
Local tableaux for reasoning in

distributed description logics ∗

Luciano Serafini
ITC-IRST, 38050 Povo, Trento, Italy

luciano.serafini@itc.it

Andrei Tamilin
DIT - University of Trento, 38050 Povo, Trento, Italy

andrei.tamilin@dit.unitn.it

Abstract

The last decade of basic research in the area of Description Logics (DL) has
created a stable theory, efficient inference procedures, and has demonstrated a
wide applicability of DL to knowledge representation and reasoning. The success
of DL in the semantic web and the distributed nature of the last one inspired
recently a proposal of Distributed DL framework (DDL). DDL is composed of
a set of stand alone DLs pairwise interrelated with each other via collection of
bridge rules. In this paper, we investigate the reasoning mechanisms in DDL
and introduce a tableau-based reasoning algorithm for DDL, built on the top of
the state of the art tableaux reasoners for DL. We also describe a first prototype
implementation of the proposed algorithm.

1 Introduction

Ontologies have been advocated as the basic tools to support interoperability be-
tween distributed applications and web services. The basic idea is that different au-
tonomously developed applications can meaningfully communicate by using a common
repository of meaning, i.e. a shared ontology. The optimal solution obviously lies in
having a unique worldwide shared ontology describing all possible domains. Unfortu-
nately, this is unachievable in practice. The actual situation in the web is characterized
by a proliferation of different ontologies. Each ontology describes a specific domain
from different perspectives and at different level of granularity. The initial interop-
erability problem, therefore, passes from the application level to the ontology level.
Though the semantic standardization is far to be reached, the syntactic standardiza-
tion is almost there, as it is widely accepted that ontologies should be expressed in a
language, which is a variation of a descriptive language [6, 8].

Given this situation, one of the challenges in the semantic web is of being able to
deal with a large number of overlapping and heterogeneous local ontologies. We use
the term “local” to stress the fact that each ontology describes a domain of interest
from a local and subjective perspective. In this paper, we focus on the problem of

∗We thank Chiara Ghidini and Floris Roelofsen for their feedback on this paper.

manager

Peer ontology

manager

Peer ontology

Peer ontology

manager

Figure 1: P2P architecture for managing multiple ontologies. In each peer, circles
stand for ontologies, and arrows for semantic relations between ontologies.

reasoning within such web of local ontologies. We start form a long tradition of
logics for distributes systems, based on propositional Multi-Context Systems [5, 4]
and its Local Models Semantics [2], the extension of First Order Logics which leads
to Distributed First Order Logics [3], and the extension of Description Logics which
leads to Distributed Description Logics (DDL) [1]. Starting from these logical studies,
our goal is to propose a theoretically grounded and scalable solution to the problem of
reasoning with a set of distributed, heterogeneous, and overlapping local ontologies.
Most of state of the art formalizations of that problem are based on a global ontology
that allows to uniformly represent a set of local ontologies and semantic relations
between them. In these approaches, reasoning in a set of local ontologies is rephrased
into a problem of reasoning in the global ontology.

The approaches based on the global ontology, however, present two main draw-
backs. First, from a computational complexity point of view it is more convenient
to keep the reasoning as much local as possible, exploiting the structure provided by
semantic relations for the propagation of reasoning through the local ontologies. Some
intuition in this direction can be found in the computational complexity results for
satisfiability in Multi-Context Systems described in [11]. Second, the reasoning proce-
dure that has to be implemented in the global ontology should be capable of dealing
with the most general local language, whereas having a more distributed approach
would allow to apply to every local ontology the specific reasoner, optimized for the
local language.

From the architectural point of view, our idea is inspired by peer-to-peer (P2P)
distributed knowledge management architectures, proposed in the SWAP [13] and
Edamok [12] projects, and by the C-OWL language [14]. We have implemented a
P2P architecture, shown in Figure 1, consisting of peer ontology managers, providing
reasoning services on a set of local ontologies, and capable of requesting reasoning
services to other peers. The ontology manager of a pear p is capable of providing local
and global reasoning services. Local services involve only ontologies local to p, while
global services involve both ontologies in p and in other semantically related peers.
Among the provided reasoning services, the fundamental ones are checking a local and
a global subsumptions.

The paper contributes to the realization of the architecture described above with
the following four points: (i) we describe a logical framework (DDL) capable of cap-

turing the behavior of the overall system, i.e. how subsumptions propagate through
peers; (ii) give a general reference (and näıve) global algorithm for computing global
subsumption, which is sound and complete w.r.t. any topology of the P2P ontol-
ogy network; (iii) propose a distributed tableau algorithm for computing global sub-
sumption, built as a composition of standard tableaux algorithms for computing local
subsumption, which is sound and complete w.r.t. acyclic topology; and finally, (iv)
describe a java-based prototype implementing the distributed tableau algorithm.

2 Distributed Description Logics

Distributed description logics (DDL), defined by Borgida and Serafini in [1], is a knowl-
edge representation and reasoning formalism for describing distributed environments
composed of a set of distinct description logics interrelated between each other through
a set of pairwise inference connectives. In this section we briefly recall the definition
of DDL as given in [1].

Before giving the formal definitions of DDL framework let us make several pre-
liminary remarks. Given a non empty set I of indexes, let {DLi}i∈I be a collection
of description logics. Each DLi can be one of the logics which is weaker or equivalent
to SHIQ [9] (e.g. ALC, ALCN , SH)1. For each i ∈ I let us denote a T-box of DLi

as Ti. To distinguish descriptions in each DLi, we will prefix them with the index of
corresponding description logics. E.g. to reflect that any concept C is stated locally
in a terminology of DLi we will write i : C; similarly, to reflect the fact that particular
axiom, say C � D, holds locally in a terminology of DLi we will write i : C � D.

Bridge rules are used to express semantic relations between different T-boxes.

Definition 2.1 (Bridge rules). A bridge rule, from i to j is an expression of the
following two forms:

1. i : x
�−→ j : y, an into-bridge rule;

2. i : x
�−→ j : y, an onto-bridge rule;

where x and y are either two concepts, or two roles, or two individuals of DLi and
DLj respectively.

In spite of this general definition, in this paper we concentrate on bridge rules
between concepts. Intuitively, the into-bridge rule i : C

�−→ j : D states that, from the
j-th point of view the concept C in DLi is less general than its local concept D.
Similarly, the onto-bridge rule i : C

�−→ j : D expresses the fact that, according to j, C
in DLi is more general than D in DLj . Therefore, bridge rules from i to j represent
the possibility of DLj to translate (under some approximation) the foreign concepts
of DLi into its internal model. Note, that bridge rules are directional and reflect the
subjective point of view of particular DL on other DLs surrounding it. Therefore,
rules from j to i are not necessarily the inverse of rules from i to j.

Example 2.1. The International Standard Classification of Occupations (ISCO-88)2

is an ontology that organizes occupations in a hierarchical framework. At the lowest
1We assume familiarity with DLs and related tableaux-based systems described in [9].
2http://www.ilo.org/public/english/bureau/stat/class/isco.htm

ISCO-88 WordNet

2 Professionals adEntity

21 Physical, mathematical and engineering science professionals Causal_agency

211 Physicists, chemists and related professionals Cause

2111 Physicists and astronomers Causal_agent

2114 Geologists and geophysicists Entity

212 Mathematicians, statisticians and related professionals Physical_object

2121 Mathematicians and related professionals Object

2122 Statisticians Animate_thing

213 Computing professionals Living_thing

2131 Computer systems designers, analysts and programmers Being

2139 Computing professionals not elsewhere classified Organism

214 Architects, engineers and related professionals Person

2141 Architects, town and traffic planners Self

2146 Chemical engineers Grownup

3 Technicians and associate professionals Nurser

31 Physical and engineering science associate professionals Engineer

311 Physical and engineering science technicians Worker

Figure 2: An extract from ISCO-88 and WordNet.

level is the unit of classification - a job - which is defined as a set of tasks or duties
designed to be executed by one person. An extract of ISCO-88 is shown on the left
side of Figure 2. A similar, though less detailed, ontology can be extracted from the
People sub-hierarchy of WordNet3. Notice, that in WordNet there is no hierarchical
classification of jobs, as the term “worker” is at the same level than “engineer”. If,
for whatever reason, one wants to import the ISCO-88 classification into WordNet,
an example of bridge rules would be the following:

ISCO : Professionals
�−→ WNP : Worker (1)

ISCO : Technicians And Associate Professionals
�−→ WNP : Worker (2)

ISCO : Architects Engineers And Related Professionals �
Physical And Engineering Science Associate Professionals

�−→ WNP : Engineer (3)

ISCO : � �−→ WNP : ¬Child (4)

ISCO : Doorkeepers watchpersons and. . .
�−→ WNP : Gatekeeper (5)

Definition 2.2 (Distributed T-box). A distributed T-box (DTB) T = 〈{Ti}i∈I ,B〉
consists of a collection of T-boxes {Ti}i∈I , and a collection of bridge rules B =
{Bij}i�=j∈I between them.

In order to deal with ontologies which are locally unsatisfiable (this can happen
when a set of local axioms are not satisfiable or when bridge rules with other ontologies
are not satisfiable) we will introduce two special types of local interpretations, called
holes.

Definition 2.3 (Holes). A full hole in a T-box T is an interpretation I∆ = 〈∆I , ·I∆〉,
where ∆I is the original nonempty domain in T , and ·I∆

is a function that maps every
concept expression in T in the whole ∆I . An empty hole in T as an interpretation
I∅ = 〈∆I , ·I∅〉, where ∆I is the original nonempty domain T , and ·I∅

is a function
that maps every concept expression in T in the empty set.

3http://xmlns.com/wordnet/1.6/Person

According to the above definition, holes interpret every concept, both atomic and
complex ones, either in the empty set or in the universe. The recursive definition
of the interpretation of a concept does not apply for holes. One should notice that
the interpretation of the concepts (¬C), denoted as (¬C)I∅ , is not ∆I∅ \ CI∅ = ∆I∅ ,
but is ∅. The consequence of this fact is that I∅ |= C � D and I∆ |= C � D for
any pair of concepts C and D. Obviously, since both I∆ and I∅ satisfy all (even
contradictory) concepts in T , they are models of T , i.e. I∆ � T and I∅ � T . Holes
represent interpretations of locally inconsistent T-boxes.

Definition 2.4 (Domain relation). A domain relation rij from ∆Ii to ∆Ij is a
subset of ∆Ii × ∆Ij . We use rij(d) to denote {d′ ∈ ∆Ij | 〈d, d′〉 ∈ rij}; for any subset
D of ∆Ii , we use rij(D) to denote

⋃
d∈D rij(d); for any R ⊆ ∆Ii × ∆Ii we use rij(R)

to denote
⋃

〈d,d′〉∈R rij(d) × rij(d′).

A domain relation rij represents the capability of Tj to map the elements of ∆Ii

into its domain ∆Ij . For instance if John ∈ ∆I1 is a person and J12 ∈ ∆I2 is an
individual that represents the student John in a specific school, the pair 〈John, J12〉
will be contained in r12. Notice that r12 is not necessarily a function. Indeed, John
could attend two schools, and therefore, correspond to two individuals in ∆I2.

Definition 2.5 (Distributed interpretation). A distributed interpretation I =
〈{Ii}i∈I , {rij}i�=j∈I〉 of distributed T-box T consists of local interpretations Ii on lo-
cal domains ∆Ii for all Ti, and a family of domain relations rij between these local
domains.

Definition 2.6. A distributed interpretation I satisfies (written I �d) the elements
of a DTB T according to the following clauses: for every i, j ∈ I

1. I �d i : A � B, if Ii � A � B;
2. I �d Ti, if I �d i : A � B for all A � B in Ti;
3. I �d i : x

�−→ j : y, if rij(xIi) ⊆ yIj ;

4. I �d i : x
�−→ j : y, if rij(xIi) ⊇ yIj ;

5. I �d Bij , if I satisfies all bridge rules in Bij ;
6. I �d T, if for every i, j ∈ I, I �d Ti and I �d Bij ;
7. T �d i : C � D if for every I, I �d T implies I �d i : C � D.

Let us see now how bridge rules affect concept subsumption. Hereafter, Binto
ij and

Bonto
ij will denote the set of into- and onto-bridge rules of Bij respectively.

Monotonicity Bridge rules do not delete local subsumptions. Formally:

Ti � A � B =⇒ T |=d i : A � B (6)

Directionality T-box without incoming bridge rules is not affected by other T-boxes.
Formally, if Bki = ∅ for any k �= i ∈ I, then:

T |=d i : A � B =⇒ Ti � A � B (7)

Strong directionality Sole into- or onto-bridge rules incoming to local terminology
do not affect it. Formally, if for all k �= i either Binto

ki = ∅ or Bonto
ki = ∅, then:

T |=d i : A � B =⇒ Ti � A � B (8)

Local inconsistency The fact that Bij contains into- and onto-bridge rules does
not imply that inconsistency propagates. Formally:

T |=d i : � � ⊥ �=⇒ T |=d j : � � ⊥ (9)

Simple subsumption propagation Combination of onto- and into-bridge
rules allows to propagate subsumptions across ontologies. Formally, if Bij con-

tains i : A
�−→ j : G and i : B

�−→ j : H, then:

T |=d i : A � B =⇒ T |=d j : G � H (10)

Generalized subsumption propagation If Bij contains i : A
�−→ j : G and

i : Bk
�−→ j : Hk for 1 ≤ k ≤ n, then:

T |=d i : A �
n⊔

k=1

Bk =⇒ T |=d j : G �
n⊔

k=1

Hk (11)

Among the given properties, property (9) and property (11) play special roles. The
first one is important as it allows us to explain how full and empty holes constitute
“locally inconsistent interpretations”. The second one is important as it constitutes
the main reasoning step of the tableau algorithm proposed in the next section. The
proofs of the above properties can be found in [1, 10].

Example 2.2. In the hierarchy WNP of the previous example there is no subsumption
relation between Engineer and Worker. From bridge rules (1–3) and from the fact that
in the ISCO-88 ontology the concept Architects Engineers And Related Professionals
is a subclass of Professionals, it is impossible to infer that Engineers is a subclass
of Worker, i.e. that in WNP Engineers � Worker. Similarly, the bridge rules (4)
and (5) allow to infer that WNP classes Gatekeeper and Child are disjoint, i.e. that
WNP : Gatekeeper � Child � ⊥.

3 Distributed reasoning in DDL

The reasoning services one would like to have in the web of ontologies are the following:

Local reasoning services are all kind of reasoning services one wants to have for
a local ontology. The adjective “local” indicates that these reasoning services
consider a local ontology as a stand alone object (no bridge rules are taken into
account). The fundamental local reasoning service is local subsumption, i.e. the
fact that Ti |= C � D.

Global reasoning services are services which take into account local ontologies in
the context of the whole ontology space. These services should allow to infer
subsumption between concepts on the basis of bridge rules, as well as new bridge
rules on the basis of the existing ones. In this paper, we will focus on the basic
global reasoning service that computes global subsumption, i.e. the fact that
T |=d i : C � D.

A first proposal for implementing global reasoning services in DDL is based on
reduction of a DTB T to an equivalent global T-box TG, such that subsumption in T

can be computed via subsumption in TG (see [1] for the transformation details). In
this approach, however, a DTB can not be trivially reduced to a single global T-box
simply by indexing the concepts and roles with the T-box they occur in. Furthermore,
the reformulation done, works in the limited case when all local T-boxes are consistent.
We therefore, would like to investigate a more general decision procedure.

Our proposal consist in building a distributed tableau for DDL on top of state of
the art DL tableaux, implemented in FaCT and DLP[7], RACER[15], Pellet, and other
DL systems. Given a concept C, they generate a tableau of C, Tab(C). Subsumption
between concepts C and D is performed by checking the presence of clashes in all the
branches of Tab(C � ¬D).

To understand how local tableaux are combined in order to check global subsump-
tion we first consider a limited case of DDL that is composed of only two T-boxes T1

and T2, and bridge rules of only one direction from 1 to 2. Though this is unrealistic
limitation, it constitutes a mandatory step, from which one can generalize and build a
procedure capable of dealing with complex DDL topologies. For the sake of simplicity,
we assume the second premise that requires the atomicity of concepts involved into
bridge rules. This restriction can be later relaxed, since any bridge rule involving a
complex concept i : C, can be replaced with a bridge with a new atomic concept i : A
and by the addition of the definition A ≡ C to Ti.

Example 3.1. For a distributed T-box T12 = 〈T1,T2,B12〉, suppose that T1 contains
axioms A1 � B1 and A2 � B2, T2 does not contain any axiom, and that B12 contains
the following bridge rules:

1 : B1
�−→ 2 : H1 1 : B2

�−→ 2 : H2 (12)

1 : A1
�−→ 2 : G1 1 : A2

�−→ 2 : G2 (13)

Let us show that T12 |=d 2 : G1 � G2 � H1 � H2, i.e. that for any distributed
interpretation I = 〈I1,I2, r12〉, (G1 � G2)I2 ⊆ (H1 � H2)I2 .

1. Suppose that by contradiction there is an x ∈ ∆2 such that x ∈ (G1 �G2)I2 and
x �∈ (H1 � H2)I2 .

2. Then x ∈ GI2
1 , x ∈ GI2

2 , and either x �∈ HI2
1 or x �∈ HI2

2 .

3. Let us consider the case where x �∈ HI2
1 . From the fact that x ∈ GI2

1 , by the
bridge rule (13), there is y ∈ ∆1 with 〈y, x〉 ∈ r12, such that y ∈ AI1

1 .

Tab2((G1 � G2) � (¬H1 � ¬H2))

2 : x (G1 � G2) � (¬H1 � ¬H2)

2 : x (G1 � G2), (¬H1 � ¬H2)

2 : x G1, G2, (¬H1 � ¬H2)

2 : x G1, G2, ¬H1

Determine the CLASH by
applying bridge rules (12)
and (13) and computing
the tableau
Tab1(¬B1 � A1)

2 : x G1, G2, ¬H2

Determine the CLASH by
applying bridge rules (12)
and (13) and computing
the tableau
Tab1(¬B2 � A2)

Tab1(¬B1 � A1)

1 : y (¬B1 � A1), (¬A � B)

1 : y A1,¬B1, (¬A1 � B1)

1 : y A1,¬B1, ¬A1

CLASH

1 : y A1,¬B1, B1

CLASH

Tab1(¬B2 � A2)

1 : y (¬B2 � A2), (¬A2 � B2)

1 : y A2, ¬B2, (¬A2 � B2)

1 : y A2, ¬B2,¬A2

CLASH

1 : y A2, ¬B2, B2

CLASH

Figure 3: An example of distributed tableau.

4. From the fact that x �∈ HI1
1 , by bridge rule (12), we can infer that for all y ∈ ∆1

if 〈y, x〉 ∈ r12 then y �∈ BI1
1 .

5. But, since A � B ∈ T1, then y ∈ BI1
1 , and this is a contradiction.

6. The case where x �∈ HI2
2 is similar.

The above combination of a tableau in T2 with a tableau in T1 gives a distributed
tableau in T, depicted in Figure 3.

The intuitions given in Example 3.1 can be generalized for the case of multiple
T-boxes, when there are no cyclical references between them. Formally, distributed
T-box T = 〈{Ti}i∈I , {Bij}i�=j∈I〉 is acyclical if Bij �= ∅ requires i < j for all i, j ∈ I.

Algorithm 1 implements a distributed reasoning procedure intuitively introduced
above. Here we define a distributed procedure dTab, which takes as an input a
complex concept Φ to be verified and returns the result of its (un)satisfiability test.
The algorithm first builds a local completion tree T by running local tableau algorithm
Tab, and further attempts to close open branches of T by checking the bridge rules,
which are capable of producing the clash in nodes of T. According to the local tableau
algorithm, each node x introduced during creation of the completion tree, is labeled
with a function L(x) containing concepts that x must satisfy.

4 Prototype implementation

To evaluate the proposed distributed reasoning procedure we built a prototype mod-
eling the P2P architecture given in Figure 1. Each peer ontology manager maintains
ontologies in OWL and mappings in C-OWL, and provides local/global reasoning
services, such as performing classification and checking entailment.

The key role in the ontology manager is played by a distributed reasoning engine,
implementing developed distributed tableau algorithm. The kernel of the engine is
formed by Pellet OWL DL reasoner4. Opennes of the source code and implementation

4http://www.mindswap.org/2003/pellet.

Algorithm 1 Distributed reasoning procedure
dTabj(Φ)

1: BEGIN
2: T=Tabj(Φ); {perform local reasoning and create completion tree}
3: if (T is not clashed) then
4: for each open branch β in T do
5: repeat
6: select node x ∈ β and an i �= j;

7: �
onto
i (x) = {C | i : C

�−→ j : D, D ∈ L(x)};
8: �into

i (x) = {C | i : C
�−→ j : D,¬D ∈ L(x)};

9: if ((�onto
i (x) �= ∅) and (�into

i (x) �= ∅)) then
10: for each C ∈ �onto do
11: if (dTabi(C � ¬⊔

�
into
i) is not satisfiable) then

12: close β; {clash in x}
13: break; {verify next branch}
14: end if
15: end for
16: end if
17: until ((β is open) and (there exist not verified nodes in β))
18: end for{all branches are verified}
19: end if
20: if (T is clashed) then
21: return unsatisfiable;
22: else
23: return satisfiable;
24: end if
25: END

in java made Pellet a good candidate for our prototype. Extension of the core reasoning
functionality of Pellet transforms it to the distributed successor called D-Pellet.

To depicture the life cycle of D-Pellet, consider the case where a peer ontology
manager is asked to perform one of the supported reasoning services in a local on-
tology it maintains. The ontology manager submits this query to D-Pellet, which in
turn invokes the relative core Pellet functionality and checks for available mappings.
Mapping processing can generate subqueries which are dispatched by the ontology
manager to the corresponding foreign ontology manager. In turn, this starts another
reasoning cycle. The reasoning stops when the initial D-Pellet receives the answers
to the subproblems it sent out. Analysis of the subproblem answers defines the final
reasoning result.

5 Conclusions

In this paper we have presented a tableau-based distributed reasoning procedure for
DDL. We made several assumptions to study the reasoning in DDL, such as acyclicity
of bridge rules and atomicity of concepts involved into bridge rules. The future work
is to relax these assumptions in order to receive a practically usable framework.

References

[1] A.Borgida and L.Serafini. Distributed description logics: Assimilating informa-
tion from peer sources. Journal of Data Semantics, pages 153–184, 2003.

[2] C.Ghidini and F.Giunchiglia. Local model semantics, or contextual reasoning =
locality + compatibility. Artificial Intelligence, 127(2):221–259, 2001.

[3] C.Ghidini and L.Serafini. Distributed first order logics. In Proc. of the Frontiers
of Combining Systems, pages 121–139, 2000.

[4] F.Giunchiglia. Contextual reasoning. Epistemologia, special issue on I Linguaggi
e le Macchine, XVI:345–364, 1993.

[5] F.Giunchiglia and L.Serafini. Multilanguage hierarchical logics (or: How we can
do without modal logics). Artificial Intelligence, 65(1):29–70, 1994.

[6] G.Antoniou and F. van Harmelen. Web ontology language: Owl. In Handbook
on Ontologies in Information Systems, pages 67–92, 2003.

[7] I.Horrocks and P.F.Patel-Schneider. FaCT and DLP. In Proc. of the Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’98), pages
27–30, 1998.

[8] I.Horrocks, P.F.Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

[9] I.Horrocks, U.Sattler, and S.Tobies. Practical reasoning for very expressive de-
scription logics. Logic Journal of IGPL, 8(3):239–263, 2000.

[10] L.Serafini and A.Tamilin. Distributed reasoning services for multiple ontologies.
Technical Report DIT-04-029, University of Trento, 2004.

[11] L.Serafini and F.Roelofsen. Satisfiability for propositional contexts. In Proc.
of the Principles of Knowledge Representation and Reasoning (KR2004), 2004.
Accepted for publication.

[12] M.Bonifacio, P.Bouquet, and P.Traverso. Enabling distributed knowledge
management. Managerial and technological implications. Novatica and Infor-
matik/Informatique, III(1), 2002.

[13] M.Ehrig, Ch.Tempich, J.Broekstra, F. van Harmelen, M.Sabou, R.Siebes,
S.Staab, and H.Stuckenschmidt. A metadata model for semantics-based p2p sys-
tems. In Proc. of the 2nd Konferenz Professionelles Wissensmanagement, 2003.

[14] P.Bouquet, F.Giunchiglia, F. van Harmelen, L.Serafini, and H.Stuckenschmidt.
C-owl: Contextualizing ontologies. In Proc. of the 2d International Semantic
Web Conference (ISWC2003), pages 164–179, 2003.

[15] V.Haarslev and R.Moller. Racer system description. In Proc. of the International
Joint Conference on Automated Reasoning (IJCAR2001), pages 701–706, 2001.

