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Abstract. The WaterFowl RDF Store is characterized by its high com-
pression rate and a self-indexing approach. Both of these characteristics
are due to its underlying architecture. Intuitively, it is based on a stack
composed of two forms of Succinct Data Structures, namely bitmaps and
wavelet trees. The ability to efficiently retrieve information from these
structures is performed via a set of operations, i.e., rank, select and
access, which are used by our query processor. The nice properties, e.g.
compactness and efficient data retrieval, we have observed on our first
experimentations come at the price of poor performances when insertions
or deletions are required. For instance, a naive approach has a dramatic
impact on the capacity to handle ABox updates. In this paper, we address
this issue by proposing an update strategy which uses an hybrid wavelet
tree (using both pointer-based and pointerless sub-wavelet trees).

1 Introduction

Large amount of RDF data are being produced in diverse domains. Such a
data deluge is generally addressed by distributing the workload over a cluster of
commodity machines. We believe that this will soon not be enough and that in
order to respond to the exponential production of data, the next generation of
systems will distribute highly compressed data. One valuable property of such
systems would be to perform some data oriented operations without requiring a
decompression phase.

We have recently proposed the first building blocks of such a system, namely
WaterFowl, for RDF data [1]. The current version corresponds to an in-memory,
self-indexed, operating at the bit level approach which uses data structures with
a compression rate close to theoretical optimum. These so-called Succinct Data
Structures (SDS) support efficient decompression-free query operations on the
compressed data. The first components we have developed for this architec-
ture are a query processor and an inference engine which supports the RDFS
entailment regime with inference materialization limited to rdfs:range and
rdfs:domain. Both of these components take advantage of the SDS properties
and highly performant operations. Of course, SDS are not perfect and a main
limitation corresponds to their inability to efficiently handle update operations,



i.e., inserting or deleting a bit. In the worst case, one has to completely rebuild
the corresponding SDS (bitmap or wavelet tree) to address such updates. Even
if we consider that the sweet spot for RDF stores is OnLine Analytic Processing
(OLAP), rather than OnLine Transactional Processing (OLTP), such a draw-
back is not acceptable when managing data sets of several millions of triples.

The main contribution of this paper is to present an update strategy that
addresses instance updates. Due to space limitations, we do not consider updates
at the schema level (i.e., TBox). This approach is based on a set of heuristics and
the definition of an hybrid wavelet tree using both pointer-based and pointerless
sub-wavelet trees.

2 WaterFowl architecture

Figure 1 presents the three main components of the WaterFowl system: dic-
tionary, query processing and triples storage. The former is responsible for the
encoding and decoding of the entries of triple data sets. The main contribution
here consists of encoding the concepts and properties of an ontology such that
their respective hierarchy are using common binary prefixes. This enables us to
perform prefix versions of the rank, select and access operations and thus
prevents navigating the whole depth of the wavelet trees to return an answer.

The query processing component handles the classical operations of a database
query processor and communicates intensively with the dictionary unit. A pe-
culiarity of this query processor is to translate SPARQL queries into sequences
of rank, select and access SDS operations over sequences. They are designed
to (i) count the number of occurences of a letter appearing in a prefix of a given
length, (ii) find the position of the k** occurrence of a letter and (iii) retrieve
the letter at a given position in the sequence.

Finally, the triple storage component consists of two layers of bitmaps and
wavelet trees®. It uses an abstraction of a set of triples represented as a forest
where each tree corresponds to a single subject, i.e., its root, the intermediate
nodes are the properties of the root subject and the leaves are the objects of those
subject-property pairs. The first layer encodes the relation between the subjects
and the predicates of a set of triples. It is composed of a bitmap, to encode
the subjects, and a wavelet tree, to encode the sequences of predicates of those
subjects. Unlike the first layer, the second one has two bitmaps and two wavelet
trees. B, encodes the relation between the predicates and the objects; that is the
edges between the leaves and their parents in the tree representation. Whereas,
the bitmap B, encodes the positions of ontology concepts in the sequence of
objects. Finally, the sequence of objects obtained from a pre-order traversal
in the forest is split into two disjoint subsequences; one for the concepts and
one for the rest. Each of these sequences is encoded in a wavelet tree (resp.
WT,. and WT,;). This architecture reduces sparsity of identifiers and enables
the management of very large datasets and ontologies while allowing time and

% Due to space limitations, we let the reader refer to [1] for corresponding definitions



space efficiency. More details on these components are proposed in [1]. That
paper presents some evaluations where different wavelet tree implementations
have been used: with and without pointers and one so-called matrix [3]. The
characteristics of the first two motivated our update approach.
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Fig. 1. WaterFowl’s architecture

3 Update strategy

As previously mentioned, one of the benefits of using wavelet trees in our system
is the ability to compress drastically the data while being able to query it without
decompression. The main drawback of such SDS lies in its requirement to pre-
compute and store some small but neccessary extra informations. More formally,
the bitmaps used in the inner construction of the wavelet trees requires n+ o(n)
bits of storage space (the original bit array and an o(n) auxiliary structure) to
support rank and select in constant time. Note that while the implementaton
of rank is simple and practical, this is not the case for select which should be
avoided whenever possible, e.g., in our SPARQL query translations. Recently,
some attempts were done in order to provide faster and smaller structure for
select [4]. These precomputed auxiliary informations are used during query
processing in order to get constant time complexity. This is why, by definition,
the bitmaps are static and cannot be updated. In our context, it implies an
immutable RDF store (which is quite restrictive).

In order to overcome this issue, we propose an update strategy using the
inner tree structure of the wavelet trees. First, recall that there are mainly two



implementations of the wavelet trees: with and without pointers. On one hand,
the implementation without pointers uses less memory space and provides better
time performances. On the other hand, any modification to the represented se-
quence implies a full reconstruction of the wavelet tree; while, in the case where
pointers are used, only a subset of the nodes (and the corresponding bitmaps)
have to be rebuilt which in our first experiments is much faster than a total re-
construction. A second important point of our approach is based on the fact that
in wavelet trees, each bit of an encoded entry specifies a path in the tree. That
is, the instance data only influence the size of nodes but not their placement
in the tree. Considering these two assumptions together with the huge amount
of data we want to handle, our strategy supports an hybrid approach based on
the natural definition of a tree. Indeed, a tree can be defined recursively as a
node with a sequence of children which are themselves trees. Our hybrid wavelet
tree is then defined as a node representing a wavelet tree without pointers of
height k& and a sequence of 2* children which are themselves hybrid wavelet
trees. In practice, considering a querying scenario composed of read (e.g., select)
and write (e.g., add, delete, update) operations, for performance purpose the
hybrid wavelet tree can adapt its composition to the scenario by minimizing
and maximizing the numbers of pointers in the depth traversal of respectively a
read and write operation. Note that this approach of cracking the database into
manageable pieces is reminiscent to dynamic indexing solution presented in [2].

4 Conclusion

This poster exploits available wavelet tree implementations to address the is-
sue of updating an ABox. We have already implemented a prototype of the
WaterFowl system and of the updating system. They so far provide interesting
performance results but we have yet to test with real use cases. This will en-
able us to observe practical modifications and to study their efficiency. These
observations should provide directions for optimizations. Our future work, we
will consist in the development of two new components. A first one will address
updates at the schema level, i.e., insertions or removals of concepts and proper-
ties of the underlying ontology. The second one will consider the partitioning of
a data set over a machine cluster together with both ABox and TBox updates.
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