dedicated to sorting and searching and it describes commonly used methods of
external sorting, such as multiway merging, polyphase merging, and various im-
provements. Many derived algorithms and methods for external data sorting [16]
has been published since then, but they all share the fundamental assumptions
layed down by Knuth.

External Sorting on Modern Hardware 79

The data communication between fast internal memory and slower external
memory is still considered the bottleneck of large data processing [2, 11, 16]. Most
algorithms are attempting to avoid this bottleneck by minimizing the number of
total input-output operations employing various strategies for internal memory
data caching [11]. Another widely utilized technique is to perform the exter-
nal memory operations asynchronously, so they can overlap with internal data
processing [2].

Originally, external sorting employed magnetic tapes as external memory.
When magnetic disks arrived, they allowed (almost) random access to the data,
so that one disk can store multiple data streams being merged. However, mag-
netic drives also have their limits and the sequential access to the data is still
preferable. Hence, it might be beneficial to employ multiple disks either man-
aged by the sorting algorithm directly or using striping to divide data among
the disks evenly (e.g., by RAID 0 technology) [15]. Newest advances in the hard-
ware development, especially the emergence of Solid State Disks (SSD) that
employ FLASH memory instead of traditional magnetic recording, have been
studied from the perspective of sorting algorithms. The SSD drives are partic-
ularly interesting from the energy consumption point of view [1, 14]; however,
the introduced papers follow the original approach to external sorting and their
main objective is the minimization of I/O operations.

Sorting of large datasets can be also accelerated employing multiple com-
puters interconnected with some networking technology. Clusters of computers
may have more combined internal memory than individual servers, thus a dis-
tributed solution may even achieve superlinear speedup in some cases. On the
other hand, distributed sorting methods introduce new problems, such as com-
munication overhead or load balancing [12]. Furthermore, the distributed sorting
is an integral part of Map-Reduce algorithm [4], which is being widely used for
distributed data processing on a large scale.

Internal sorting methods are an integral part of the external sorting, since
it may be quite beneficial to pre-sort the data partially by chunks that fit the
internal memory. Initially, the internal sorting methods have been summarized
by Knuth in the Art of Computer Programming (vol. 3) [8]. More recently,
Larson et al. [9] made a study of several internal sorting methods and asses their
applicability for the initial part of external sorting.

In the past decade, the hardware development has employed parallel pro-
cessing on many levels. A practical combination of internal sorting methods
which takes advantage of parallel features of modern CPUs was proposed by
Chhugani [3]. We have also observed an emergence of platforms for massive data
parallel processing (like GPGPUs), and so several different algorithms were de-
veloped for manycore GPU accelerators [13, 10]. Finally, we would like to point
out the work of Falt et al. [6] which proposes an adaptation of Mergesort for in-
memory parallel data streaming systems. This work is particularly interesting,
since we believe that a similar approach can be adopted for external sorting.

80 Martin Krulǐs

3 Traditional Approach to External Sorting

The traditional algorithms of external sorting have two major parts. The first
part employs methods of internal sorting to form runs – long sequences of ordered
values. The second part merges the runs into one final run, which is also the final
result of the sorting problem. The algorithms that employ this approach may
vary in details, such as how the runs are generated or how many runs are being
merged in each step of the second part.

3.1 Forming Runs

Perhaps the most direct method for creating a run is the utilization of internal
sorting algorithms, like Quicksort [7] for instance. The application allocates as
large memory buffer as possible and fill it with data from the disk. The data
in the buffer are sorted by an internal sorting algorithm and written back to
the hard drive as a single run. These steps are repeated until all input data are
pre-sorted into runs.

Direct application of internal sorting generates runs, which length corre-
sponds to the internal memory size. Even though the intuition suggests that
this is the optimal solution, Knuth [8] describes an improvement, which can be
used to increase the average length of the runs. This improvement is based on
adjusted version of Heapsort [17] algorithm – i.e., an internal sorting algorithm
that employs regular heaps (sometimes also denoted as priority queues).

The algorithm also utilizes as much internal memory as possible. At the
beginning, input data are loaded into the internal memory buffer and a d-regular
heap is constructed in-place using the bottom-up algorithm. Than the algorithm
performs iteratively the following steps:

1. Minimum m (top of the heap) is written to the currently generated run (but
not removed from the heap yet).

2. New item x is loaded from the input data file. If key(m) ≤ key(x), the
x replaces the top of the heap (item m) and the heap is reorganized as if
the increase-key operation has been performed on the top. Otherwise, the
remove-top operation is performed on the heap, so its size is reduced by 1,
and the x item is stored at the position in the main memory buffer vacated
by the heap.

3. If the main heap becomes empty in the previous step, the currently generated
run is completed and a new run is started. At the same time, the main
memory buffer is already filled with input data values, so a heap structure
is constructed from them.

When the input file ends, the algorithm empties the heap to the current run
by repeating the remove-top step. After that, the remaining data outside of the
heap are sorted by internal sorting and saved as another run.

Let us emphasize two important implementation details. Despite the fact the
algorithm operates on individual items, the external I/O operations are always

External Sorting on Modern Hardware 81

performed on larger blocks of items and thus both data input and data output
is buffered. Furthermore, the explicit construction of a new heap (in step 3) can
be amortized into step 2, so that when an item x is placed outside the heap, one
step of bottom-up construction algorithm is performed. This way a secondary
heap is constructed incrementally as the first heap shrinks.

If the keys exhibit uniform distribution, the two-heap algorithm can generate
runs with average length 2N , where N is the number of items stored in the
internal memory buffer. This fact is explained in detail by Knuth [8] and we
have also verified it empirically.

3.2 Merging Runs

The second part of the external sorting performs the merging of the runs. The
main problem is that the number of runs being merged simultaneously may be
limited. In the past, the computers have limited number of magnetic tapes which
can be operated simultaneously. At present, operating systems have limited num-
ber of simultaneously opened files and we can perform only limited number of
concurrent I/O operations to the same disk. For these reasons, we can read or
write only N data streams (i.e., runs) at once. In the following, we will use the
term data stream as an abstraction, which could be related to a magnetic tape
or to a file on a hard disk, in order to simplify technical details such as opening
and closing files.

The most direct approach to this problem is called two-phase merging. N−1
data streams are used as inputs and one data stream is used as output. At
the beginning, the runs are distributed evenly among the input streams. The
algorithm then alternates two phases (depicted in Figure 1), until there is only
one run in a single data stream. In the first phase, the runs are merged from
the input streams into output stream. In the second phase, the runs from the
output stream are distributed evenly among the input streams.

N-1 streams

output stream

merging distribution

... ...

...

sorted run

Fig. 1. The principle of two-phase merging

The merging phase takes one run from each fo N − 1 input streams and
merges them together into one run that is written to the output stream. The
merging of runs is performed in the internal memory again. It can be imple-
mented hierarchically or by using a priority queue for instance.

The main disadvantage of two-phase merging is the necessity of distributing
the runs in the second phase. We can integrate the distributing phase with the
merging phase as follows. If the data streams cannot be easily replaced (e.g.,

82 Martin Krulǐs

such as in case of magnetic tapes), we can reduce the number of input streams
to N/2 and the remaining N/2 streams utilize as output streams. Hence, the
merged runs are distributed in a round robin manner among the output streams
as they are created. Unfortunately, the number of simultaneously merged runs
is reduced from N − 1 to N/2, wich increases the total number of iterations
performed by the algorithm.

If the data streams can be replaced effectively and efficiently (e.g., a file
can be closed and another file can be opened), the distribution of the runs can
be performed also in the merging phase whilst N − 1 input streams are used.
Furthermore, it might be possible to utilize more than N − 1 input streams, if
the streams can be opened/closed or sought fast enough.

3.3 Polyphase Merging

There is yet another way how to amortize the distribution phase in the merging
phase. This method is called polyphase merging, since it repeats only the merging
step and the distribution of the runs is performed naturally. The merging of the
runs is also performed from N − 1 input streams into one output stream, but
the initial distribution of the runs is not even. When one of the input streams
is emptied, this stream becomes new output stream and the output stream is
included among the input streams.

The distribution of the runs has to be carefully planned in order to achieve
optimal workload. The optimal run distribution for the last merging step is that
each input stream has exactly one run. One step before the last step, the optimal
distribution is that N − 2 input streams have two runs and the remaining input
stream has one run. Using this pattern, the initial distribution can be planed
retrospectively. An example of the merging plan for 21 runs and three streams
(N = 3) is presented in Table 1.

beginning #1 #2 #3 #4 #5 #6

stream 1 13 5 0 3 1 0 1

stream 2 8 0 5 2 0 1 0

stream 3 0 8 3 0 2 1 0

Table 1. Polyphase merging of 21 runs if N = 3

At the beginning, the first stream holds 13 runs and the second 8 runs. The
third stream is used as the output stream. Each phase merges as many runs as
possible and merges them (e.g., 8 runs are merged in the first step). We may
observe, that if there are two input streams, the distribution of the runs follow
the Fibonacci sequence. If the total number of the runs is not suitable for optimal
distribution, some streams may be padded with virtual runs wich do not require
merging.

External Sorting on Modern Hardware 83

4 Experiments

In this section, we present performance experiments that asses individual oper-
ations of external sorting – especially the internal sorting, the performance of
the heap data structure, and the disk I/O operations.

The internal sorting experiments were conducted on a high-end desktop PC
with Intel Core i7 870 CPU comprising 8 logical cores clocked at 2.93 GHz and
16 GB of RAM. Additional tests were performed on 4-way cache coherent NUMA
server with four Intel Xeon E7540 CPUs comprising 12 logical cores clocked at
2.0 GHz and 128 GB RAM. The RHEL (Red Hat Enterprise Linux) 7 was used
as operating system on both machines.

The I/O tests were conducted on three storages. Tests denoted HDD were
measured using one Segate Barracuda HDD (2 TB, 7, 200 rpm) connected via
SATA II interface. Tests denoted SSD were conducted on 6 solid state drives
Samsung 840 Pro (512 GB each) in software RAID 0 configuration. Finally, tests
denoted array used Infortrend ESDS 3060 enterprise disk array which comprised
2 SSD disks (400 GB each) and 14 HDDs (4 TB, 7, 200 rpm) connected in RAID
6. The array was connected via dual-link 16 Gbit Fiber Channel. Again, the
RHEL 7 was used as operating system and XFS was used as the file system.

4.1 Internal Sorting

In order to asses the benefits of the heap data structure for both generating the
runs and for multiway merging, we compare Heapsort with conventional sorting
methods. Before we can do that, we need to select optimal heap degree (i.e.,
branching degree of the tree that represents the heap) for this task.

desktop PC

heap degree

m
il

li
o

n
s

 o
f

it
e

m
s

 p
e

r
s

e
c

o
n

d

2 3 4 5 6 7 8 9 10 11 12

1
.0

1
.5

2
.0

2
.5

3
.0

32bit

32bit + 32bit

64bit

64bit + 64bit

NUMA server

heap degree

m
il

li
o

n
s

 o
f

it
e

m
s

 p
e

r
s

e
c

o
n

d

2 3 4 5 6 7 8 9 10 11 12

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

32bit

32bit + 32bit

64bit

64bit + 64bit

Fig. 2. Heapsort throughput results for various degrees of regular heaps

Figure 2 presents the measured throughput of Heapsort algorithm with var-
ious heap degrees on 1 GB of data. The experiments were conducted using four
different item/key sizes: 32-bit (integer) keys, 32-bit integers with additional
32-bit payload, 64-bit integer keys, and 64-bit keys with 64-bit payload. The
payload simulates additional index or pointer associated with the key which
refers to additional (possibly large) data properties of the item.

84 Martin Krulǐs

The results indicate, that 2-regular heaps (which are often used as a default)
have poor performance. Much better choice are degrees between 3-5, which re-
duce the height of the tree. On the other hand, the largest (16 B) items have
exhibited a slightly different behaviour, which we were unable to explain so far.
A more extensive study of this data structure has yet to be conducted. In the
following experiments, we have used the optimal heap degree for each situation.

32bit keys

total data size

m
il

li
o

n
s

 o
f

it
e

m
s

 p
e

r
s

e
c

o
n

d
 (

lo
g

 s
c

a
le

)

64M 128M 256M 512M 1G 2G 4G 8G

2
5

1
0

2
0

5
0

std

tbb

heap

32bit keys with 32bit payload

total data size

m
il

li
o

n
s

 o
f

it
e

m
s

 p
e

r
s

e
c

o
n

d
 (

lo
g

 s
c

a
le

)

64M 128M 256M 512M 1G 2G 4G 8G

2
5

1
0

2
0

std

tbb

heap

64bit keys

total data size

m
il

li
o

n
s

 o
f

it
e

m
s

 p
e

r
s

e
c

o
n

d
 (

lo
g

 s
c

a
le

)

64M 128M 256M 512M 1G 2G 4G 8G

2
5

1
0

2
0

5
0

std

tbb

heap

64bit keys with 64bit payload

total data size

m
il

li
o

n
s

 o
f

it
e

m
s

 p
e

r
s

e
c

o
n

d
 (

lo
g

 s
c

a
le

)

64M 128M 256M 512M 1G 2G 4G 8G

1
2

5
1
0

2
0

std

tbb

heap

Fig. 3. Internal sorting throughput results

In the internal sorting experiments, we compare the Heapsort algorithm with
serial Quicksort implemented in C++ STL library (std::sort) and parallel
sorting algorithm implemented in the Intel Threading Building Blocks (TBB)
library. These algorithms may not be the fastest possible, but they present an
etalon, which can be used for further comparisons.

The results depicted in Figure 3 show that the Heapsort is several times
slower than the two other methods and its performance degrade more rapidly on
larger datasets. Furthermore, the TBB sort is expected to scale with increasing
number of cores, but no parallel implementation of Heapsort exists to our best
knowledge and we believe that it is not feasible with current CPU architectures.

We have conducted the experiments on the NUMA server as well. The server
CPUs have lower serial throughput, which is compensated by the number of
cores. Hence, the sorting throughput of TBB algorithm is comparable, but the
std::sort and the Heapsort exhibit significantly lower performance.

External Sorting on Modern Hardware 85

4.2 Sequential Data Reads

The existing external sorting methods are designed to access data sequentially.
Hence, our first set of experiments measure the sequential read operations. Let us
emphasize, that we use sequential access to the file that holds the data; however,
the underlying storage device may fragment the file or otherwise scatter the data.

The following experiments perform sequential reads from binary data files us-
ing blocks of fixed size. The data are read using 1-8 threads concurrently, where
each thread has its own file in order to avoid explicit synchronization on appli-
cation level. In every case, the application reads total amount of 64 GB (each
thread has an equal share). We have used three APIs for file management – tra-
ditional blocking API (sync), asynchronous API (async), and memory mapped
files (mmap) – in order to asses their overhead in different situations.

sync I/O

block size

re
a

d
in

g
 t

im
e

 [
s

e
c

o
n

d
s

]

256k 1M 4M 16M 64M

3
4

0
3

6
0

3
8

0
4

0
0

4
2

0 1

2

4

8

async I/O

block size

re
a

d
in

g
 t

im
e

 [
s

e
c

o
n

d
s

]

256k 1M 4M 16M 64M

3
4

0
3

6
0

3
8

0
4

0
0

4
2

0 1

2

4

8

memory mapped

block size

re
a

d
in

g
 t

im
e

 [
s

e
c

o
n

d
s

]

256k 1M 4M 16M 64M

3
4

0
3

6
0

3
8

0
4

0
0

4
2

0 1

2

4

8

Fig. 4. Reading 64 GB sequentially from a single magnetic hard drive

Figure 4 presents the results measured using commodity hard drive. In all
cases, the single-threaded version outperforms the multi-threaded versions, since
one thread is capable of sufficiently utilize the drive. Furthermore, the serial
reading throughput was reaching 200 MBps for all selected block sizes.

sync I/O

block size

re
a

d
in

g
 t

im
e

 [
s

e
c

o
n

d
s

]

256k 1M 4M 16M 64M

5
0

1
0

0
1

5
0

2
0

0
2

5
0 1

2

4

8

async I/O

block size

re
a

d
in

g
 t

im
e

 [
s

e
c

o
n

d
s

]

256k 1M 4M 16M 64M

5
0

1
0

0
1

5
0

2
0

0
2

5
0

1

2

4

8

memory mapped

block size

re
a

d
in

g
 t

im
e

 [
s

e
c

o
n

d
s

]

256k 1M 4M 16M 64M

4
0

4
5

5
0

5
5

1

2

4

8

Fig. 5. Reading 64 GB sequentially from 6 SSD disks in RAID 0

86 Martin Krulǐs

Figure 5 presents the results measured on a RAID 0 array of six SSD disks.
Since these disks have much greater combined throughput and much lower la-
tency, both sync and async API demonstrate significant overhead on smaller
blocks. Furthermore, multiple threads may take advantage of the high process-
ing speed of the disks and achieve better performance. The best reading speed
was approaching 1.5 GBps.

sync I/O

block size

re
a

d
in

g
 t

im
e

 [
s

e
c

o
n

d
s

]

256k 1M 4M 16M 64M

1
0

0
1

5
0

2
0

0 1

2

4

8

async I/O

block size

re
a

d
in

g
 t

im
e

 [
s

e
c

o
n

d
s

]

256k 1M 4M 16M 64M

1
0

0
1

5
0

2
0

0

1

2

4

8

memory mapped

block size

re
a

d
in

g
 t

im
e

 [
s

e
c

o
n

d
s

]

256k 1M 4M 16M 64M

1
0

0
1

2
0

1
4

0
1

6
0

1

2

4

8

Fig. 6. Reading 64 GB sequentially from an enterprise disk array

The last set of experiments conducted on an enterprise disk array is depicted
in Figure 6. The RAID nature of the array provide much better performance than
a single drive, but the additional overhead imposed by the data redundancy and
internal storage control makes the array less efficient than the SSD drives. The
array is also much less predictable, since the I/O scheduling algorithm of the
host system is probably clashing with the internal scheduler of the array.

tbb−sort (64b+64b)

std−sort (64b+64b)

tbb−sort (64b)

std−sort (64b)

tbb−sort (32b+32b)

std−sort (32b+32b)

tbb−sort (32b)

std−sort (32b)

read−array

read−ssd

read−hdd

time [seconds]

0 5 10 15 20 25 30

Fig. 7. Comparison of processing times of 1 GB of data (i.e. 256M of 32-bit items,
128M of 32 + 32-bit and 64-bit items, and 64M of 64 + 64-bit items

Finally, let us compare the data reading times with internal sorting times.
Figure 7 summarizes the results of reading and sorting operations performed on
1 GB of data. In general, the internal sorting is slower than reading from per-
sistent storage. Furthermore, the reading operation is expected to scale linearly
with the data size, while the sorting has time complexity Θ(N logN) and so it
will get even slower (w.r.t. reading) when larger data buffers are used.

External Sorting on Modern Hardware 87

4.3 Random Data Access

In the merging phase, the data streams are usually loaded from the same storage
device. In such case, the device must load data from multiple locations in short
order. Hence, we would like to compare random access with the sequential access.

single HDD

block size

re
a

d
in

g
 t

im
e

 (
lo

g
 s

c
a

le
)

[s
e

c
o

n
d

s
]

256k 1M 4M 16M 64M

5
0

0
1

0
0

0
2

0
0

0

sync

async

mmap

best_seq

6 SSDs in RAID0

block size

re
a

d
in

g
 t

im
e

 (
lo

g
 s

c
a

le
)

[s
e

c
o

n
d

s
]

256k 1M 4M 16M 64M

5
0

1
0

0
2

0
0

sync

async

mmap

best_seq

enterprise disk array

block size

re
a

d
in

g
 t

im
e

 (
lo

g
 s

c
a

le
)

[s
e

c
o

n
d

s
]

256k 1M 4M 16M 64M

1
0

0
2

0
0

5
0

0
2

0
0

0 sync

async

mmap

best_seq

Fig. 8. Reading 64 GB as a random permutation of blocks

Figure 8 presents results of reading times, when the data are loaded in com-
pact blocks, which are accessed in random order. The best seq values are reading
times of the best sequential method measured in the previous experiments, so
that we can put the random access times in the perspective. The results sug-
gests that in every case, the random access overhead can be minimized if we use
sufficiently large blocks. In case of a single HDD, blocks of tens of megabytes
are sufficient. In case of faster devices, large blocks are more advisable.

5 Conclusions

The experimental results indicate that using heaps for increasing the length
of initial runs has negative impact on the performance. The internal sorting
takes more time than data loads, thus the optimization of the internal sorting
methods become a priority. Another important fact yielded by the empirical
evaluation is that the random access could be nearly as fast as sequential access
when the data are transmitted in large blocks. Hence, we can place as many
streams as required on the same storage (even in the same file) and access them
simultaneously. Based on the evidence, we propose the following:

• The internal sorting used for generating runs should utilize the fastest (par-
allel) algorithm possible. The length of the runs are no longer first priority.

• Modern servers of the day have hundreds of GB operating memory and tens
of TB storage capacity. Hence, if the sorted data fit the persistent storage,
the first phase will generate hundreds of runs at most.

• The merging phase should process all generated runs in one step. Current
operating systems can work with hundreds separate files and the storage can
handle simultaneous (and thus random) access to all these streams without
a significant drop in performance.

88 Martin Krulǐs

We have established that traditional methods of external sorting presented by
Knuth are obsolete. New methods should focus more on optimizing the internal
sorting algorithms and efficient hierarchial merging than on the number of I/O
operations. In the future work, we would like to adopt a data stream sorting
algorithm of Falt et al. [6] for external merging.

References

1. Beckmann, A., Meyer, U., Sanders, P., Singler, J.: Energy-efficient sorting using
solid state disks. Sustainable Computing: Informatics and Systems 1(2), 151–163
(2011)

2. Bertasi, P., Bressan, M., Peserico, E.: psort, yet another fast stable sorting software.
Journal of Experimental Algorithmics (JEA) 16, 2–4 (2011)

3. Chhugani, J., Nguyen, A.D., Lee, V.W., Macy, W., Hagog, M., Chen, Y.K.,
Baransi, A., Kumar, S., Dubey, P.: Efficient implementation of sorting on multi-
core simd cpu architecture. Proceedings of the VLDB Endowment 1(2), 1313–1324
(2008)

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

5. Demuth, H.B.: Electronic data sorting. Dept. of Electrical Engineering (1956)
6. Falt, Z., Bulánek, J., Yaghob, J.: On parallel sorting of data streams. In: Advances

in Databases and Information Systems. pp. 69–77. Springer (2013)
7. Hoare, C.: Quicksort. The Computer Journal 5(1), 10 (1962)
8. Knuth, D.E.: Sorting and Searching. Addison-Wesley (2003)
9. Larson, P.A.: External sorting: Run formation revisited. Knowledge and Data En-

gineering, IEEE Transactions on 15(4), 961–972 (2003)
10. Merrill, D.G., Grimshaw, A.S.: Revisiting sorting for gpgpu stream architectures.

In: Proceedings of the 19th international conference on Parallel architectures and
compilation techniques. pp. 545–546. ACM (2010)

11. Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J., Lomet, D.: Alphasort: A cache-
sensitive parallel external sort. The VLDB Journal – The International Journal on
Very Large Data Bases 4(4), 603–628 (1995)

12. Rasmussen, A., Porter, G., Conley, M., Madhyastha, H.V., Mysore, R.N., Pucher,
A., Vahdat, A.: Tritonsort: A balanced large-scale sorting system. In: Proceedings
of the 8th USENIX conference on Networked systems design and implementation.
pp. 3–3. USENIX Association (2011)

13. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for many-
core gpus. In: Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE Inter-
national Symposium on. pp. 1–10. IEEE (2009)

14. Vasudevan, V., Tan, L., Kaminsky, M., Kozuch, M.A., Andersen, D., Pillai, P.:
Fawnsort: Energy-efficient sorting of 10gb. Sort Benchmark final (2010)

15. Vengroff, D.E., Scott Vitter, J.: Supporting i/o-efficient scientific computation in
tpie. In: Parallel and Distributed Processing, 1995. Proceedings. Seventh IEEE
Symposium on. pp. 74–77. IEEE (1995)

16. Vitter, J.S.: External memory algorithms and data structures: Dealing with mas-
sive data. ACM Computing surveys (CsUR) 33(2), 209–271 (2001)

17. Williams, J.W.J.: Algorithm-232-heapsort. Communications of the ACM 7(6), 347–
348 (1964)

Procedural Code Representation in a Flow
Graph

Michal Brabec and David Bednárek

Parallel Architectures/Algorithms/Applications Research Group
Department of Software Engineering

Faculty of Mathematics and Physics, Charles University in Prague
Malostranské nám. 25, Prague, Czech Republic
{brabec,bednarek}@ksi.mff.cuni.cz

Procedural Code Representation in a Flow
Graph

Michal Brabec and David Bednárek

Parallel Architectures/Algorithms/Applications Research Group
Department of Software Engineering

Faculty of Mathematics and Physics, Charles University in Prague
Malostranské nám. 25, Prague, Czech Republic
{brabec,bednarek}@ksi.mff.cuni.cz

Abstract. Modern scientific computing often combines extensive calcu-
lation with complex structure of data; however, the programming method-
ologies and languages of high-performance computing significantly differ
from those of databases. This impedance mismatch leads many projects
to the use of either primitive (like JSON) or overly general (like dis-
tributed file systems) methods of data access, ignoring the decades of
development in database technology. In this paper, we investigate the
possibility to represent procedural code fragments using a network of op-
erators similar to query plans used in relational database systems. Such
a unified representation forms the necessary step towards an integrated
computational-database platform. We propose a flow graph representa-
tion that allows us to analyze, transform and optimize applications more
efficiently and without additional data. Along with the graph, we de-
signed an algorithm that transforms a procedural code into the graph.

Keywords: compiler, graph, optimization, parallelism

1 Introduction

Modern data processing often combines complex data layouts with intensive
calculations. Despite the ongoing effort in the area of no-SQL databases, the
traditional relational paradigm, especially in its column-based version [2], still
offers unmatched maturity and efficiency up to multi-terabyte ranges. However,
the database systems were not designed with general computing in mind.

Systems based on the MapReduce paradigm allow the programmer to inte-
grate general procedural code with a distributed data storage more easily. De-
spite of their popularity, MapReduce implementations may still be outperformed
by parallel databases even in brute-force tasks where the sophisticated database
approach has seemingly no advantage [20]. However, the same experiments also
show that the performance dominance of parallel databases is limited to work-
loads implemented by built-in functions; as soon as user-defined functions are
required, the performance falls rapidly.

This observation shows that the runtime stages of modern parallel database
systems are extremely efficient even under brute-force computing load. How-
ever, this efficiency is degraded by the inability of the relational optimizers to

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 89–100, CEUR-WS.org/Vol-1343.

90 Michal Brabec, David Bednárek

efficiently handle procedural code fragments contained in user-defined functions
[15]. Nevertheless, with a different front-end, a parallel database system may
become a suitable runtime for parallel computing.

Such a front-end would have to compile procedural code into physical exe-
cution plans used in database systems. Modern databases, as well as streaming
systems, use graph-based execution plans whose nodes are not limited to rela-
tional algebra operators, as shown by the successful adaptation of many rela-
tional engines to XML or RDF [17].

In this paper, we present flow graphs – an intermediate code capable to rep-
resent procedural code with its complex control-flow. Unlike typical intermediate
representations used in compilers, the flow graphs are designed to be similar to
pipeline-based models used in many database, streaming, and general parallel
platforms.

Besides the introduction of flow graphs, we also describe the key algorithms
which take part in the transformation of procedural code into flow graphs. The
algorithms described here are applied after language-specific phases like parsing
and semantic analysis and they also make use of analytical algorithms which are
already frequently used in compilers.

The rest of the paper is organized as follows: After reviewing the related
work, flow graphs are defined in Section 3. Section 4 presents the transformation
algorithms; in Section 5, we revise possible optimizations of the flow graph.

2 Related Work

The flow graph described in this paper is similar but not identical to other
modeling languages, like Petri nets [21] or Kahn process networks [14]. The
main difference is that the flow graph was designed for automatic generation
from the source code, where the other languages are generally used to model the
application prior to implementation [16] or to verify a finished system [9]. The
flow graph is similar to the graph transformation system [8], which can be used
to design and analyze applications, but it is not convenient for execution. There
are frameworks that generate GTS from procedural code like Java [7], though
the produced graphs are difficult to optimize. The flow graph has similar traits
to frameworks that allow applications to be generated from graphs, like UML
diagrams [12] [4], but we concentrate both on graph extraction and execution.

The flow graph is closely related to graphs used in compilers, mainly the
dependence and control flow graphs [3], where the flow graph merges the infor-
mation from both. The construction of the flow graph and its subsequent opti-
mization relies on compiler techniques, mainly points-to analysis [23], dependence
testing [18] and control-flow analysis [22]. In compilers, graphs resulting from
these techniques are typically used as additional annotation over intermediate
code.

The flow graph is not only a compiler data representation, it is a processing
model as well, similar to KPN graphs [13]. It can be used as a source code for
specialized processing environments, where frameworks for pipeline parallelism

Procedural Code Representation in a Flow Graph 91

are the best target, since these frameworks use similar models for applications
[19]. One such a system is the Bobox framework [10], where the flow graph can
be used to generate the execution plan similarly to the way Bobox is used to
execute SPARQL queries [11].

3 Flow Graph

The Flow graph was designed as a compact format for representation of proce-
dural code. Once constructed, it contains the code along with the information
about its structure, including control flow and data flow, and it can be trans-
formed back into procedural code. In this section, we define the flow graph and
we explain its relation to other processing models.

A flow graph is a directed graph, where nodes represent operations and edges
represent data exchange among the operations. The direction of the edge indi-
cates the direction of data flow (source and sink operations). Figure 1 shows
an unoptimized flow graph for a function without branches (see Listing 1 for
source code). The gray nodes denote dead code and they will be removed during
later optimization steps. The flow graph can become complicated once control
flow is introduced – see Figure 5 for an example of a more complex graph that
implements a program with a loop.

void Statements () {
int a = 3 ;
int b = 5 ;
int c = 0 ;
c = a + b ;
p r i n t (c) ;

}

Listing 1. Simple function without
branches

ldc 3

ldc 5

ldl a

ldl b add

stl c

ldl c

call

stl a

stl b

Fig. 1. Simple function transformed to
an unoptimized flow graph

For a particular domain of application, a specific flow graph language is de-
fined that contains a set of basic operations and a set of data types. We construct
flow graphs based on such platform specific language. Both nodes and edges con-
tain information about the represented operation or data type respectively. Each
edge is connected to a specific input or output of the node according to the rep-
resented operation (the data type must be compatible).

As our research is focused on C#, we use CIL [1] instructions to specify node
operations. In this paper, there are four most common instruction types: ldl x
(load variable or constant), stl x (write to a variable), ble (conditional branch),

92 Michal Brabec, David Bednárek

add etc. (mathematical operations). We omit data types for the edges, because
they are not important for the graph construction.

3.1 Execution Model

The flow graph execution model defines the way nodes process data and com-
municate. Nodes represent operations and edges represent unbounded queues
(FIFO).

Operations have three states - waiting for input, processing and inactive. Each
operation starts waiting for input, it fires once input is available, processes the
input and produces an output. Once the input is processed, the operation again
waits for data. Nodes without input (loading constants) fire at the beginning of
the execution, produce data and then they become inactive.

The queues transport single values of the assigned data type (based on the
edge). Nodes must always consume their input, they cannot simply check the
data and leave them in the queue. For example a simple node, which adds two
numbers, fires when there are data in both its incoming queues, it consumes
both numbers and then is stores the result in its outgoing queue.

3.2 Special Nodes

Loops and branches of the source language are transformed into a graph of
platform independent special nodes which interact with the data-flow carried
through the basic nodes that perform the basic operations.

An extended primary node is a special version of any basic operation without
parameters, like load constant value. The extended version has a single input
and it restarts whenever the input contains data.

A broadcast node has a single input and a variable number of outputs. It
represents a simple operation that creates a copy of the input for each output.
This node is created whenever an operation must pass its result to multiple
operations and the number of receivers defines the number of outputs. A loop
feedback node is a special type broadcast node that distributes the positive result
of a conditional branch to all extended primary nodes.

A merge node has a single output and three inputs. It represents an operation
that accepts data from two sources and passes them to a single operation and
it is used to merge data flow after a conditional branch. The node has an extra
input used to get feedback from another node, generally a conditional branch.
The node fires when all three inputs contain data.

A loop merge node is a special version of a merge node with two inputs for
conditional branches, it is used to merge data in loops. The input is split into
two pairs, where each contains one data input and one branch input. The node
fires, whenever both inputs in a pair contain data. The node is either positive
or negative, where the conditional inputs are required to be either positive or
negative, for passing data into a loop or outside a loop.

Procedural Code Representation in a Flow Graph 93

add ldc 5*

Fig. 2. Node types: basic, extended primary, broadcast, merge, loop merge, feed-
back

4 Flow Graph Construction

In this section, we present a two-phase algorithm that transforms a procedural
code to a flow graph. The input to the algorithm is an intermediate code; in our
case, the CIL. For simplicity, we assume that the CIL code was compiled from a
C# source without unsafe code and goto. We also assume that the code is first
subjected to a points-to analysis [23] which resolves potential aliasing problems.

The basic idea of the algorithm is that each CIL instruction is transformed
into a node. Edges are generated according to the data used by each instruction.
Edges correspond to the inputs / outputs of the instructions. When the basic
graph is ready, we add special nodes for broadcasting and merging data according
to branches and loops in the code. For simplicity, we ignore function calls in this
description – see Section 4.1 for more information on function handling.

Basic Graph Construction The first step of the algorithm is to create basic
nodes according to the instructions of the source code. We use basic operations
in the first part, the special operations are introduced in the second part. Algo-
rithm 1 contains all the necessary steps and it produces the basic nodes N and
edges E of the graph.

We can create a node for every CIL instruction, because we defined the
operations based on the instruction set (lines 1 to 3 in Algorithm 1).

Next, we analyze how instructions exchange data, either using registers or
stack, and we create edges that connect the source and sink instruction. CIL
instructions communicate using virtual stack and we use a stack simulator to
analyze the way the instructions exchange data. Then we create edges between
nodes representing instructions that exchange data (lines 4 to 6 in Algorithm 1),
along with the appropriate data type. The analysis is similar when the instruc-
tions communicate through registers, only instead of stack simulator, we have
to connect instructions that use the same register.

Then, we have to take into account the data passing through variables. We
have to create edges between nodes representing variable access, from write to
read. This step is more complex, because we have to connect every variable
read with the nearest write, along all the possible execution paths, which means
analyzing the control flow.

We generate basic blocks for the input code. In every basic block, we locate
all the instruction that access any variable (lines 7 to 11 in Algorithm 1). First
we create edges inside every block, where we connect variable writes to reads if

94 Michal Brabec, David Bednárek

. method void Statements () c i l
l dc . i 4 . 3
s t l o c . 0
ldc . i 4 . 5
s t l o c . 1
l d l o c . 0
l d l o c . 1
add
s t l o c . 2
l d l o c . 2
c a l l void pr in t (in t32)
r e t

Listing 2. CIL code of Statements
function

void BranchElse () {
int a = 3 ;
int c = 0 ;
i f (a > 0)

c = 4 ;
else

c = −4;
p r i n t (c) ;

}

Listing 3. Simple branch

both access the same variable but only if the read is after the write and there
is no other write between them (lines 12 to 16 in Algorithm 1). Results of this
step are illustrated in Figure 1 which shows the intermediate flow graph based
on the CIL code in Listing 2, generated from the source code in Listing 1.

Next, we have to connect variables between basic blocks. We locate all reads
before the first write in every block, for every variable. We call them accessible
reads. We connect the last write in a basic block to all the accessible reads in
the blocks that follow the original, until one of them contains an instruction
that writes to the same variable (lines 17 to 26 in Algorithm 1). Basically, we
perform an exhaustive search through the block graph, where we stop at nodes
that change the studied variable. This way the data is propagated through the
control flow.

Figure 3 shows a flow graph generated from the function in Listing 3. There
is one conditional jump that produced the two edges that lead to the node
ldl c. The branch instruction must decide which input is used (Section 4). It is
important that the initialization of c to 0 is identified as unused code.

Control Flow Management In this section, we present algorithms necessary
to make the graph produced by the Algorithm 1 deterministic and compliant
to the flow graph definition. We must make sure that the nodes have a proper
number of inputs and outputs and that the branching conditions deterministi-
cally decide what value is used at every time, especially in loops. Algorithm 2
contains all the transformations for handling control flow.

We start this algorithm by locating loops in the basic block graph. We locate
all the blocks L of the inner-most loop and we locate the block Lb that contains
the backward conditional jump b that restarts the loop (it is sufficient to locate
the backward jump, because we consider a restricted C#). We duplicate the
entire block Lb as Lbi , the copy drives the first iteration which is different, since
it uses data initialized before the loop started (initialization of variables). See

Procedural Code Representation in a Flow Graph 95

Algorithm 1. Basic graph construction

Require: I – set of instructions i
B – basic blocks
M – set containing all memory locations (variables)
Ci – all instructions consuming the output of the instruction i
Ri – variables read by instruction i
Wi – variables read by instruction i

Ensure: N – nodes of the flow graph
E – edges of the flow graph

1: for all i ∈ I do
2: N = N ∪ {Ni : operation(Ni) = Oi} – nodes based on instructions
3: end for
4: for all Ni ∈ N do
5: E = E ∪

{
ENiNj : j ∈ Ci

}
– edges based on instruction communication (stack)

6: end for
7: for all b ∈ B do
8: Loadbm = {i ∈ b : m ∈ Ri ∧ w ∈ b < i =⇒ m 6∈Ww} – read before update
9: Loadbmj = {i ∈ b : m ∈ Ri ∧ j < i ∧ w ∈ [j, i] =⇒ m 6∈Ww} – read after write

10: Storebm = {i ∈ b : m ∈Wi ∧ w ∈ b > i =⇒ m 6∈Ww} – last update in block
11: end for
12: for all b ∈ B do
13: for all m ∈M do
14: E = E ∪

{
ENjNi : i ∈ Loadbmj

}
– edges based on variable access

15: end for
16: end for
17: for all m ∈M do
18: for all b ∈ B do
19: for all n0 ∈ B : next(b, n0) do
20: E = E ∪

{
ENjNi : j ∈ Storebm ∧ i ∈ Loadbn0

}
– edges between blocks

21: if Storebn = ∅ then
22: recursion for {n1 ∈ B : next(n0, n1)}
23: end if
24: end for
25: end for
26: end for

Listing 4 where i is first compared while it still has the value of 1. We locate
all nodes ni inside the loop with more incoming edges than inputs (line 1 in
Algorithm 2). We create loop merge nodes m for all ni (line 2 in Algorithm 2),
redirect the incoming edges to the merge nodes (line 3 in Algorithm 2). We add
edge Emni. Finally we connect the merge nodes to the conditional branches and
we pair the input coming from outside the loop to the duplicate branch in bi in
Lbi and the other with the branch b in Lb (line 4 in Algorithm 2). This ensures
that the first iteration takes the data from outside and all the rest take the
internal data. See Figure 5 for complete loop with merge nodes.

When the loops are fitted with merge nodes, we add a loop feedback node
that restarts all the nodes without input. We replace all nodes without input in

96 Michal Brabec, David Bednárek

ldc 3 ldc 4

ldl c

call

stl a stl c

blec

ldc -4

stl c

ldl a

ldc 0

Fig. 3. Basic graph of a conditional
branch

ldc 3 ldc 4

ldl c

call

stl a stl c

blec

ldc -4

stl c

ldl a

ldc 0

Fig. 4. Completely transformed
branch

void SingleLoop ()
{

for (int i = 1 ;
i <= 5 ;
i++)

{
pr in t () ;

}
}

Listing 4. Simple loop function

ldc 1stl i

ldl i ldc 1*

add

stl i

ldl i

ldc 5*

ldl i

ldc 5

ble

ble

call*

Fig. 5. Flow graph of a loop

a loop by their extended version, see Section 3.2. We connect the feedback node
to the branch in Brl and to all the extended nodes in the loop (lines 6 to 10
in Algorithm 2). Figure 5 shows a complete loop, where the Brl and Brcl are
outlined by a dashed rectangle and the entire loop by a solid rectangle.

When all loops are transformed, we must locate all remaining nodes n with
more incoming edges than inputs (line 11 in Algorithm 2), the multiple inputs are
the result of conditional branches. Figure 3 shows the situation where two edges
lead to a node with a single input (ldl c). We solve this situation by introducing
a merge node m along with the edge Emn (lines 12 to 13 in Algorithm 2). Then
we redirect the two input edges to the m (line 14 in Algorithm 2). Finally, we
have to locate the conditional branch responsible for the merge and connect it
to the merge node. We can do this by following the paths from source nodes,
where we locate the branch just before the paths join, blec (branch if a ≤ 0)
in Figure 3. The result of this algorithm is in Figure 4, where the edge with a
square is the positive input and the triangle is negative.

Procedural Code Representation in a Flow Graph 97

The final step is to locate all nodes n with more outgoing edges than outputs.
This is solved simply by using a broadcast node. We create a new broadcast node
b, we add an edge Enb and we change the outgoing edges to start in b (lines 16
to 20 in Algorithm 2).

Algorithm 2. Iteration over stripes

Require: B – basic blocks
Ensure: N – nodes of the flow graph

E – edges of the flow graph
1: for all {ni ∈ N : ∃L ⊂ B ∧ ni ∈ L ∧ |Exn| > inputs(ni)} do
2: N = N ∪ {m} – add loop merge node
3: ∀Exni : x ∈ N =⇒ E = (E \ {Exni}) ∪ {Exm}
4: E = E ∪ {Emni} ∪ {Ebm} ∪ {Ebim} – b and bi are conditional jumps of the loop
5: end for
6: for all {∀ L ⊂ B : loop(L)} do
7: N = N ∪ {f} – add loop feedback node
8: E = E ∪ {Ebf} – where b is conditional jump of the loop
9: ∀e ∈ L : extended(e) =⇒ E = E ∪ {Efe}

10: end for
11: for all {n ∈ N : |Exn| > inputs(n)} do
12: N = N ∪ {m} – add merge node
13: E = E ∪ {Emn} ∪ {Ebm} – where b is the conditional jump
14: ∀Exni : x ∈ N =⇒ E = (E \ {Exn}) ∪ {Exm}
15: end for
16: for all {n ∈ N : |Enx| > outputs(n)} do
17: N = N ∪ {b} – add broadcast node
18: E = E ∪ {Enb}
19: ∀Enx : x ∈ N =⇒ E = (E \ {Enx}) ∪ {Ebx}
20: end for

4.1 Functions and Methods

Methods are analyzed starting with the main function and then the graph is con-
structed as additional methods are called. Whenever a method call is located,
we create a flow graph for the called method, treating its parameters as local
variables. We connect the parameters to their actual values (source variables or
constants). This approach is equivalent to complete procedure integration and
it is applicable only for programs whose call graph is acyclic and contains rea-
sonable number of paths. Using additional special nodes, any program might be
transformed; however, at the cost of additional operations which correspond to
the call-return pairs in conventional program execution. In the supposed appli-
cation domain, the general approach is probably unnecessary.

98 Michal Brabec, David Bednárek

4.2 Objects and Arrays

A variable of complex data type (object or array) can contain a number of
memory locations (members or elements) that can be accessed using special
instructions. We treat member data of objects as separate variables where the
same members of two independent objects are different variables. Arrays can be
viewed as objects with a single member - data, where the data contains multiple
independent values. Arrays are treated this way by many compiler algorithms
[23].

5 Graph Optimizations

A flow graph produced by the algorithm presented in Section 4 is generally very
big, since we transform every instruction into a single node, which is not very
convenient for execution, but it can be efficiently analyzed and optimized. In
this section, we shortly introduce optimizations that can produce more compact
graphs.

Each node in a flow graph, as defined in Section 3, represents a basic or special
operation. We introduce the merge rules, to allow optimizations of the graph.
The merge rules define the way the operations are combined to produce complex
operations. They define the behavior (source code) of the complex operation and
its inputs and output along with their data types. The merge rules are added to
the definition of the specific flow graph language.

A complex operation is created by merging other operations, either basic or
complex, according to the merge rules defined along with the graph. The merge
rules for CIL instructions contain for instance chaining of the instructions. For
example, when merging the addition instr. in A + B + C, we create a complex
operation that is equal to

∑3
1 Ini.

ldc 1stl i

gen i ldc 5*

ble

call*

Fig. 6. Merged simple loop

ldc 1stl x

ldc 1

stl i

ldl x ldl i

mul

stl x

ldl ildc 1*

add

stl i

ldl ildc 5*

ldl x call

ldl i

ldc 5ble

ble

Fig. 7. Factorial computation graph

Another transformation is aimed at simple loops controlled by a single vari-
able. Figure 5 shows a very simple loop that is controlled by the variable i,
updated in every iteration. The loop creates many unnecessary dependences.

Procedural Code Representation in a Flow Graph 99

When we locate such a simple situation, we can merge the entire loop into a
single node that just generates appropriate values in this case {1, 2, 3, 4}. We
can utilize algorithms used in compilers [18] to locate the loops, because the
graph contains all the information found in the original source code. Figure 6
shows how the loop from Figure 5 is optimized. This optimization is essential
for improving the efficiency of the flow graph, compare the optimized graph to
an unoptimized graph implementing the computation of a factorial, Figure 7.

6 Conclusions

We designed the flow graph to represent a procedural code along with important
information about its structure and behavior. We designed an algorithm that
allows us to create a flow graph for an application implemented in a subset of
C# and compiled to CIL. This transformation becomes a part of a toolchain
that allows the transformation of C# programs into a stream-based parallel
computing platform [5]. The algorithm can be modified for other languages, like
Java bytecode [6].

The flow graph is a powerful tool for application analysis and optimization.
Besides generating pipeline-based execution plans, the flow graph can be used
for automatic parallelization. For such use, the original flow graph may be too
fine-grained – in this case, it has to be transformed using a set of merge rules to
make the final parallel application efficient.

Acknowledgements

This paper was supported by Czech Science Foundation (GAČR) project P103-
13-08195, and by the Grant Agency of Charles University Grant Agency (GAUK)
project 122214.

References

1. TG3. Common Language Infrastructure (CLI). Standard ECMA-335, June 2005
2. Abadi, D., Boncz, P.A., Harizopoulos, S., Idreos, S., Madden, S.: The design and

implementation of modern column-oriented database systems. Foundations and
Trends in Databases 5(3), 197–280 (2013)

3. Allen, R., Kennedy, K.: Optimizing compilers for modern architectures. Morgan
Kaufmann San Francisco (2002)

4. Balasubramanian, D., Narayanan, A., van Buskirk, C., Karsai, G.: The graph
rewriting and transformation language: Great. Electronic Communications of the
EASST 1 (2007)

5. Brabec, M., Bednárek, D., Malý, P.: Transformation of pipeline stage algorithms to
event-driven code. In: Kurkova, V., Bajer, L., Svátek, V. (eds.) Proceedings of the
14th Conference on Information Technologies - Applications and Theory, Jasna,
Slovakia, 2014. CEUR Workshop Proceedings, vol. 1214, pp. 13–20. CEUR-WS.org
(2014), http://ceur-ws.org/Vol-1214

100 Michal Brabec, David Bednárek

6. Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., Bradshaw, R.,
Weizenbaum, N.: FlumeJava: easy, efficient data-parallel pipelines. In: ACM Sig-
plan Notices. vol. 45, pp. 363–375. ACM (2010)

7. Corradini, A., Dotti, F.L., Foss, L., Ribeiro, L.: Translating java code to graph
transformation systems. In: Graph Transformations, pp. 383–398. Springer (2004)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Graph transformation systems.
Fundamentals of Algebraic Graph Transformation pp. 37–71 (2006)

9. Ezpeleta, J., Colom, J.M., Martinez, J.: A Petri net based deadlock prevention
policy for flexible manufacturing systems. Robotics and Automation, IEEE Trans-
actions on 11(2), 173–184 (1995)

10. Falt, Z., Krulǐs, M., Bednárek, D., Yaghob, J., Zavoral, F.: Locality aware task
scheduling in parallel data stream processing. In: Camacho, D., Braubach, L.,
Venticinque, S., Badica, C. (eds.) Intelligent Distributed Computing VIII, Stud-
ies in Computational Intelligence, vol. 570, pp. 331–342. Springer International
Publishing (2015)

11. Falt, Z., Čermák, M., Dokulil, J., Zavoral, F.: Parallel SPARQL query processing
using Bobox. International Journal On Advances in Intelligent Systems 5(3 and
4), 302–314 (2012)

12. Geiger, L., Zündorf, A.: Graph based debugging with fujaba. Electr. Notes Theor.
Comput. Sci. 72(2), 112 (2002)

13. Geilen, M., Basten, T.: Requirements on the execution of Kahn process networks.
In: Programming languages and systems, pp. 319–334. Springer (2003)

14. Gilles, K.: The semantics of a simple language for parallel programming. In: Infor-
mation Processing: Proceedings of the IFIP Congress. vol. 74, pp. 471–475 (1974)

15. Guravannavar, R., Sudarshan, S.: Rewriting procedures for batched bindings. Pro-
ceedings of the VLDB Endowment 1(1), 1107–1123 (2008)

16. Josephs, M.B.: Models for data-flow sequential processes. In: Communicating Se-
quential Processes. The First 25 Years, pp. 85–97. Springer (2005)

17. Mayer, S., Grust, T., Van Keulen, M., Teubner, J.: An injection with tree aware-
ness: adding staircase join to postgresql. In: Proceedings of the Thirtieth inter-
national conference on Very large data bases-Volume 30. pp. 1305–1308. VLDB
Endowment (2004)

18. Muchnick, S.S.: Advanced compiler design implementation. Morgan Kaufmann
Publishers (1997)

19. Navarro, A., Asenjo, R., Tabik, S., Cascaval, C.: Analytical modeling of
pipeline parallelism. In: Parallel Architectures and Compilation Techniques, 2009.
PACT’09. 18th International Conference on. pp. 281–290. IEEE (2009)

20. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stone-
braker, M.: A comparison of approaches to large-scale data analysis. In: Proceed-
ings of the 2009 ACM SIGMOD International Conference on Management of data.
pp. 165–178. ACM (2009)

21. Peterson, J.L.: Petri nets. ACM Comput. Surv. 9(3), 223–252 (Sep 1977),
http://doi.acm.org/10.1145/356698.356702

22. Reps, T.: Program analysis via graph reachability. Information and software tech-
nology 40(11), 701–726 (1998)

23. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. ACM SIGPLAN Notices 41(6), 387–400 (2006)

Biased k-NN Similarity Content Based
Prediction of Movie Tweets Popularity

Ladislav Peška and Peter Vojtáš

Faculty of Mathematics and Physics
Charles University in Prague

Malostranske namesti 25, Prague, Czech Republic
peska@ksi.mff.cuni.cz, vojtas@ksi.mff.cuni.cz

Biased k-NN Similarity Content Based Prediction of

Movie Tweets Popularity

Ladislav Peska, Peter Vojtas

Faculty of Mathematics and Physics

Charles University in Prague

Malostranske namesti 25, Prague, Czech Republic

peska@ksi.mff.cuni.cz, vojtas@ksi.mff.cuni.cz

Abstract. In this paper we describe details of our approach to the RecSys Chal-

lenge 2014: User Engagement as Evaluation. The challenge was based on a da-

taset, which contains tweets that are generated when users rate movies on IMDb

(using the iOS app in a smartphone). The challenge for participants is to rank

such tweets by expected user interaction, which is expressed in terms of retweet

and favorite counts.

 During experiments we have tested several current off-the-shelf predic-

tion techniques and proposed a variant of item biased k-NN algorithm, which

better reflects user engagement and nature of the movie domain content-based

attributes. Our final solution (placed in the third quartile of the challenge leader

board) is an aggregation of several runs of this algorithm and some off-the-shelf

predictors.

 In the paper we will further describe dataset used, data filtration, algo-

rithm details and settings as well as decisions made during the challenge and

dead ends we explored.

Keywords: recommender systems, content based similarity, social network,

semantic web and linked data, hybrid biased k-NN, ensemble learning, user en-

gagement, RecSys Challenge 2014, SemWexMFF team, data structures for sim-

ilarity search and indexing

1 INTRODUCTION

Recommending on the web is both an important commercial application and popu-

lar research topic. The amount of data on the web grows continuously and it is virtual-

ly impossible to process it directly by a human. Various tools ranging from keyword

search engines to binary intra e-shop search or product aggregators were adopted to

fight against information overload. Although such tools are definitely useful, they can

be used only if the user is able to specify in detail what he/she wants. Recommender

systems are complementary to this scenario as they are mostly focused on serendipity

– showing surprisingly interesting items the user was not aware of and thus couldn’t

search for them by keywords.

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 101–110, CEUR-WS.org/Vol-1343.

102 Ladislav Peška, Peter Vojtáš

 2

Many recommender systems, algorithms or methods have been presented so far.

Initially, the majority of research effort was spent on the collaborative systems and

explicit user feedback. Although collaborative recommender systems are generally

trusted to be more accurate, they suffer from three well known problems: cold start,

new object and new user problem.

New user / object problem is a situation, where recommending algorithm is inca-

pable of making relevant prediction because of insufficient feedback about current

user / object. The cold start problem refers to a situation short after deployment of

recommender system, where the system cannot provide any relevant recommendation,

because of insufficient data generally.

Using attributes of objects and hence content based or hybrid recommender sys-

tems can speed up learning curve and reduce the cold start problem. Moreover, con-

tent-based recommender systems can compute similarity of a new object based on its

features effectively eliminating the new object problem.

Our deep belief is that quality of data used for recommendation are often more im-

portant than the algorithm which processes them. In another words rather than design-

ing a brand new algorithm we focus on enhancing our datasets and using state-of-the-

art or slightly modified algorithms to improve predictions.

The task of 2014 RecSys Challenge
1
 ([17], [20]) was to predict user engagement

on Twitter for movie rating tweets automatically posted from IMDb
2
 (from users,

who connected their IMDb and Twitter accounts). The user engagement of each tweet

was defined as a sum of retweets and favorites of this tweet. Other tweet data was also

made available for use, especially user rating of the movie, statistics about the user,

date and time when the tweet was posted and URL to the IMDb page with the movie

(data are available at Github
3
).

The dataset covers the period from February 2013 to March 2014 and contains in

total almost 213,000 tweets from 24,000 users about 15,000 movies. The dataset was

divided into training, test and validation subsets based on the timestamp when the

tweet was created. Evaluation of the task was based on nDCG metric considering top

10 tweets for each user.

The rest of the paper is organized as follows: review of some related work is in

section 2. In section 3 we provide some insight on the task and how it affected our

solution [14]. Section 4 describes which recommending algorithms were used and

their results. Finally section 5 concludes the paper, describes lessons learned during

the challenge and points to some future work.

2 RELATED WORK

Due to the space reasons, we can provide only a short review of the related work.

For general information and introduction to the recommender systems, we suggest

1 http://2014.recsyschallenge.com/
2 http://www.imdb.com
3 https://github.com/sidooms/MovieTweetings/tree/master/recsyschallenge2014

Biased k-NN Similarity Content Based Prediction of Movie Tweets . . . 103

 3

Recommender Systems Handbook [19]. Several state-of-the-art recommending algo-

rithms was used in the experiments namely Factor Wise Matrix Factorization [1], Bi-

Polar Slope One [7], Item-based k-NN [8], Decision trees, Support Vector Machines4

etc. Individual results of these methods can be found in Section 4. For the majority of

the algorithms we use their implementation in RapidMiner Studio5, or its Recom-

mender extension [9].

We would like to mention also our own previous work, which affected our ap-

proach: In [12] we first considered using external semantic content to enhance

secondhand bookshop recommender systems. The paper corroborated improvement of

success metrics while using DBPedia content and although the following experiments

shown that content-based recommending algorithm can be substantially improved, we

kept using the item-item similarity method described there. In the following work on

the same domain [16] we experimented with Content-boosted Matrix Factorization

(CBMF) [4], which outperformed methods from [12]. Similar approach was also used

in ESWC RecSys Challenge 2014 [13], however CBMF suffered from too high time

complexity with rising number of examples and content attributes which detracts its

usability. On the other hand the challenge winning method by Risotski et al. [18] has

shown that using relatively simple recommenders combined together may provide

surprisingly good results.

Our work is also related to the area of linked data. An inspiration to our previous

work was the research by Ostuni et al. [10], whose aim was to develop content-based

recommender system for a movie domain based sole on (multiple) LOD datasets and

A. Passant [11], who developed dbRec – the music recommender system based on

DBPedia dataset. Their point of view is however slightly different as they aim to de-

velop a recommender system based solely on the semantic web datasets, but in our

work (both previous and contemporary) we need to integrate external knowledge into

the already known structure of the domain, thus our recommending techniques are not

based on graph structure of linked data, but we aim to convert LOD into attribute-

value structure.

The area of recommending on social networks is currently well covered in the re-

search. We would like to mention e.g. Hannon et al. [6] work on recommending inter-

user relationships on twitter or Esparza et al. [5] work on categorizing tweets. None-

theless due to the specific nature of the challenge task, most of the common social

network based research is not applicable.

3 ANALYSIS OF THE TASK

This section aims on discussion and initial analysis of the challenge task, focusing

mainly on design choices implied by the nature of the task.

The dataset provided by the challenge organizers consisted of user, tweet and item

identification, timestamp when the tweet was scraped, user rating of the movie and all

information available from the tweet API excerpt from the text of the tweet (see Fig-

4 http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/
5 http://www.rapidminer.com

104 Ladislav Peška, Peter Vojtáš

 4

ure 1). The textual information would be extremely important for prediction of user

engagement in other datasets, but automatically generated tweets from IMDb contain

only template text and thus are not much relevant. The same reason makes also tweet

topic categorization (e.g. CatStream [5]) irrelevant. The tweet API contains e.g. date

and time of the tweet posting and statistics about the user (number of friends, follow-

ers, tweets etc.).

The user engagement is generally low throughout the dataset. The average user en-

gagement in the training set is 0.216, over 95% of the tweets have zero user engage-

ment and almost 80% of users received zero engagement for all of their tweets. The

situation seems to be similar to the number of purchases on an e-commerce site,

where most of the users only browse items, but do not buy one. Our experiments on

such domain [15] suggested using extended observation of user behavior and content

of the items to improve recommendation. As the monitoring of user behavior is not

possible in this scenario, we focused on using available content. Another interesting

question is how to interpret zero user engagement in situations where no engagement

was shown also in other tweets of the same user.

3.1 Content-based Movie Datasets, Collaborative vs. Content-based

Prior to the experiments, we have conducted a small survey of available movie da-

tasets. The IMDb, DBPedia
6, and Freebase

7
 were examined concluding that IMDb

contains most of the relevant information available in the other two datasets. Due to

100% coverage of items (each tweet was based on single IMDb object) and availabil-

ity of querying API
8
 we decided to use sole IMDb for dataset enhancements. The

movie features used in our solution can be distinguished into three classes:

 Attributes describing popularity (average rating, number of awards, IMDb

metascore)

 Attributes describing widespread of the movie (number of ratings)

 Attributes describing content (movie name, release date, genre, country, language,

director, actors)

There is however some space left for further improvements especially by employ-

ing DBPedia features like dcterms:subject or widespread metrics like ingoing / out-

going links or number of Wikipedia language editions.

The test dataset contains large number of new movies unseen in the training data,

so we expect that purely collaborative recommenders will not provide very good pre-

dictions. Another possible limitation is large number of zero user engagement. This

caused problems to some algorithms (e.g. decision trees) as they almost constantly

predicted zero for all tweets. The problem can be bypassed e.g. by filtering out (some)

examples with zero engagement or by copying other tweets. The task is also not well

6 http://www.dbpedia.org
7 http://www.freebase.com
8 http://www.omdbapi.com

Biased k-NN Similarity Content Based Prediction of Movie Tweets . . . 105

 5

suited for the purely content-based recommenders as there are new users in the test

dataset and also for many users we have only a few tweets available.

Fig. 1. In this figure we illustrate two tweets in training data (evaluating The Patriot) and

one tweet in testing data (evaluating Braveheart). Automatically generated tweets could look

like “I rated The Patriot 9/10 http://www.imdb.com/title/tt0187393/#IMDb” and “I rated

Braveheart 8/10 http://www.imdb.com/ title/tt0112573/#IMDb”. We download additional data

about the movie and we calculate average engagement for the user and also for the movie. The

task is to predict engagement for tweet in testing data.

3.2 What Does User Engagement Depend on?

We are deeply convinced that crucial for any recommending task is to estimate on

which variables the final success may depend. In the current case each tweet contains

almost the same text except for the name of the movie and the user rating, so we do

not expect that the tweet itself can affect user engagement.

Important variable determining user engagement is probably composition of user

friends and followers. Unfortunately the dataset contains only total numbers of friends

and followers for each user, not the variables describing them, but we can at least

employ user bias defining average engagement for each user.

Another important component is, according to our assumption, features of the

movie that the tweet refers to. The sole movie ID may not be enough as there are

numerous new movies in the test set and some movies are not rated with enough us-

ers. Thus we need to define content-based similarity between movies under assump-

tion that similar movies will be treated similarly.

106 Ladislav Peška, Peter Vojtáš

 6

Also the date when the tweet was posted may be interesting since the structure of

friends or followers might change over time and also popularity of the movie may

evolve, but we expect that relation of previous components should be stronger and so

we did not pursue this direction and leave it for the future work. The same applies

also for the dependence between user rating and user engagement.

4 RECOMMENDING ALGORITHMS

In our approach we worked with two main hypotheses:

 Engagement of similar movies should be similar.

 Engagement depends on neighborhood of the current user.

In order to define inter-movie similarity, we used IMDb querying API to generate

content-based attributes. We also considered using DBPedia or Freebase, but IMDb

contains most of the relevant information and furthermore offers guaranteed 100%

item coverage. Three types of attributes were downloaded: attributes describing popu-

larity (average rating, number of awards, IMDb metascore), attributes describing

widespread of the movie (number of ratings), attributes describing content (movie

name, release date, genre, country, language, director, actors).

The second hypothesis reflects our expectation that composition of user friends and

followers would greatly affect observed engagement. The twitter API contains only

aggregated information (total numbers of friends and followers for each user), so we

decided to use simple user bias instead of machine learning over user’s friends.

Table 1. Results of the off-the-shelf algorithms. The best achieved result for each algorithm is

shown.

Method nDCG@10

Random predictions 0.7482

Bi-Polar Slope One [7] 0.7652

Slope One [7] 0.7557

Factor Wise Matrix Factorization [1] 0.7556

Item-Item K Nearest Neighbors [8] 0.7604

Decision Tree 0.7494

AdaBoost with Decision Stump 0.7505

Support Vector Machines (SVM) 0.8057

Prior to the design of our own recommending algorithm we evaluated several off-

the-shelf algorithms using RapidMiner and its Recommender extension. As expected,

results of both collaborative-filtering and standard machine learning algorithms were

except for SVM rather unsatisfying. Table 1 contains the best achieved results for

each algorithm over different settings. Some dataset transformations (e.g. omitting

records with zero engagement from the training set, transformation of user engage-

Biased k-NN Similarity Content Based Prediction of Movie Tweets . . . 107

 7

ment in training set etc.) were also examined, but they did not significantly improve

the results.

4.1 Hybrid Biased k-NN

According to the assumptions and hypothesis formulated in Section 3, we decided to

pursue especially content-based movie similarity. We implemented a variant of well

known k-nearest-neighbors as our main individual recommender (see Algorithm 1),

where similarity of tweets is determined as content-based similarity of the respective

movies. The similarity is defined as average of attributes similarities. Attribute simi-

larity is defined according to attribute type. Similarity of numeric attributes (average

rating, number of ratings, number of awards, IMDb metascore and release date) is

defined as their difference normalized by maximal allowed distance (1).

𝑠𝑖𝑚𝑥,𝑦,𝑚𝑎𝑥𝐷𝑖𝑠𝑡 = max⁡(0,
𝑚𝑎𝑥𝐷𝑖𝑠𝑡 − |𝑥 − 𝑦|

𝑚𝑎𝑥𝐷𝑖𝑠𝑡
)

(1)

For string attributes (movie name) the similarity is defined as inverse of relative

Levenshtein distance (2). This allows us to define as similar e.g. movie series.

𝑠𝑖𝑚𝑥,𝑦 = 1 −⁡(⁡
𝑙𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛(𝑥, 𝑦)

max⁡(𝑙𝑒𝑛𝑔ℎ𝑡(𝑥), 𝑙𝑒𝑛𝑔ℎ𝑡(𝑦))
) (2)

Finally, similarity of set attributes (genre, country, director and actors) is defined

as Jaccard similarity (3). Note that nominal attributes can be dealt as sets of size 1.

𝑠𝑖𝑚𝐱,𝐲 = |(𝐱 ∩ 𝐲)|⁡ |(𝐱 ∪ 𝐲)⁄ | (3)

Differences between audiences of users will be considered in the form of user bias

(average value of engagement per user). The bias of current user is not important, as

the evaluation is on per user base, however the bias of other users should be consid-

ered within the k-NN algorithm.

Algorithm 1: Hybrid biased k-NN algorithm: for tweet tIDte from the test set, its

movie mIDte and fixed k, the algorithm first computes similarities to other movies in

training set and selects k most similar movies. Then for each tweet about a similar

movie the predicted ranking 𝑒̂ is increased according to similarity⁡𝑠, user engagement

e and bias of the tweeting user. The bias of the current movie is added in the final 𝑒̂

prediction too (see Figure 1).

function HybridBiasedKNN(tIDte ϵ TestSet, k){ 𝑒̂ = 0; extract

mIDte from tIDte, extract uIDte , extract mIDte content from IMDb

 /*compute similarity for all movies */

foreach(mID ϵ TrainSet){

 S[mID] = similarity(mIDte, mID); }

/*get k most similar movies */

108 Ladislav Peška, Peter Vojtáš

 8

 S̅ = getKMostSimilar(mIDte,S,k);

 /*get all tweets about movies in S̅ */

 foreach({uID, mID, e, 𝑠}:

 {uID, mID, e} ϵ TrainSet && S̅[mID]=⁡𝑠){𝑒̂ += 𝑠 * e / bias(uIDte);}

 𝑒̂ = bias(mIDte) + (𝑒̂ / sum(𝑠))

 return tIDte, 𝑒̂; }

Several meta modeling techniques were used to derive final predictions based

on hybrid k-NN and off-the-shelf algorithms predictions. We have experimented with

stacking with random trees, linear regression in cross-validation like setting and also

tried several variants of averaging selected predictions (omitting portion of highest

and lowest predictions for each tweet).

4.2 Results and Discussion

Table 2 contains results of several variants of hybrid k-NN algorithm as well as best

aggregated predictions (for the sake of clarity we show only a fraction of results ex-

pressing different aspects of the data). Generally spoken, the best performing individ-

ual recommender was SVM followed by several variants of hybrid k-NN. Almost all

experimented settings of hybrid k-NN outperformed other standard machine learning

methods (Table 1). Surprisingly, stacking based ensemble did not predict well, proba-

bly due to dependence of the results on user, which is hard to express with decision

trees. Also linear regression did not improve results, but averaging results of selected

algorithms provided a significant improvement over the best individual recommend-

ers.

While evaluating Hybrid Biased k-NN we focused mainly on the utility of each at-

tribute, using of user bias and also ways to combine results from multiple algorithm

settings. Only a fraction of our results can be shown due to the space reasons. We can

state that most of the attributes used as sole similarity measure provided good results

(especially IMDb metascore, director, country and language) – see Table 2.

Table 2. Results (nDCG@10) of Hybrid biased k-NN algorithm using only single content-

based attribute to compute similarity.

Avg rating 0.7918 Movie

name

0.7947 Language 0.8005

Awards 0.7652 Date 0.7962 Director 0.8029

Metascore 0.8057 Genre 0.7919 Actors 0.7930

of ratings 0.7964 Country 0.7984

One of our research questions was which value to use as user engagement e. The

experiments showed that if using directly sum of retweets and favorites, the algorithm

is highly dependent on using user bias. Another option was to use rank of the tweet in

the list of current user’s tweets ordered by user engagement (rank of the tweet should

better reflect considered success metric). Under this setting was algorithm less de-

pendent on using bias, however overall results were slightly worse.

Biased k-NN Similarity Content Based Prediction of Movie Tweets . . . 109

 9

Another question was how to interpret if all tweets of a user have constantly zero

user engagement. Omitting those users from the training set however resulted into the

decrease of performance so we suppose that even these tweets carries some negative

evidence. Comparing with off-the-shelf algorithms, almost all variants of Hybrid k-

NN achieved better results.

The neighborhood size k between 50 and 100 provided good results. We also tried

numerous variants of combining attribute similarities within the Hybrid k-NN algo-

rithm (omitting some attributes, weighting schemas) and ensemble methods (stacking,

linear regression), but so far the best results was achieved by simple average of single

attribute predictions omitting single top and bottom result – see Table 3.

Table 3. Results of Hybrid biased k-NN algorithm. No bias stands for omitting user and item

bias from the algorithm.

Method nDCG

Hybrid k-nn (Metascore, Language, Director, Country, Date, # ratings) 0.7927

Hybrid k-nn(Metascore, Language, Director, Country, Date, # ratings),no bias 0.7792

Linear Regression (Metascore, Language, Director, Country, Date, # ratings) 0.7913

AVG (Metascore, Language, Director, Country, Date, # of ratings), omit best

and worst prediction

0.8134

5 CONCLUSIONS AND FUTURE WORK

In this paper, we presented our solution to the RecSys Challenge 2014. After analysis

of the task, available data and current prediction techniques, we proposed a variant of

k-NN algorithm leveraging content-based similarity of movies. The algorithm per-

formed comparably with the best examined prediction techniques and the best results

were achieved after averaging results of multiple runs of hybrid k-NN and SVM. Our

solution was placed ninth in the challenge leader board. Some of our ideas didn’t

work as we expected, namely using more advanced ensemble techniques and using

ranks of the tweet instead of its user engagement resulted in worse predictions.

There are several directions of the future work. In our research so far we did not

pursue temporal dependence at all which could also affect user engagement. The de-

fined movie similarity should be also examined and tuned. We could also try to em-

ploy tweet similarity instead of movie similarity (we didn’t so far for the sake of

computation effectivity). Also other procedures to aggregate results from multiple

algorithms should be examined. Last but not least enhancing current dataset with e.g.

DBPedia popularity measures should be considered.

Concerning data structures for similarity search and indexing – the query object is

usually multimodal ([2]). Our objects have simple attributes and metrics is easy to

compute. Our query is initiated by the whole user’s history, in contrast with [21], [3].

Moreover the metrics is dynamically changing because of bias is changing. It is a

challenge to consider index structure for fast k-NN for online usage.

110 Ladislav Peška, Peter Vojtáš

 10

ACKNOWLEDGMENTS

The work was supported by the grant SVV-2014-260100, GAUK-126313 and P46.

Our source code is available on http://www.ksi.mff.cuni.cz/~peska/hybrid_knn.zip.

6 REFERENCES

1. Bell, R.; Koren, Y. & Volinsky Ch.: Modeling relationships at multiple scales to improve

accuracy of large recommender systems. In KDD '07, ACM, 2007, 95-104

2. Budíková P. Towards Large-Scale Multi-Modal Image Search, Doctoral thesis Masaryk

University, 2013

3. Alan Eckhardt, Tomás Skopal, Peter Vojtás: On Fuzzy vs. Metric Similarity Search in

Complex Databases. In FQAS 2009, Springer LNCS, Volume 5822, (2009) 64-75

4. Forbes, P. & Zhu, M. Content-boosted matrix factorization for recommender systems: ex-

periments with recipe recommendation. In RecSys 2011, ACM, 2011, 261-264

5. Esparza, S. G.; O'Mahony, M. P. & Smyth, B. CatStream: Categorizing Tweets for User

Profiling and Stream Filtering. In IUI 2013, ACM, 2013, 25-36

6. Hannon, J.; Bennett, M. & Smyth, B. Recommending Twitter Users to Follow Using Con-

tent and Collaborative Filtering Approaches. In RecSys 2010, ACM, 2010, 199-206

7. Lemire, D. & Maclachlan, A.: Slope One Predictors for Online Rating-Based Collabora-

tive Filtering. In SIAM Data Mining (SDM 2005)

8. Linden, G.; Smith, B. & York, J.: Amazon.com recommendations: item-to-item collabora-

tive filtering, Internet Computing, IEEE, 2003, 7, 76 - 80

9. Mihelčić, M., Antulov-Fantulin, N., Bošnjak, M., Šmuc, T., Extending RapidMiner with

recommender systems algorithms, In RCM 2012, Budapest, Hungary, 2012

10. Ostuni, V. C.; Di Noia, T.; Di Sciascio, E. & Mirizzi, R. Top-N recommendations from

implicit feedback leveraging linked open data, In RecSys 2013, ACM, 2013, 85-92

11. Passant, A. dbrec - Music Recommendations Using DBpedia In ISWC 2010, Springer,

LNCS, 2010, 209-224

12. Peska, L.; Vojtas, P.: Enhancing Recommender Systems with Linked Open Data. In FQAS

2013, Springer, LNCS 8132, 2013, 483-494

13. Peska, L.; Vojtas, P.: Hybrid Recommending Exploiting Multiple DBPedia Language Edi-

tions, In ESWC 2014 Linked Open Data-enabled Recommender Systems Challenge, 2014

14. Peska L., Vojtas P. Hybrid Biased k-NN to Predict Movie Tweets Popularity, poster,

http://2014.recsyschallenge.com/program/SemWexMFF_short_09-21.pdf

15. Peska, L. & Vojtás, P.: Recommending for Disloyal Customers with Low Consumption

Rate. In SOFSEM 2014, Springer, LNCS 8327, 2014, 455-465

16. Peska, L.; Vojtas, P.: Using Linked Open Data to Improve Recommending on E-

Commerce. In SerSy Worlshop at RecSys 2013, Hong Kong

17. RecSys Challenge 2014: User Engagement as Evaluation. Complete dataset.

https://github.com/sidooms/ MovieTweetings/tree/master/recsyschallenge2014

18. Ristoski, P.; Mencia, E.L. & Paulheim, H.: A Hybrid Multi-Strategy Recommender Sys-

tem Using Linked Open Data, In ESWC 2014, 2014

19. Ricci F.; Rokach L.; Shapira B. & Kantor P.B., editors, Recommender Systems Hand-

book, Springer Science + Business Media, LLC 2011

20. Said A., Dooms S., Loni B., Tikk D. Proceedings of the 2014 Recommender Systems

Challenge, http://dl.acm.org/citation.cfm?id=2668067

21. Skopal T., Bustos B.: On nonmetric similarity search problems in complex domains. ACM

Comput. Surv. 43(4): 34 (2011)

UnifiedViews: Towards ETL Tool for Simple yet
Powerfull RDF Data Management?

Tomáš Knap, Petr Škoda, Jakub Kĺımek, and Martin Nečaský

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
{knap, skoda, klimek, necasky}@ksi.mff.cuni.cz

UnifiedViews: Towards ETL Tool for Simple yet
Powerfull RDF Data Management?

Tomáš Knap, Petr Škoda, Jakub Klímek, and Martin Nečaský

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

{surname}@ksi.mff.cuni.cz

Abstract. We present UnifiedViews, an Extract-Transform-Load (ETL) frame-
work that allows users to define, execute, monitor, debug, schedule, and share
ETL data processing tasks, which may employ custom plugins (data processing
units, DPUs) created by users. UnifiedViews differs from other ETL frameworks
by natively supporting RDF data and ontologies. In this paper, we introduce Uni-
fiedViews and discuss future features of the tool towards simplicity of use for
non-RDF experts. We are persuaded that UnifiedViews helps RDF/Linked Data
publishers and consumers to address the problem of sustainable RDF data pro-
cessing; we support such statement by introducing a list of projects and other
activities where UnifiedViews is successfully exploited.

Keywords: RDF data processing, ETL, Linked Data

1 Introduction and Basic Concepts of UnifiedViews

The advent of Linked Data [1] accelerates the evolution of the Web into an exponentially
growing information space where the unprecedented volume of data offers information
consumers a level of information integration that has up to now not been possible.

Suppose a consumer building a data mart integrating information from various RDF
and non-RDF sources. There are lots of tools used by the RDF/Linked Data commu-
nity1, which may support various phases of the data processing; e.g., a consumer may
use any232 for extraction of non-RDF data and its conversion to RDF data, Virtuoso3

database for storing RDF data and executing SPARQL (Update) queries [2,3], Silk [6]
for RDF data linkage, or Cr-batch4 for RDF data fusion. Nevertheless, the consumer
who is preparing a data processing task producing the desired data mart typically has to
(1) configure every such tool properly (using a different configuration for every tool),
(2) implement a script for downloading and unpacking certain source data, (3) write his
own script holding the set of SPARQL Update queries refining the data, (4) implement
? This work was partially supported by a grant from the European Union’s 7th Framework Pro-

gramme number 611358 provided for the project COMSODE
1 http://semanticweb.org/wiki/Tools
2 https://any23.apache.org/
3 http://virtuoso.openlinksw.com/
4 https://github.com/mifeet/cr-batch

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 111–120, CEUR-WS.org/Vol-1343.

112 Tomáš Knap, Petr Škoda, Jakub Kĺımek, Martin Nečaský

Fig. 1. UnifiedViews framework – Definition of a data processing task

custom transformers which, e.g., enrich processed data with the data in his knowledge
base, (5) write his own script executing the tools in the required order, so that every
tool has all desired inputs when being launched, (6) prepare a scheduling script, which
ensures that the task is executed regularly, and (7) extend his script with notification
capabilities, such as sending an email in case of an error during task execution.

Maintenance of such data processing tasks is challenging. Suppose for example that
a consumer defines tens of data processing tasks, which should run every week. Further,
suppose that certain data processing task does not work as expected. To find the prob-
lem, the consumer typically has to browse/query the RDF data outputted by a certain
tool; to realise that, he has to manually launch the required tool with the problematic
configuration and load the outputted RDF data to the store, such as Virtuoso, support-
ing browse/query capabilities. Furthermore, when other consumers would like to pre-
pare similar data processing tasks, they cannot share the tools’ configurations already
prepared by the consumer.

The general problem RDF/Linked Data publishers and consumers are facing is that
they have to write most of the logic to define, execute, monitor, schedule, and share the
data processing tasks themselves. Furthermore, they do not get any support regarding
the debugging of the tasks. To address these problems, we developed UnifiedViews, an
Extract-Transform-Load (ETL) framework, where the concept of data processing task
is a central concept. Another central concept is the native support for RDF data format
and ontologies.

A data processing task (or simply task) consists of one or more data processing
units. A data processing unit (DPU) encapsulates certain business logic needed when
processing data (e.g., one DPU may extract data from a SPARQL endpoint or apply
a SPARQL query). Every DPU must define its required/optional inputs and produced
outputs. UnifiedViews supports an exchange of RDF data between DPUs. Every tool
produced by RDF/Linked Data community can be used in UnifiedViews as a DPU, if a
simple wrapper is provided5.

UnifiedViews allows users to define and adjust data processing tasks, using graphi-
cal user interface (an excerpt is depicted in Figure 1). Every consumer may also define
their custom DPUs, or share DPUs provided by others together with their configura-
tions. DPUs may be drag&dropped on the canvas where the data processing task is
constructed. A data flow between two DPUs is denoted as an edge on the canvas (see
Figure 1); a label on the edge clarifies which outputs of a DPU are mapped to which

5 https://grips.semantic-web.at/display/UDDOC/Creation+of+
Plugins

UnifiedViews: Towards ETL Tool for Simple yet Powerfull RDF DM 113

inputs of another DPU. UnifiedViews natively supports exchange of RDF data between
DPUs; apart from that, files and folders may be exchanged between DPUs.

UnifiedViews takes care of task schedulling, a user may configure UnifiedViews
to get notifications about errors in the tasks’ executions; user may also get daily sum-
maries about the tasks executed. UnifiedViews ensures that DPUs are executed in the
proper order, so that all DPUs have proper required inputs when being launched. Uni-
fiedViews provides users with the debugging capabilities – a user may browse and query
(using SPARQL query language) the RDF inputs to and RDF outputs from any DPU.
UnifiedViews allows users to share DPUs and tasks as needed.

The code of UnifiedViews is available under a combination of GPLv3 and LGPLv3
license6 at https://github.com/UnifiedViews .

2 Related Work

There are plenty of ETL frameworks for preparing tabular data to be loaded to data
warehouses, some of them are also opensource7 – for example Clover ETL (community
edition)8. In all these frameworks custom DPUs may be created in some way, but the
disadvantage of these non-RDF ETL frameworks is that there is no support for RDF
data format and ontologies in the framework itself. As a result, these non-RDF ETL
frameworks are, e.g., not prepared to suggest ontological terms in DPU configurations,
a feature important when preparing SPARQL queries or mappings of the table columns
to RDF predicates. Furthermore, these frameworks do not have a native support for
exchanging RDF data between DPUs; also the existing DPUs do not support RDF data
format, URIs for identifying things according to Linked Data principles. Therefore,
further, we discuss the related work in the area of RDF ETL frameworks.

ODCleanStore (Version 1)9, was the original Linked data management framework,
which was used as an inspiration for ODCleanStore (Version 2)10, the student’s project
implemented at Charles University in Prague and defended in March 2014 . Unified-
Views is based on ODCleanStore (Version 2). Linked Data Manager (LDM)11 is a Java
based Linked (Open) Data Management suite to schedule and monitor required ETL
tasks for web-based Linked Open Data portals and data integration scenarios. LDM
was developed by Semantic Web Company in Austria12. They currently decided to re-
place LDM, used by their clients, with UnifiedViews and further continue to maintain
UnifiedViews together with Charles University in Prague, the Czech Linked Data com-
pany Semantica.cz s.r.o.13, and Slovak company EEA s.r.o.14.

6 http://www.gnu.org/licenses/gpl.txt, http://www.gnu.org/
licenses/lgpl.txt

7 http://sourceforge.net/directory/business-enterprise/
enterprise/data-warehousing/etl/

8 http://www.cloveretl.com/products/community-edition
9 http://sourceforge.net/projects/odcleanstore/

10 https://github.com/mff-uk/ODCS/
11 https://github.com/lodms/lodms-core
12 http://www.semantic-web.at
13 http://semantica.cz/en/
14 http://eea.sk/

114 Tomáš Knap, Petr Škoda, Jakub Kĺımek, Martin Nečaský

DERI Pipes15 is an engine and graphical environment for general Web Data trans-
formations. DERI Pipes supports creation of custom DPUs; however, an adjustment of
the core is needed when a new DPU is added, which is not acceptable; in UnifiedViews,
it is possible to reload DPUs as the framework is running. DERI Pipes also does not
provide any solution for library version clashes; on the other hand, in UnifiedViews,
DPUs are loaded as OSGi bundles, thus, it is possible to use two DPUs requiring two
different versions of the same dependency (library) and no clashes arise. In DERI pipes,
it is not possible to debug inputs and outputs of DPUs.

Linked Data Integration Framework (LDIF)[5] is an open-source Linked Data inte-
gration framework that can be used to transform Web data. The framework consists of a
predefined set of DPUs, which may be influenced by their configuration; however, new
DPUs cannot be easily added16. LDIF provides a user interface to monitor results of ex-
ecuted tasks.; however, when compared with UnifiedViews, LDIF does not provide any
graphical user interface for defining and scheduling tasks, managing DPUs, browsing
and querying inputs from and output to the DPUs, and managing users and their roles
in the framework. LDIF also does not provide any possibility to share pipelines/DPUs
among users. On the other hand, LDIF provides possibility to run tasks using Hadoop17.

3 Impact of the UnifiedViews Framework

The goal of the OpenData.cz initiative18 is to extract, transform and publish Czech open
data in the form of Linked Data, so that the initiative contributes to the Czech Linked
(Open) Data cloud. For this effort, UnifiedViews framework is successfully used since
September 2013; so far we published tens of datasets, hundreds of milions of triples;
Figure 2 depicts an excerpt of the datasets (blue circles) published with UnifiedViews
and the integration of these datasets (links are depicted by blue arrows, pointing from
the linking dataset to the linked dataset).

Project INTLIB19 aims at extracting (1) references between legislation documents,
such as decisions and acts, (2) entities (e.g., a citizen, a president) defined by these
documents and (3) the rights and obligations of these extracted entities. UnifiedViews is
used in INTLIB to extract data from selected sources of legislation documents, convert
it to RDF data, and provide it as Linked Data.

COMSODE FP7 project20 has the goal to create a publication platform for pub-
lishing (linked) open data. UnifiedViews is used there as the core tool for converting
hundreds of original datasets to RDF/Linked Data.

UnifiedViews framework is being integrated to the stack of tools produced by the
LOD2 project21. As a result, anybody using tools from LOD2 stack, such as Virtuoso

15 http://pipes.deri.org/
16 http://ldif.wbsg.de/
17 http://hadoop.apache.org/
18 http://opendata.cz
19 http://www.isvav.cz/projectDetail.do?rowId=TA02010182
20 http://www.comsode.eu/
21 http://lod2.eu/

UnifiedViews: Towards ETL Tool for Simple yet Powerfull RDF DM 115

Fig. 2. Datasets published by opendata.cz initiative – an excerpt

and Silk, has also the possibility to use UnifiedViews. UnifiedVIews will be also used
in the recently starting EU H2020 project called YourDataStories22.

UnifiedViews framework is intended to be used for commercial purposes by com-
panies Semantica.cz s.r.o., Czech Republic, EEA s.r.o., Slovak Republic, Semantic Web
Company, Austria, TenForce, Belgium, to help their customers to prepare and process
RDF data.

4 Ongoing and Future Work Towards Simplicity of Use

In this section, we introduce the ongoing and future work on UnifiedViews towards sim-
plicity of use of the tool for non-RDF experts. Each section below describes the planned
feature. In the sections below, we are talking about a task designer – a person who cre-
ates new or adjusts existing data processing tasks. All sections contain motivation, goals
to be achieved, and at least outline how the goals will be realised.

4.1 Automated Schema Alignment and Object Linkage

Motivation. Suppose that a data processing task is created to daily extract tabular
data provided by Czech Hydrometeorological Institute about the air pollution in var-
ious cities of the Czech Republic and publish them as Linked Data. Publishing data
as Linked Data involves (1) alignment of the schema used for the published data with
well-known schemas (RDF vocabularies) used in the Linked Data community, e.g., in
Linking Open Data cloud23 and, (2) linkage of the published objects with the objects

22 https://www.insight-centre.org/content/your-data-stories
23 http://lod-cloud.net/

116 Tomáš Knap, Petr Škoda, Jakub Kĺımek, Martin Nečaský

already available in the Linked Data space, so that common objects in the datasets have
the same identifiers across the datasets. As a result, Linked Data applications work on
top of integrated datasets (thanks to (2)), which use common schema elements (thanks
to (1)).

If the task designer is a Linked Data expert, he is able to manually integrate the
data, e.g., link the RDF representation of the cities introduced in the source tabular
data to the generally accepted representation of the cities – identifiers used by the LAU
codes dataset24; based on that, Linked Data applications may not only show pollution
in the particular city, but also, e.g., level of carbon emissions in that city, demographic
statistics for the population in the city, number of child inhabitants in that city, etc.

Linked data experts may also ensure that published data is using well-know RDF
vocabularies used in Linked Open Data community to publish certain types of data; for
example, the task designer may ensure that instead of automatically generated predicate
ex:firstName holding first names of persons, the predicate foaf:givenName is
used. Such adjustments of the RDF data related to alignment of the schemas or object
linkage are not trivial and cannot be easily done by non-experts.

Goal to be achieved. UnifiedViews should simplify Linked Data publishing for non-
RDF experts by:

1. Automatically discovering that certain columns in the processed tabular represent
certain types of data (e.g., cities of the Czech Republic) and automatically mapping
values in this column to URIs taken from the preferred dataset for the given type of
data (e.g., from the dataset with LAU codes). As a result, all datasets use the same
identifiers for the same types of data, which realises the data integration and avoids
costly and adhoc application integration.

2. Automatically suggest the mappings of the used RDF vocabulary terms (e.g., pred-
icated) to well-known vocabulary terms (e.g., predicates), which increases the un-
derstandability of the data and reuse of the data by various applications.

To realise 1), first, it is necessary to identify that certain columns contain certain
types of values; such identification is always probabilistic and typically based on the
comparison of the name of the column with the list of names of the RDF classes and/or
based on matching sample data from the considered column against known codelists,
such as list of Czech cities; experiments are needed to decide the particular algorithm for
identification of types among input data. Second step to realise 1) is to apply predefined
Silk [6] rules for the given identified type of data within the column of the input tabular
data. To realise 2), various schema matching techniques has to be experimented [4].

4.2 Hiding Sparql Queries

Motivation. Linked data expert is able to query RDF data using SPARQL query lan-
guage [2,3], so for an expert it is enough to have one generic DPU, which is able to
execute arbitrary SPARQL query on top of processed RDF data. Nevertheless, using

24 http://opendata.cz/linked-data

UnifiedViews: Towards ETL Tool for Simple yet Powerfull RDF DM 117

SPARQL query language for rather typical and simple operations with the data, such as
renaming predicates or replacing predicate’s value based on a regular expression, may
be considered as too heavy-weight and difficult for RDF beginners and as tedious for
experienced users.

Goal to be achieved. UnifiedViews should simplify work with SPARQL query lan-
guage by providing a set of DPUs for executing rather typical and simple operation on
top of RDF data; such DPUs may be configured via a configuration dialog, SPARQL
query behind is completely hidden from the task designer.

To realise the goal, list of typical operation should be written down and DPUs should
be prepared. Discussion with the users – task designers – is crucial to focus on the most
typically used operations on top of RDF data.

4.3 Autocompleting Terms from Well-known Vocabularies

Motivation. In many cases, e.g., when aligning vocabulary terms as described in Sec-
tion 4.1 or when configuring DPU hiding complexity of SPARQL query language as
described in Section 4.2, task designer has to define certain vocabulary terms. Since the
number of well-known vocabularies is quite high, task designer may easily use wrong
vocabulary term or misspell the term.

Goal to be achieved. As the task designer is configuring DPUs, UnifiedViews should
suggest and autocomplete vocabulary terms from well-known Linked Data vocabular-
ies. Task designer should be not only provided with the suggested term, but also with
the description of the term, its formal definition, its recommended usage etc.

To realise this goal, data processing tasks should be prepared to populate RDF
database regularly with the well-known Linked Data vocabularies – such knowledge
base is then used for suggesting and autocompleting the vocabulary terms. Selected
components of the DPUs’ configurations, e.g., text fields, should by design support
suggesting of terms from well known vocabularies – so any DPU developer may use
such vocabulary autocomplete aware text field when defining configuration dialog for
his DPU.

4.4 Sustainable RDF Data Processing

Motivation. As the task designer updates the task, the interconnections among and
configurations of the DPUs comprising that task are adjusted. As a result, task designer
may introduce errors in the definition of the task yielding in erroneous or no data pro-
duced by the task.

Goal to be achieved. UnifiedViews should address the problem of sustainable RDF
data processing by allowing task designer to define for each DPU a set of SPARQL
queries, which tests that the output data produced by the given DPU satisfies certain
conditions. Such set of SPARQL queries for testing data outputted by the DPU plays

118 Tomáš Knap, Petr Škoda, Jakub Kĺımek, Martin Nečaský

similar role as standard JUnit tests – to test that any change to the DPU configuration did
not change the produced data of that DPU in an unexpected way. Task designer should
be supported with the autocomplete feature (described in 4.2) as he is specifying the
SPARQL unit tests.

To realise this goal, every DPU detail should be extended with the possibility to
define set of SPARQL ASK queries to realise unit testing.

4.5 Wizards for Simple Definition of Data Processing Tasks

Motivation. Defining data processing tasks typically requires detailed knowledge of
the DPUs that are available in the deployed UnifiedViews instance; task designer has to
know which DPUs are suitable for the task at his hand, how it should be configured and
interconnected with other DPUs.

Goal to be achieved. It should be possible to define simple tasks without the knowl-
edge of the DPUs, its configurations. UnifiedViews will contain so-called wizards,
which provides task designers step by step guides for defining new data processing
tasks – at least for typical types of data processing tasks, e.g, extracting tabular data and
publishing it as Linked Data, or extracting data from relational databases and publishing
it as Linked Data.

To realise the goal, list of typical types of data processing tasks should be written
down and wizards should be prepared for such tasks. Discussion with the users – task
designers – is crucial to focus on the most typical types of tasks. The idea of incorpo-
rating wizards to existing UnifiedViews frontend is as follows: when a task designer
creates new pipeline, he may either manually define the task or start the wizard which
will guide him through the process of task preparation; task designer may then manually
finetune the definition of the task.

4.6 Assessing Quality of Produced Data, Recommendation of Cleansing DPUs

Motivation. As the goal of a task designer is to produce high quality data, the task de-
signer should be informed about any problems in the data, e.g., w.r.t. syntactic/semantic
accuracy of the produced Linked Data or completeness of the published dataset. Fur-
thermore, if such problems may be corrected, they should be corrected.

Goal to be achieved. UnifiedViews should provide a set of DPUs assessing the quality
of the produced data and set of DPUs being able to cleanse the problems in the data.
UnifiedViews should also automatically recommend cleansing DPUs for data process-
ing tasks based on the problems revealed in the data.

To realise the goal, list of quality assessment and cleansing DPUs should be imple-
mented, being inspired by the list of data quality dimensions and metrics relevant for
Linked Data [7]. The recommendation of cleansing DPUs should be based on the types
of quality assessment DPUs which reported problems.

UnifiedViews: Towards ETL Tool for Simple yet Powerfull RDF DM 119

4.7 Evolution of DPUs

Motivation. DPUs may evolve as the time goes, different tasks use different versions of
the same DPU. When the version of the DPU is updated, configuration used in the tasks
must be also updated without the needed to reconfigure the DPU by the task designer.

Goal to be achieved. UnifiedViews must be able to cope with the changing versions of
the DPUs; each new version of the DPU may bring changes to the DPU’s configuration.
UnifiedViews must be able to automatically convert outdated configuration, so that it
may be used in the latest version of the DPU.

To realise the goal, interface of the DPUs should be extended, so that DPU devel-
opers may provide a migration method converting previous configuration to the current
DPU configuration. As a result, if outdated version of the configuration is encountered
and should be updated to the correct version, a sequence of these migration methods
may be automatically executed by UnifiedViews (if these methods are properly pro-
vided by the DPU developer).

5 Conclusions

We presented UnifiedViews, an ETL framework with a native support for processing
RDF data. The framework allows to define, execute, monitor, debug, schedule, and
share data processing tasks. UnifiedViews also allows users to create custom plugins -
data processing units.

We discussed future intended features of the tool w.r.t simplicity of use of the tool
for non-RDF experts or those not familiar with all Linked Data vocabularies, datasets
etc. For each intended feature we discussed its motivation, goals and its realisation.

We are persuaded that UnifiedViews is a matured tool, which addresses the major
problem of RDF/Linked Data consumers – the problem of sustainable RDF data pro-
cessing; we support such statement by introducing a list of projects where UnifiedViews
is successfully used and mention two commercial exploitations of the tool.

References

1. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. International Journal
on Semantic Web and Information Systems, 5(3):1 – 22, 2009.

2. S. H. Garlik, A. Seaborne, and E. Prud’hommeaux. SPARQL 1.1 Query Lan-
guage. W3C Recommendation, 2013. http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/, Retrieved 20/03/2014.

3. P. Gearon, A. Passant, and A. Polleres. SPARQL 1.1 Update. Technical report, W3C,
2013. Published online on March 21st, 2013 at http://www.w3.org/TR/2013/
REC-sparql11-update-20130321/, Retrieved 20/03/2014.

4. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. The
VLDB Journal, 10(4):334–350, Dec. 2001.

5. A. Schultz, A. Matteini, R. Isele, C. Bizer, and C. Becker. LDIF : Linked Data Integration
Framework. In Proceedings of the Second International Workshop on Consuming Linked Data
(COLD), Bonn, Germany, 2011. CEUR-WS.org.

120 Tomáš Knap, Petr Škoda, Jakub Kĺımek, Martin Nečaský

6. J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk - A Link Discovery Framework for
the Web of Data. In Proceedings of the WWW2009 Workshop on Linked Data on the Web
(LDOW), Madrid, Spain, 2009. CEUR-WS.org.

7. A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer. Quality assessment
for linked data: A survey. Semantic Web Journal, 2015.

Aspect-oriented User Interface Design for
Android Applications1

Jǐŕı Šebek, Karel Richta

Department of Computer Science and Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague, Karlovo nám. 13,
121 35 Praha 2, Czech Republic
{sebekji1,richta}@fel.cvut.cz

Aspect-oriented User Interface Design for Android

Applications
1

Jiří Šebek, Karel Richta

Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University in Prague, Karlovo nám. 13,

121 35 Praha 2, Czech Republic

{sebekji1,richta}@fel.cvut.cz

Abstract. This paper deals with the design of an effective Android framework

that will allow a developer to create Android applications easily in a short time

with the help of aspect-oriented approach. Our solution enables to deal with

separated aspects like security, layout, input validation, data binding and

presentation independently. Our presented framework is compared to conven-

tional development approach of mobile applications and also is compared to the

framework Aspect Faces that is also uses aspect-oriented approach, but is de-

signed for Java EE applications. Each aspect of framework was tested and it

was proven that our framework is effective in the following areas. It does not

slow down the developed application according to the same application created

with XML, it makes the code to be more readable, and it makes development

faster, and reduces the number of code lines that developer has to write down.

Keywords aspect-oriented approach, aspect-driven design, entity inspection

based approach, run-time aspect model, reduced maintenance and development

efforts

1 Introduction

The main aim of this paper is to present a design of a new Android framework that

will allow a developer to create Android applications with minimal effort, in a short

time, and with the help of an aspect-oriented approach.

In the conventional approach, we are mixing a code of all miscellaneous aspects

together in one big code. The aspect-oriented approach in a software development

means that we are focusing on separated aspect. These aspects are: security, layout,

1 This work has been partially supported by the Grant Agency of CTU No.

SGS15/210/OHK3/3T/13 and partially also by the AVAST Foundation

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 121–130, CEUR-WS.org/Vol-1343.

122 Jǐŕı Šebek, Karel Richta

input validation, data binding and presentation. As a result, the developer using as-

pect-oriented approach can write less amount of code, which is moreover reusable.

We also avoid a spaghetti code (code that has tangled structure), and a redundancy of

code, and other bad habits in the programming.

2 Background

Within all operation systems (OS) for a mobile device, the Android is the most ex-

panded as shown in Figure 1. Because of that, applications targeted for Android are

very desirable. As you can see from Figure 1, the ratio of applications targeted for the

Android OS for mobile device is steadily growing up. This is the reason why develop-

ers cannot omit the Android in their analysis.

Fig 1. Distribution of all OS for mobiles (adopted from [11])

2.1 Conventional Approach

In conventional development approach of Android applications, every screen has two

parts. The first part is Java class that extends Activity class and where you can place

Aspect-oriented User Interface Design for Android Applications 123

your logic and you have to connect your Java class to view. That view is a second part

of the screen description and can be done in XML or generated by a program. Usually,

XML choice is better because you can separate, at least, layout from remaining code.

The readability depends on the developer and sometimes it’s hard to maintain result-

ing code.

2.2 Aspect-Oriented Approach

Aspect-oriented programming (AOP) approach is a paradigm whose main goal is in-

creasing modularity. Usually the code of applications can be separated into logical

sections. These logical sections are called aspects. AOP supports separating develop-

ment of any aspects option, resulting in a better code. In OOP designs, we use classes

to describe only instances and their attributes. That is the representation for data only.

Therefore, the best way to do things in aspect way approach is to add these additional

pieces of information to the same representation (class). This is called Rich Entity

Aspect/Audit Design (READ) [2,3]. Above any instance, attribute or method you can

place annotation containing additional information. By this procedure, we can add all

required aspects.

3 Related Works

Approach in the articles [2,3] is not the only way how to generate User Interfaces (UI)

from the model. The topic of UI generated from domain objects is mentioned in [6,7].

The framework is called Meta-widget and it is based on Model driven development

(MDD). The user just creates objects and puts them to Meta-widget’s framework. The

UI is generated according to the model. Meta-widget supports a lot of technologies

from Android, Google Web Toolkit (GWT), HTML 5 (POH5), JavaScript to JSF and

JSP. Meta-widget works in three basic steps. First, Meta-widget comes with a UI

component native to your existing front-end. Second, Meta-widget inspects, either

statically or in the run-time, your existing back-end architecture. Third, Meta-widget

creates native UI subcomponents matched to the back-end. In articles [2,3], the other

aspects were added based on annotations. Meta-widget adds this information based on

existing back-end of any applications.

Model driven development (MDD) is based on the idea that the model should be

primary centralized place for all information. This model is then compiled or trans-

formed by another way into the deployed application code. The benefits are reduction

of information in application and concentration of the structure of information into

one place. The disadvantages can be adaptation and evolution management [8]. This

approach does not go well with OOP, because we need to maintain the interconnection

between the models with the back-end of the application. There exist another tools,

how to describe an additional information. These tools are called in the MDD the

Domain-Specific Languages (DSL). Sometimes, they are informally called mini-

languages, because they describe the additional information inside the other language.

There are a wide variety of DSL. Domain-specific languages can be a visual dia-

124 Jǐŕı Šebek, Karel Richta

gramming language, programmatic abstractions, declarative language (OCL) or even

whole languages like XSLT. As we can see, some of them evolve into the program-

ming tools that are frequently used (XSLT).

Generative programming (GP) is a specific type of a programming that generates

the source code from domain-specific code. The goal is to improve productivity of

developer, make the way between application code and domain model, support reuse,

adaptation, and simplify management of components [12].

Meta-programming (MP) is a technique, which allows the developer to modify the

structure and the behavior of the applications at the run-time. The reflection is one of

the options how to implement the MP [5]. The developers can inspect the classes, the

fields, the methods at the compile time and they do not even have to know their names

at the compile time. The MP allows developers to adapt the application to the differ-

ent situations. The bottleneck of this solution is the performance. The applications are

significantly slower with the MP and are harder to test or debug then the applications

without the MP. To deal with this problem the developer can use some cache.

4 Design of Aspect-Oriented Framework

Fig. 2. Analytic model of classes

The analytic model of classes is a diagram which captures a general static view of the

application. The purpose of this is to illustrate types of objects, variables and their

relationships. Figure 2 shows class diagram of our framework. It does not contain all

of the files (classes) because there would be much more objects and the diagram

would not be easy to read, but it contains all packages and main functionality.

Aspect-oriented User Interface Design for Android Applications 125

Fig. 3. Sequence diagram of the framework

The sequence diagram is used for a visualization of interactions between processes

(objects). It also displays the right order of these interactions. It is a behavioral type of

a diagram. Therefore, it is the best choice for showing how the framework works. The

diagram includes parallel vertical lines called lifelines and horizontal arrows that rep-

resent the messages exchanged between them in the right order as they appear. In fig-

ure 3, there is shown basic sequence diagram of our framework. It shows what hap-

pens from the start of the application using the framework.

The mandatory action is the creation of a new Presentation object. Then, the main

activity calls methods buildCache(), and setDataPresentationFromCache() of this

object. BuildCache() method creates new cache from given instances. UI can be creat-

ed much faster from cache, which includes information in hashmaps. The time to re-

trieve this information is then constant. It makes final application much faster, for ex-

ample in the case of a fragment style application, where user is often sliding between

screens that he/she already visited. When cache is already created, it is not created

126 Jǐŕı Šebek, Karel Richta

again. SetDataPresentationFromCache() method creates whole UI from cache. It

means layout, data presentation and data binding. The other options of the framework

are voluntary, like on the diagram. If the developer wants to validate default data in

created instances, he/she just creates the InputValidation object and call

inputValidate(). The framework will care about the rest via created rich entity (normal

instance with attributes and with annotations). In this diagram, it is also captured when

the user changes the value of element it will call the listener which will call the

inputValidate(). If the user sends the form with data, it will also call inputValidate().

Fig. 4. Usage of the framework

4.1 Usage of the Framework

In the Figure 4, it is shown how our framework works all together. The basic element

is entity (Java object) enriched by other information in form of annotations. Then we

have to call the framework and also give over arrayList of instances. Everything is

generic; framework does not need to know exact type of object which was inserted

into arrayList. The last part in the figure 4 shows the result after launching the appli-

cation.

Aspect-oriented User Interface Design for Android Applications 127

5 Comparison of Aspect-Oriented Approach and Conventional

Approach for Android Platform

In the conventional approach, the presentation layer was implemented in XML, the

data binding in Java, input validation in Java, layout in XML and security in Java. The

project, which was created in conventional way, was developed to implement one

form that is the same as the first one in the example of aspect-oriented approach with

four attributes (created with our framework). All aspects was coded in common way

and not stored in annotations like in the aspect-oriented approach. If we want to do

another form, we will have to write the similar amount of code. This code is redundant

and is making application hard to maintain. The big difference against AOP is in secu-

rity, where in aspect-oriented approach we just do not create particular element. Here,

we create all elements and then we are changing visibility if the user has particular

user role. The advantages of the aspect-oriented approach are shown in Table 1.

Table 1. Comparison of AOP and conventional approach

Feature AOP Conventional approach

Reuse yes no

Run-time approach Yes no

Reduce code Yes no

Better to maintain Yes no

Separated each aspects Yes no

Readable code Yes No (depends on developer)

Time to launch the form

(average)

119,5ms 193,1ms

Standard deviation (std) 5,35ms 14,7ms

Lines of code (LOC) 29 495

Here, we can see that AOP is definitely better in reuse, reduction of the code, mainte-

nance of the code, separation of aspects, and readability of code. The reuse in conven-

tional approach means copy, paste and edit. That is not a good approach. From Table

1, we can also see the difference in lines of code (LOC). The AOP has 4 lines of Java

code and 25 lines of Java class code. The conventional approach has 16 LOC of Java

class, 377 lines of Java code and 102 lines of XML code. LOC where counted by reg-

ular expression in search function in eclipse IDE. LOC is counted from the view of

developer so the body of the framework is not counted. As we know, this is example

that has only 4 attributes. If this number rises for example to eight, the LOC for con-

ventional approach will also rise by similar amount of lines. On the other hand, AOP

will increase only by about ten LOC (four lines plus some annotation).

The time to launch the form is also an interesting item, because as you can see in

Table 1, AOP is faster than conventional approach. The reason of this is the creation

of view by XML which is slower than the view created by a program. This time is

calculated when the form is first launched. When user is returning to this activity it is

even faster for AOP because it is using a cache with the constant asymptotic com-

128 Jǐŕı Šebek, Karel Richta

plexity of access to data. The average time to launch any form was calculated from the

list of ten data that was taken as you can see in Table 2.

Table 2. Table of launching times

Test number Launch time with

AOP (ms)

Launch time with Conventional

approach (ms)

1 128 196

2 114 171

3 121 210

4 117 222

5 110 183

6 126 175

7 119 201

8 121 188

9 115 196

10 124 189

6 Comparison of Aspect-Oriented Programming (AOP) for

Android Platform and Java EE

The aspect-oriented framework, called Aspect Faces for Java EE [2,3], was created on

a similar idea as for Java EE, but they are not implemented in a same way as presented

framework for Android. The framework for Java EE [2,3] is called by the tag in a

view part as we can see the usage in Listing 1. Mostly it is placed in JSP page or in

some xhtml page. In Listing 1, there is an example how to create two forms.

Listing 1. Usage of Aspect Faces in Java EE

<!-- Form1 generated via Aspect Faces -->

<af:ui instance="#{bean.entity1}" edit="true"/>

<!-- Form2 generated via Aspect Faces -->

<af:ui instance="#{bean.entity2}" edit="true"/>

Instead of this approach, the framework for Android is called in Java activity class

that user creates. The reason for this is simple. In Android application structure, the

Java classes are mandatory unlike in Java EE where if you just want the UI you do not

have to create Java bean or some logic behind. Furthermore, the XML files that repre-

sent the UI are optional, because you can create UI by a program. If you create a but-

ton to another screen in Android application, you are not connecting the button to call

another view, but first, you call the Java activity class and in this class, we can choose

how to create UI. In Listing 2, there is the basic example how to create form by our

framework in Android.

Aspect-oriented User Interface Design for Android Applications 129

Listing 2. Usage of framework in Android

Presentation p = new

Presentation(this,listOfInstances);

p.buildCache(arraylistOfInstances, afContext);

View v = p.setDataPresentationFromCache();

setContentView(v);

Both frameworks are using meta-models to save information about instances that are

rendered in forms and also both of them are also working in the run-time. One big

difference is in the future potential of the development. A native application has the

advantage against web application, that it is compatible with the devices hardware

such as motion sensors, environmental sensors, position sensors, and camera. The

motion sensors include accelerometers, gravity sensors, gyroscopes and rotational

vector sensors. The environmental sensors include barometers, photometers and ther-

mometers. The position sensors include orientation sensors and magnetometers. The

web applications are limited in this way. Aspect Faces on Java EE can get a position

from GeoIP, but nothing more. This information from sensors can be used by frame-

work and can react to that information.

7 Conclusion and Future Work

This paper results from diploma thesis [9] and contains background of aspect-oriented

approach, and describes the design of the new framework for an Android application

development. We compare our framework with the conventional approach to Android

application development, and to Java EE framework called Aspect Faces. Our frame-

work seems to be fast, clear, easy scalable, readable, reusable, improves the mainte-

nance and it was tested. The results of tests show us, that our framework enables faster

development than standard conventional approach to Android application develop-

ment. It is true that, when we comparing programming approach with the approach

using XML, XML has the disadvantage in the speed of launching.

In the future work we will focus on extending the framework context with the

hardware devices such as motion sensors, environmental sensors, position sensors, and

camera. The application can then easily react to change devices position etc. Also the

framework will be tested not only against XML approach, but also against another

programmatic approach. Another aim of future work will be to test our framework not

only by the launching time, but also by time, when screens are just changing. The ex-

pectation is, of course, that our framework will be much faster due to the cache sys-

tem.

130 Jǐŕı Šebek, Karel Richta

References

1. Czarnecki, K. and Eisenecker, U. W.: Generative programming: methods, tools, and appli-

cations. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000)

2. Černý, T., Donahoo, M. J., and Song, E.: Towards effective adaptive user interfaces de-

sign. In Proceedings of the 2013 Research in Adaptive and Convergent Systems (RACS

’13). ACM, New York, NY, USA, 373-380. DOI=10.1145/2513228.2513278,

http://doi.acm.org/10.1145/2513228.2513278 (2013)

3. Černý, T., Čemus, K., Donahoo, M. J., and Song, E.: Aspect-driven, Data-reflective and

Context-aware User Interfaces Design. In: Applied Computing Review, Vol. 13, Issue 4,

ACM, New York, NY, USA, 53-65. ISSN 559-6915,

http://www.sigapp.org/acr/Issues/V13.4/ACR-13-4-2013.pdf (2013)

4. Černý, T. and Song, E.: UML-based enhanced rich form generation. In: Proceedings of the

2011 ACM Symposium on Research in Applied Computation (RACS ’11). ACM, New

York, NY, USA, 192-199. DOI=10.1145/2103380.2103420,

http://doi.acm.org/10.1145/2103380.2103420 (2011)

5. Forman, I. R. and Forman, N.: Java Reflection in Action (In Action series). Manning Pub-

lications Co., Greenwich, CT, USA (2004)

6. Kennard, R. and Leaney, J.: Towards general purpose architecture for UI generation.

Journal of Systems and Software, 83(10) http: / / metawidget . sourceforge . net / media /

downloads / Towards a General Purpose Architecture for UI Generation.pdf (2010) 1896-

1906

7. Kennard, R. and Robert, S.: Application of software mining to automatic user interface

generation. In SoMeT’08. http: / / metawidget . sourceforge . net / media / downloads /

Application of Software Mining to Automatic User Interface Generation.pdf (2008) 244 -

254

8. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F. and Solberg. A.: Models@run.time to

support dynamic adaptation. Computer, 42(10) (Oct. 2009) 44-51

9. Šebek, J.: Aspect-oriented user interface design for Android applications, diploma thesis.

Department of Computer Science, CTU FEE, Prague (2014)

Internet resources

10. Android Activity Lifecycle. Android Activity Lifecycle [online]. 12/22/2011, [cit. 2014-

04-28]. http: / / www . mikestratton . net / 2011 / 12 / android-activity-lifecycle (2011)

11. Android vs iOS. Android vs iOS [online]. November 11 2013 3:22 PM [cit. 2014-04-28].

http: / / www . ibtimes . com / android-vs-ios-whats-most-popular-mobileoperating-

system-your-country-1464892 (2013)

12. Introduction To Android Mobile Operating System. Android Development, Tutorials

[online]. August 1, 2011 [cit. 2014-04-29]. http://www.blogsaays.com/tutorial-part1-

introduction-android-mobile-operating-system (2011)

13. Jak vypadá Android uvnitř. Android developers [online]. 31. December 2011 [cit. 2014-

04-28]. http://www.androidmarket.cz/android/jak-vypada-android-uvnitr-anebco-je-rom-

kernel-bootloader-a-dalsi (2011)

A Survey on Music Retrieval Systems Using
Microphone Input

Ladislav Marš́ık1, Jaroslav Pokorný1, and Martin Ilč́ık2

1 Dept. of Software Engineering, Faculty of Mathematics and Physics
Charles University, Malostranské nám. 25, Prague, Czech Republic

{marsik, pokorny}@ksi.mff.cuni.cz
2 The Institute of Computer Graphics and Algorithms,

Vienna University of Technology, Favoritenstraße 9-11, Vienna, Austria
1040 Vienna, Austria

ilcik@cg.tuwien.ac.at

A Survey on Music Retrieval Systems Using
Microphone Input

Ladislav Marš́ık1, Jaroslav Pokorný1, and Martin Ilč́ık2

1 Dept. of Software Engineering, Faculty of Mathematics and Physics
Charles University, Malostranské nám. 25, Prague, Czech Republic

{marsik, pokorny}@ksi.mff.cuni.cz
2 The Institute of Computer Graphics and Algorithms,

Vienna University of Technology, Favoritenstraße 9-11, Vienna, Austria
1040 Vienna, Austria

ilcik@cg.tuwien.ac.at

Abstract. Interactive music retrieval systems using microphone input
have become popular, with applications ranging from whistle queries to
robust audio search engines capable of retrieving music from a short sam-
ple recorded in noisy environment. The availability for mobile devices
brought them to millions of users. Underlying methods have promis-
ing results in the case that user provides a short recorded sample and
seeks additional information about the piece. Now, the focus needs to
be switched to areas where we are still unable to satisfy the user needs.
Such a scenario can be the choice of a favorite music performance from
the set of covers, or recordings of the same musical piece, e.g. in classical
music. Various algorithms have been proposed for both basic retrieval
and more advanced use cases. In this paper we provide a survey of the
state-of-the-art methods for interactive music retrieval systems, from the
perspective of specific user requirements.

Keywords: music information retrieval, music recognition, audio search engines,

harmonic complexity, audio fingerprinting, cover song identification, whistling query

1 Introduction

Music recognition services have gained significant popularity and user bases in
the recent years. Most of it came with the mobile devices, and the ease of using
them as an input for various retrieval tasks. That has led to the creation of
Shazam application3 and their today’s competitors, including SoundHound4 or
MusicID5, which are all capable of retrieving music based on a recording made
with a smartphone microphone. Offering these tools hand in hand with a con-
venient portal for listening experience, such as Last.fm6 or Spotify7, brings a

3 http://www.shazam.com
4 http://www.soundhound.com
5 http://musicid2.com
6 http://www.last.fm
7 http://www.spotify.com

M. Nečaský, J. Pokorný, P. Moravec (Eds.): Dateso 2015, pp. 131–140, CEUR-WS.org/Vol-1343.

132 Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

whole new way of entertainment to the users’ portfolio. In the years to come,
the user experience in these applications can be enhanced with the advances in
music information retrieval research.

1.1 Recent Challenges in Music Retrieval

With each music retrieval system, a database of music has to be chosen to propel
the search, and if possible, satisfy all the different queries. Even though databases
with immense numbers of songs are used, such as the popular Million Song
Dataset [1], they still can not satisfy the need to search music in various genres.
At the time of writing of this paper, the front-runners in the field as Shazam
Entertainment, Ltd., are working on incorporating more Classical or Jazz pieces
into their dataset, since at the moment their algorithm is not expected to return
results for these genres [22].

Let us now imagine a particular scenario – the user is attending dance classes
and wishes his favorite music retrieval application to understand the rhythm of
the music, and to output it as a result along with other information. Can the
application adapt to this requirement?

Or, if the user wishes to compare different recordings of the same piece in
Classical music? Can the resulting set comprise of all such recordings?

There are promising applications of high-level concepts such as music har-
mony to aid the retrieval tasks. De Haas et al. [2] have shown how traditional
music theory can help the problem of extracting the chord progression. Khad-
kevich and Omologo [9] showed how the chord progression can lead us to an
efficient cover identification. Our previous work [13] showed how music harmony
can eventually cluster the data by different music periods. These are just some
examples of how the new approaches can solve almost any music-related task
that the users can assign to the system.

1.2 Outline

In this work we provide a survey of the state-of-the-art methods for music re-
trieval using microphone input, characterized by the different user requirements.
In Section 2 we describe the recent methods for retrieving music from a query cre-
ated by sample song recording using a smartphone microphone. In Section 3 we
show the methods for the complementary inputs such as humming or whistling.
We also look at the recent advances in cover song identification, in Section 4.
Finally, we form our proposals to improve the recent methods, in Section 5.

2 Audio Fingerprinting

We start our survey on music retrieval systems with the most popular use case –
queries made by recording a playback sample from the microphone and looking
for an exact match. This task is known in music retrieval as audio fingerprinting.
Popularized by the Shazam application, it became a competitive field in both
academic and commercial research, in the recent years.

A Survey on Music Retrieval Systems Using Microphone Input 133

2.1 Basic Principle of Operation

Patented in 2002 by Wang and Smith [21], the Shazam algorithm has a massive
use not only because of the commercial deployment, but mainly due to its ro-
bustness in noisy conditions and its speed. Wang describes the algorithm as a

”
combinatorially hashed time-frequency constellation analysis“ of the audio [22].

This means reducing the search for a sound sample in the database to a search
for a graphical pattern.

Fig. 1. On the left, time-frequency spectrogram of the audio, on the right, frequency
peaks constellation and combinatorial hash generation. Image by Wang and Smith [22].

First, using a discrete-time Fourier transform, the time-frequency spectro-
gram is created from the sample, as seen on Figure 1 on the left. Points where
the frequency is present in the given time are marked darker, and the brightness
denotes the intensity of that particular frequency. A point with the intensity
considerably higher than any of its neighbors is marked as a peak. Only the
peaks stay selected while all the remaining information is discarded, resulting in
a constellation as depicted on Figure 1 on the right. This technique is also used
in a pre-processing step to extract the constellation for each musical piece in the
database.

The next step is to search for the given sample constellation in the space of
all database constellations using a pattern matching method. Within a single
musical piece, it is the same as if we would match a small transparent foil with
dots to the constellation surface. However, in order to find all possible matches,
a large number of database entries must be searched. In our analogy, the trans-
parent foil has the

”
width“ of several seconds, whereas the width of the surface

constellation is several billion seconds, when summed up all pieces together.
Therefore, optimization in form of combinatorial hashing is necessary to scale
even to large databases.

134 Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

As seen on Figure 1 on the right, a number of chosen peaks is associated
with an

”
anchor“ peak by using a combinatorial hash function. The motivation

behind using the fingerprints is to reduce the information necessary for search.
Given the frequency f1 and time t1 of the anchor peak, the frequency f2 and
time t2 of the peak, and a hash function h, the fingerprint is produced in the
form:

h(f1, f2, t2 − t1)|t1
where the operator | is a simple concatenation of strings. The concatenation
of t1 is done in order to simplify the search and help with later processing,
since it is the offset from the beginning of the piece. Sorting fingerprints in the
database, and comparing them instead of the original peak information results in
a vast increase in search speed. To finally find the sample using the fingerprint
matching, regression techniques can be used. Even simpler heuristics can be
employed, since the problem can be reduced to finding points that form a linear
correspondence between the sample and the song points in time.

2.2 Summary of Audio Fingerprinting and Benchmarking

Similar techniques have been used by other authors including Haitsma and
Kalker [6] or Yang [23]. The approach that Yang uses is comparison of indexed
peak sequences using Euclidean distance, and then returning a sorted list of
matches. His work effectively shows how exact match has the highest retrieval
accuracy, while using covers as input result in about 20% decrease in accuracy.
As mentioned earlier, there are many other search engines besides Shazam ap-
plication, each using its own fingerprinting algorithm. We forward the reader to
a survey by Nanopoulos et al. [14] for an exhaustive list of such services.

To summarize the audio fingeprinting techniques, we need to highlight three
points:

1. Search time is short, 5-500 milliseconds per query, according to Wang.
2. Algorithms behave greatly in the noisy environment, due to the fact that

the peaks remain the same also in the degraded audio.
3. Although it is not the purpose of this use case, an improved version of

the search algorithms could abstract from other characteristics, such as the
tonal information (tones shifted up or down without affecting the result, we
suggest Schönberg [16] for more information about tonality). However, the
algorithms depend on the sample and the match being exactly the same in
most of the characteristics, including tempo.

In the end, the algorithms are efficient in the use case they are devoted to,
but are not expected to give results other than the exact match of the sample,
with respect to the noise degradation.

Interestingly enough, a benchmark dataset and evaluation devoted to audio
fingerprinting has only commenced recently8, although the technology has been
around for years. We attribute this to the fact that most of the applications were
developed commercially.

8 http://www.music-ir.org/mirex/wiki/2014:Audio Fingerprinting

A Survey on Music Retrieval Systems Using Microphone Input 135

2.3 New Use Cases in Audio Search

There are other innovative fields emerging, when it comes to audio search. No-
table are: finding more information about a TV program or advert, or recom-
mendation of similar music for listening. Popularized first by the Mufin internet
radio9 and described by Schonfuss [17], these types of applications may soon
become well-known on the application market.

3 Whistling and Humming Queries

Interesting applications arose with the introduction of
”
whistling“ or

”
hum-

ming“ queries. In this scenario, the user does not have access to the performance
recording, but remembers the melody of the music she wants to retrieve. The
input is whistling or humming the melody into the smartphone microphone.

3.1 Basic Principle of Operation

In their inspiring work, Shen and Lee [18] have described, how easy it is to
translate a whistle input into MIDI format. In MIDI, musical sound commencing
and halting are the events being recorded. Therefore, it is easily attainable from
human whistle due to its nature. Shen and Lee further describe, that whistling
is more suitable for input than humming, with the capture being more noise-
resistant. Whistling has a frequency ranging from 700Hz to 2.8kHz, whereas
other sounds fall under much smaller frequency span. String matching heuristics
are then used for segmented MIDI data, featuring a modification of the popular
grep Unix command-line tool, capable of searching for regular expressions, with
some deviations allowed. Heuristics exist also for extracting melody from the
song, and so the underlying database can be created from real recordings instead
of MIDI. The whole process is explained in a diagram on Figure 2.

The search for the song in the database can be, as well as in Section 2,
improved by forming a fingerprint and creating an index. Unal et al. [20] have
formed the fingerprint from the relative pitch movements in the melody extracted
from humming, thus increasing the certainty of the algorithm results.

3.2 Benchmarking for Whistling and Humming Queries

Many algorithms are proposed every year for whistling and humming queries.
There is a natural need in finding the one that performs the best. The evalua-
tion of the state-of-the-art methods can be found on annual benchmarking chal-
lenges such as MIREX10 (Music Information Retrieval Evaluation Exchange, see
Downie at al. [3] for details). The best performing algorithm for 2014 was the one
from Hou et al. [8]. The authors have used Hierarchical K-means Tree (HKM)
to enhance the speed and dynamic programming to compute the minimum edit

9 http://www.mufin.com
10 http://www.music-ir.org/mirex/wiki/MIREX HOME

136 Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

Fig. 2. Diagram of Query by Humming/Singing System, by Hou et al. [8].

distance between the note sequences. Another algorithm that outperformed the
competition in the past years, while also being commercially deployed was Mu-
sicRadar11.

Overall, whistling or humming queries are another efficient way of music
retrieval, having already a number of popular applications.

4 Cover Song Identification Methods

In the last years, focus has switched to more specific use cases such as efficient
search for the cover song or choosing from the set of similar performances. As
described earlier, the exact-match result is not satisfying if we, for example,
search for the best performance of Tchaikovsky’s ballet, from a vast number of
performances made. Although not geared on a microphone input (we are not
aware of applications for such use case), this section provides an overview of
recent cover song identification methods.

4.1 Methods Based on Music Harmony

The task requires a use of high-level concepts. Incorporation of music theory
gives us the tool to analyze the music deeper, and find similarities in its struc-
ture from a higher perspective. The recent work of Khadkevich and Omologo [9]
summarizes the process and shows one way how we can efficiently analyze the
music to obtain all covers as the query result. The main idea is segmenting music
to chords (musical elements in which several tones are sounding together). The
music theory, as described e.g. by Schönberg [16] provides us with the taxonomy
of chords, as well as the rules to translate between chords. Taking this approach,
Khadkevich and Omologo have extracted

”
chord progression“ data from a mu-

sical piece, and used Levenshtein’s edit distance [11] to find similarities between

11 http://www.doreso.com

A Survey on Music Retrieval Systems Using Microphone Input 137

Fig. 3. Diagram of cover song identification by Khadkevich and Omologo [9].

the progressions, as depicted in Figure 3. A method of locality sensitive hash-
ing was used to speed up the process, since the resulting progressions are high
dimensional [5].

Another method was previously used by Kim et al. [10] at the University
of Southern California. The difference between the approaches lay in the choice
of fingerprints. Kim et al. have used a simple covariance matrix to mark down
the co-sounding tones in each point of the time. Use of such fingerprints has, as
well, improved the overall speed (approximately 40% search speed improvement
over conventional systems using cross-correlation of data without the use of
fingerprints). In this case, the fingerprints also improved the accuracy of the
algorithm, since they are constructed in the way that respect music harmony.
They also made the algorithm robust to variations which we need to abstract
from, e.g. tempo. This can be attributed to the use of beat synchronization,
described by Ellis and Poliner [4].

4.2 Benchmarking for Cover Song Identification

Same as in Section 3, cover song identification is another benchmarking category
on annual MIREX challenge, with around 3-5 algorithms submitted every year.
The best performing algorithm in the past few years was from The Academia
Sinica and the team around Hsin-Ming Wang, that favored the use of extracting
melody from song and using melody similarity [19]. Previous algorithm that out-
performed the competition was the one made by Simbals12 team from Bordeaux.
The authors used techniques based on local alignment of chroma sequences (see
Hanna et al. [7]), and have also developed techniques capable of identifying pla-
giarism in music (see Robine et al. [15]). On certain datasets, the mentioned

12 http://simbals.labri.fr

138 Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

algorithms were able to perform with 80-90% precision of identifying the correct
covers.

5 Proposals for Improving Music Retrieval Methods

We see a way of improvement in the methods mentioned earlier. Much more
can be accomplished if we use some standardized high-level descriptors. If we
conclude that low-level techniques can not give satisfying results, we are left
with a number of high-level concepts, which are, according to music experts and
theoreticians, able to describe the music in an exhaustive manner. Among these
the most commonly used are: Melody, Harmony, Tonality, Rhythm and Tempo.
For some of these elements, it is fairly easy to derive the measures (e.g. Tempo,
using the peak analysis similar to the one described in Section 2). For others
this can be a difficult task and there are no leads what is the best technique to
use. As a consequence, the advantage of using all of these music elements is not
implemented yet in recent applications.

In our previous work we have defined the descriptor of Harmonic complexity
[13], and described the significance of such descriptors for music similarity. The
aim was to characterize music harmony in specific time of its play. We have shown
that aggregating these harmony values for the whole piece can improve music
recognition [12]. The next step, and possible improvement can be comparing the
time series of such descriptors in music. Rather than aggregated values we can
compare the whole series in time and obtain more precise results. Heuristics such
as dynamic time warping can be used easily for this task. We now analyze the
method and its impact on music retrieval. As the future work, experiments will
take place to prove the proposed method.

Also, we see the option of combining general methods for cover song identi-
fication described in Section 4, with the use case of short recorded audio sample
from the microphone. One of the possible ways is abstracting from tonal informa-
tion and other aspects, as described briefly in Section 2.2. Recent benchmarking
challenges for cover song identification are focusing on analyzing the whole songs,
rather than a short sample. We believe that a combination of methods described
in previous sections can yield interesting results and applications.

6 Summary and Conclusion

We have provided a survey of recent music retrieval methods focusing on: retriev-
ing music based on audio input from recorded music, whistling and humming
queries, as well as cover song identification. We described how the algorithms are
performing efficiently in their use cases, but we also see ways to improve with
new requirements coming from the users.

In the future work we will focus on the use of high-level descriptors and
we propose stabilizing these descriptors for music retrieval. We also propose
combining the known methods, and focusing not only on the mainstream music,
but analyzing other genres, such as Classical, Jazz or Latino music.

A Survey on Music Retrieval Systems Using Microphone Input 139

Acknowledgments. The study was supported by the Charles University in
Prague, project GA UK No. 708314.

Bibliography

1. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The Million Song
Dataset. In: Proceedings of the 12th International Society for Music Information
Retrieval Conference. ISMIR 2011 (2011)

2. De Haas, W.B., Magalhães, J.P., Wiering, F.: Improving Audio Chord Transcrip-
tion by Exploiting Harmonic and Metric Knowledge. In: Proceedings of the 13th
International Society for Music Information Retrieval Conference. ISMIR 2012
(2012)

3. Downie, J.S., West, K., Ehmann, A.F., Vincent, E.: The 2005 Music Information
retrieval Evaluation Exchange (MIREX 2005): Preliminary Overview. In: Proceed-
ings of the 6th International Conference on Music Information Retrieval. ISMIR
2005 (2005)

4. Ellis, D.P.W., Poliner, G.E.: Identifying ‘Cover Songs’ with Chroma Features and
Dynamic Programming Beat Tracking. In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing. ICASSP 2007 (2007)

5. Gionis, A., Indyk, P., Motwani, R.: Similarity Search in High Dimensions via Hash-
ing. In: Proceedings of the 25th International Conference on Very Large Data Bases.
VLDB ’99, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999)

6. Haitsma, J., Kalker, T.: A Highly Robust Audio Fingerprinting System. In: Pro-
ceedings of the 3rd International Society for Music Information Retrieval Confer-
ence. ISMIR 2002 (2002)

7. Hanna, P., Ferraro, P., Robine, M.: On Optimizing the Editing Algorithms for
Evaluating Similarity Between Monophonic Musical Sequences. Journal of New
Music Research 36(4) (2007)

8. Hou, Y., Wu, M., Xie, D., Liu, H.: MIREX2014: Query by Humming/Singing Sys-
tem. In: Music Information Retrieval Evaluation eXchange. MIREX 2014 (2014)

9. Khadkevich, M., Omologo, M.: Large-Scale Cover Song Identification Using Chord
Profiles. In: Proceedings of the 14th International Society for Music Information
Retrieval Conference. ISMIR 2013 (2013)

10. Kim, S., Unal, E., Narayanan, S.S.: Music Fingerprint Extraction for Classical Mu-
sic Cover Song Identification. In: Proceedings of the IEEE International Conference
on Multimedia and Expo. ICME 2008 (2008)

11. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics-Doklady 10/8 (1966)

12. Marsik, L., Pokorny, J., Ilcik, M.: Improving Music Classification Using Harmonic
Complexity. In: Proceedings of the 14th conference Information Technologies - Ap-
plications and Theory. ITAT 2014, Institute of Computer Science, AS CR (2014)

13. Marsik, L., Pokorny, J., Ilcik, M.: Towards a Harmonic Complexity of Musical
Pieces. In: Proceedings of the 14th Annual International Workshop on Databases,
Texts, Specifications and Objects (DATESO 2014). CEUR Workshop Proceedings,
vol. 1139. CEUR-WS.org (2014)

14. Nanopoulos, A., Rafailidis, D., Ruxanda, M.M., Manolopoulos, Y.: Music Search
Engines: Specifications and Challenges. Information Processing and Management:
an International Journal 45(3) (2009)

140 Ladislav Marš́ık, Jaroslav Pokorný, Martin Ilč́ık

15. Robine, M., Hanna, P., Ferraro, P., Allali, J.: Adaptation of String Matching Algo-
rithms for Identification of Near-Duplicate Music Documents. In: Proceedings of the
International SIGIR Workshop on Plagiarism Analysis, Authorship Identification,
and Near-Duplicate Detection. SIGIR-PAN 2007 (2007)

16. Schönberg, A.: Theory of Harmony. University of California Press, Los Angeles
(1922)

17. Schönfuss, D.: Content-Based Music Discovery. In: Exploring Music Contents, Lec-
ture Notes in Computer Science, vol. 6684. Springer (2011)

18. Shen, H.C., Lee, C.: Whistle for Music: Using Melody Transcription and Approxi-
mate String Matching for Content-Based Query over a MIDI Database. Multimedia
Tools and Applications 35(3) (2007)

19. Tsai, W.H., Yu, H.M., Wang, H.M.: Using the Similarity of Main Melodies to
Identify Cover Versions of Popular Songs for Music Document Retrieval. Journal
of Information Science and Engineering 24(6) (2008)

20. Unal, E., Chew, E., Georgiou, P., Narayanan, S.S.: Challenging Uncertainty in
Query by Humming Systems: A Fingerprinting Approach. IEEE Transactions on
Audio, Speech, and Language Processing 16(2) (2008)

21. Wang, A.L., Smith, J.O.: Method for Search in an Audio Database. Patent (Febru-
ary 2002), WO 02/011123A2

22. Wang, A.L.: An Industrial-Strength Audio Search Algorithm. In: Proceedings of
the 4th International Society for Music Information Retrieval Conference. ISMIR
2003 (2003)

23. Yang, C.: Macs: Music Audio Characteristic Sequence Indexing for Similarity Re-
trieval. In: IEEE Workshop on the Applications of Signal Processing to Audio and
Acoustics. WASPAA 2001 (2001)

Author Index

Bednárek, David, 89
Brabec, Michal, 89

Helmich, Jǐŕı, 28

Chlapek, Dušan, 52
Chovanec, Peter, 13

Ilč́ık, Martin, 131

Janeček, Jan, 1

Kĺımek, Jakub, 28, 52, 111
Knap, Tomáš, 111
Krátký, Michal, 13
Krulǐs, Martin, 77
Křižka, Filip, 13
Kučera, Jan, 52

Macejko, Peter, 1
Marš́ık, Ladislav, 131
Meca, Roman, 13

Nečaský, Martin, 52, 111
Novotný, Jǐŕı, 65

Peška, Ladislav, 101
Platoš, Jan, 40
Pokorný, Jaroslav, 65, 131

Richta, Karel, 121

Šebek, Jǐŕı, 121
Škoda, Petr, 111

Vašinek, Michal, 40
Vojtáš, Peter, 101
Votava, Ondřej, 1

