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Abstract. Recent studies reveal that publicly available SPARQL endpoints ex-
hibit significant limitations in supporting real-world applications. In order for this
querying infrastructure to reach its full potential, more flexible client-server ar-
chitectures capable of deciding appropriate shipping plans are needed. Shipping
plans indicate how the execution of query operators is distributed between the
client and the server. We propose SHEPHERD, a SPARQL client-server query
processor tailored to reduce SPARQL endpoint workload and generate shipping
plans where costly operators are placed at the client site. We evaluated SHEP-
HERD on a variety of public SPARQL endpoints and SPARQL queries. Experi-
mental results suggest that SHEPHERD can enhance endpoint performance while
shifting workload from the endpoint to the client.

1 Introduction

Nowadays, public SPARQL endpoints are widely deployed as one of the main mecha-
nisms to consume Linked Data sets. Although endpoints are acknowledged as a promis-
ing technology for RDF data access, a recent analysis by Buil-Aranda et al. [1] indi-
cates that performance and availability vary notably between different public endpoints.
One of the main reasons for the at times undesirable performance of public SPARQL
endpoints is the unpredictable workload, since a large number of clients may be concur-
rently accessing the endpoint and some of the queries handled by endpoints may incur
prohibitively high computational costs. To relieve endpoints of some of the workload
they face, many operators of the query can potentially be executed at the client side.
Shipping policies [2] allow for deciding which parts of the query will be executed at the
client or the server according to the abilities of SPARQL endpoints.

The goal of this work is to provide a system to access SPARQL endpoints that
shifts workload from the server to the client taking into account the capabilities of the
addressed endpoint for executing a certain query — while still offering a competitive per-
formance in terms of execution time and the number of answers produced. We propose
SHEPHERD, a SPARQL query processor that mitigates the workload posed to pub-
lic SPARQL endpoints by tailoring hybrid shipping plans to every specific endpoint.
In particular, SHEPHERD performs the following tasks: (i) decomposing SPARQL



queries into lightweight sub-queries that will be posed against the endpoint, (ii) travers-
ing the plan space in terms of formal properties of SPARQL queries, and (iii) generating
shipping-based query plans based on the public SPARQL endpoint performance statis-
tics collected by SPARQLES [1]. We designed a set of 20 different SPARQL queries
over four public SPARQL endpoints. We empirically analyzed the performance of the
hybrid shipping policies devised by SHEPHERD and the query shipping policy when
submitting a query directly to a SPARQL endpoint.

2 The SHEPHERD Architecture

SHEPHERD is a SPARQL query processor based on the wrapper architecture [4].
SHEPHERD implements different shipping policies to reduce the workload posed over
public SPARQL endpoints. Figure 1 depicts the SHEPHERD architecture which con-
sists of three core components: the SHEPHERD optimizer, the engine broker, and the
SPARQL query engine that is considered a black box component.
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Fig. 1. The SHEPHERD architecture

The SHEPHERD optimizer is designed for enhancing SPARQL query plans since
it relies on formal properties of SPARQL and statistics of SPARQL endpoints to esti-
mate the plan cost. In the following, we elaborate on each of the sub-components that
comprise the proposed optimizer.

— Query parser: Translates the input query () into internal structures that will be
processed by the planner.

— Planner: Implements a Dynammic Programming algorithm to traverse the space
of plans. During the optimization process, SHEPHERD decides whether to place
the operators at the server (i.e., endpoint), or client (i.e., SHEPHERD) according to
statistics of the endpoint. In this way, SHEPHERD explores shipping polices tai-
lored for each public endpoint. The planner generates bushy-tree plans, where the
leaves correspond to light-weight sub-queries and the nodes correspond to opera-
tors (annotated with the shipping policy to follow).

— Algebraic space and rewriter: The algebraic space defines a set of algebraic rules
to restrict plan transformations. The algebraic rules correspond to the formal prop-
erties for well-designed SPARQL patterns [3]. The rewriter transforms a query in
terms of the algebraic space to produce a more efficient equivalent plan.

— Cost model: The cost of executing sub-queries and SPARQL operators at the end-
point is obtained from the ERE component. Based on these values, SHEPHERD



estimates the cost of combining sub-plans with a given operator. The cost model
is designed to gradually increase the cost of operators when more complex expres-
sions are evaluated. This behavior is modeled with the Boltzmann distribution.’

— Endpoint Reliability Estimator (ERE): Endpoint statistics collected by the SPAR-
QLES tool [1] are used to provide reliable estimators for the SHEPHERD cost
model. The endpoint statistics are aggregated and stored in the SHEPHERD cata-
log, and used to characterize endpoint in terms of opertator performance.

The engine broker translates the optimized plan 7(Q) into the corresponding input
for the SPARQL query engine that will execute the plan. The engine broker can specify
the plan in two different ways: i) as a query Q" with the SPARQL Federation Extension,
to execute the query with a SPARQL 1.1 engine; ii) translating the plans directly into
the internal structures of a given query engine.

3 Experimental Study

We empirically compared the performance of the hybrid shipping policies implemented
by SHEPHERD with the query shipping policy when executing queries directly against
the endpoint. We selected the following four public SPARQL endpoints monitored by
SPARQLES [1]: DBpedia, IproBio2RDF, data.oceandrilling.org and TIP.> We designed
a query benchmark comprising five different queries for each endpoint.> Each query
contains modifiers as well as graph patterns that include UNIONs, OPTIONALS, and
filters. SHEPHERD was implemented using Python 2.7.6. Queries were executed di-
rectly against the endpoints using the command curl. All experiments were performed
from the Amazon EC2 Elastic Compute Cloud infrastructure.*

Figure 2 depicts the result of the queries in terms of the execution time (sec.) as re-
ported by the Python time.time () function. We can observe that in the majority of
the cases SHEPHERD retrieves the results notably faster, except in three queries. Con-
cerning the cardinality of the result set retrieved, a similar picture emerges. For 18 of
the overall 20 queries tested, both methods produced the same amount of results, while
in one instance each SHEPHERD and the query shipping approach did not retrieve any
answers. Both methods therefore seem to be on par in this regard.

Even though SHEPHERD is able to reduce the execution time to a certain extent, the
most important finding is that it shifted in average 26% of the operators in the queries to
the client, thereby relieving the servers of notable workload. The ratio of data shipping
varies significantly from case to case depending on the individual shipping strategy
chosen, but does not show a direct correlation with the achieved runtime decrease.’

Hence, we can affirm that SHEPHERD is able to reduce computational load on the
endpoints in an efficient way; this could not be achieved neither by simply moving all

! The Boltzmann distribution is also used in Simulated Annealing to model the gradual decreas-
ing of a certain function (temperature).

2 Available at http://dbpedia.org/sparql, http://iproclass.bio2rdf.
org/sparqgl, http://data.oceandrilling.org/sparqgl and http://lod.
apc.gov.tw/sparqgl, respectively.

3http://people.aifb.kit.edu/mac/shepherd/

‘https://aws.amazon.com/ec2/instance-types/

3 Std.Dev. is 0.09. The poster will discuss further details about this ratio and its impact.



operator execution to the client — since this increments the bandwith consumption and
the evaluation of non-selective queries may starve the resources of the client — nor by
submitting the whole query to the endpoint as shown in our experiments.
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Fig. 2. Runtime results for the four different public endpoints and studied queries

4 Conclusions

We presented SHEPHERD, a SPARQL query processor that implements hybrid ship-
ping policies to reduce public SPARQL endpoint workload. We crafted 20 different
queries against four SPARQL endpoints and empirically demonstrated that SHEPHERD
is (i) able to adapt to endpoints with different characteristics by varying the rate of op-
erators executed at the client, and (ii) in doing so not only retrieves the same number of
results as query shipping but even decreases runtime in the majority of the cases. While
these results provide a first insight into SHEPHERD’s capabilities, they showcase the
potential of adaptive hybrid shipping approaches, which we will explore in future work.
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