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Abstract. MORe exploits module extraction techniques to divide the
workload of ontology classification between two reasoners: a reasoner for
the lightweight profile EL of OWL 2, and a fully fledged OWL 2 reasoner.
This division is carried out in such a way that the bulk of the workload
is assigned, as much as possible, to the OWL 2 EL reasoner, in order to
exploit the more efficient classification techniques specific to this profile.

1 Introduction

MORe [1] is an OWL 2 reasoning system dedicated to ontology classification
that integrates a general purpose OWL 2 reasoner (OWL reasoner for short)
and a reasoner specific for the OWL 2 EL1 profile (EL reasoner for short). The
current implementation of MORe uses ELK [8] as its EL reasoner, and offers the
possibility to choose between two OWL reasoners: HermiT 1.3.7 [4] and Pellet
2.3.0 [12]. The EL and OWL reasoners are, however, integrated in a “black-box”
way: our implementation of MORe provides the required infrastructure to bundle
any other OWL and/or EL reasoner.

Given an input ontology O, MORe identifies a part of the classification of
O that can be computed using the EL reasoner and limits the use of the OWL
reasoner to a fragment of O as restricted as possible. The main advantage of
MORe lies in its “pay-as-you-go” behaviour when an OWL 2 EL ontology is
extended with axioms in a more expressive logic: the use of an efficient EL
reasoner is not necessarily precluded by the extension; in fact, it is to be expected
that the EL reasoner will still perform most of the computational work.

MORe performs only terminological reasoning and ignores any assertional
axioms that the input ontology might contain. Therefore, completeness is only
guaranteed for ontologies that contain no ABox assertions.

MORe2 is implemented in Java using the OWL API3 [6]. It can therefore
process ontologies in any format handled by the OWL API, such as RDF/XML,
OWL Functional Syntax, or OBO. It is available both as a Java library and a
Protégé4 plugin, and it can also be used via a commmand line interface.

1 http://www.w3.org/TR/owl2-profiles/#OWL 2 EL
2 https://code.google.com/p/more-reasoner/
3 http://owlapi.sourceforge.net/
4 http://protege.stanford.edu/



2 The Technique

The main idea behind the technique implemented in MORe is to identify, given
an ontology O with signature Sig(O), two subsets M1, M2 of O such that

• M1 is as small as possible;
• the output of classifying M2 with the EL reasoner is complete for Sig(M2)

w.r.t. O (i.e. it contains all subsumption relations A v B entailed by O such
that A ∈ Sig(M2));
• the output of classifyingM1 with the OWL reasoner is complete for Sig(M1)

w.r.t. O; and
• Sig(M1) ∪ Sig(M2) = Sig(O).

Our implementation of MORe relies on ELK, which does not yet implement
the whole of OWL 2 EL. The unsupported constructs are documented and hence
we can identify the fragment LELK of OWL 2 EL implemented by ELK.

They key to identifying M1 and M2 is in computing an LELK-signature: a
signature ΣELK ⊆ Sig(O) such that the ⊥-module for ΣELK in O is an ontology
in the language LELK for which ELK is complete.

The ⊥-module for O and Σ,M[O,Σ], is the smallest subset of O such that all
axioms in O \M[O,Σ] are ⊥-local w.r.t. Σ ∪ Sig(M[O,Σ]). Intuitively, an axiom
α is ⊥-local w.r.t. Σ if replacing by ⊥ all occurrences in α of symbols not in Σ
would turn α into a syntactically recognisable tautology; e.g., the axiom A v B
is ⊥-local w.r.t. Σ = {B}. Cuenca Grau et al. [2] offer a deeper insight into the
notions of ⊥-module, ⊥-locality, and modularity in a more general sense. For
the scope of this system description, we only remark the following properties:

1. For any class A in Sig(M[O,Σ]):
(a) if A is unsatisfiable in O then it is also unsatisfiable in M[O,Σ]

(b) if another class B in Sig(O) is a superclass of A in O, then it is so in
M[O,Σ] as well —and so B is in Sig(M[O,Σ]) too.

2. If Σ1 ⊆ Σ2, then if some axiom α is ⊥-local w.r.t. Σ2, it is also ⊥-local w.r.t.
Σ1, and therefore M[O,Σ1] ⊆M[O,Σ2].

3. both checking ⊥-locality and extracting a ⊥-module can be done in polyno-
mial time.

Property 1(b), in particular, is not shared by other kinds of modules, and makes
⊥-modules especially well suited for classification purposes.

2.1 Modular Combination of Reasoners

The integration of the two reasoners is performed as follows. Given an OWL 2
ontology O, MORe first tries to compute a nonempty LELK-signature ΣELK for O
(details of how this is done are given in Section 2.2). If it suceeds, then ELK is
used to classify M[O,ΣELK], and HermiT or Pellet to classify M[O,Sig(O)\ΣELK];
finally, both partial hierarchies are unified into a single one. If MORe fails to find
a nonempty LELK-signature, then it delegates the whole classification to either
HermiT or Pellet. Details about the correctness (soundness and completeness)
of this technique can be found in Armas Romero et al. [1].



2.2 Computing an LELK-signature

To find a suitable LELK-signature ΣELK for a given ontology O, MORe first identi-
fies the set S of axioms that ELK cannot process, and —if possible— a subset Σ
of Sig(O) such that all the axioms in S are ⊥-local w.r.t. Σ. This alone, however,
does not guarantee that M[O,Σ] ∩ S = ∅.

Example 1. Consider the ontology Oex consisting of the following axioms:

A ≡ B t C B ≡ D u ∃R.E F v ∃R.G

All the axioms in Oex are in LELK except for α = A ≡ B t C. Now, we have that
α is ⊥-local w.r.t. a signature Σ iff Σ ∩ {A,B,C} = ∅, therefore, α is ⊥-local
w.r.t. Σ = Sig(Oex) \ {A,B,C}. However, β = B ≡ Du ∃R.E is not ⊥-local w.r.t.
Σ, so β ∈ M[O,Σ] and B ∈ Sig(M[O,Σ]), and therefore α is not ⊥-local w.r.t.
Σ ∪ Sig(M[O,Σ]) and needs to be in M[O,Σ]. ♦

All we need to do is progressively reduce Σ until Sig(M[O,Σ]) ⊆ Σ. This can
be done as follows:

1. Let S0 be the set of axioms in O that are not in LELK and let Σ0 = Sig(O).
2. Reduce Σ0 to some Σ1 ⊂ Σ0 such that S0 is ⊥-local w.r.t. Σ1. If this is not

possible, then make Σ1 = ∅.
3. Compute the set S1 of axioms in M[O,Σ1] containing symbols outside Σ1.
4. Repeat Steps 2–3 until Si = ∅ (i.e. until Sig(M[O,Σi]) ⊆ Σi) or Σi = ∅.

It is important to note that, in some cases, there may be several different ways
of obtaining Σi+1 from Σi.

Example 2. As shown in the previous example, taking Σ = Sig(Oex)\{A,B,C} is
not enough to keep A ≡ BtC outsideM[O,Σ]. We need to remove more symbols
from Σ to keep B ≡ D u ∃R.E outside M[O,Σ] too. One possibility would be to
remove D from Σ, but we could also choose to remove R or E instead. It turns
out that choosing one option over another can change things substantially.

If we chose to take Σ1 = Sig(Oex)\{A,B,C,R} then, because F v ∃R.G is not
⊥-local w.r.t. Σ1 and contains the symbol R, we would need to further reduce
Σ1 to some Σ2 ⊂ Σ1.

However, if we tookΣ1 = Sig(Oex)\{A,B,C,D} orΣ1 = Sig(Oex)\{A,B,C,E},
then we would already have Sig(M[Oex,Σ1]) = Σ1, and we would be done. ♦

The ⊥-module M[O,Sig(O)\ΣELK] that the OWL reasoner needs to classify is
likely to be smaller the larger ΣELK is. Therefore, it is desirable to find heuristics
to choose each Σi in a way that leads to an LELK-signature as large as possible.
Below we describe the main heuristics that we have implemented in MORe.

Keeping Properties As far as possible, we try not to remove properties from
Σi. The reason for this is that most ontologies contain fewer properties than
classes, and each property usually appears in more axioms than any class. Thus,
removing a property from Σi is more likely to bring more axioms into the next
Si+1 and lead to a smaller LELK-signature.



Global Symbols We perform a preprocessing stage to identify a (possibly
empty) set Γ of global symbols in Sig(O), such that either Γ ⊆ ΣELK or ΣELK = ∅.
For this, we first find the set G of all global axioms in O, i.e. those that cannot
possibly be made ⊥-local, (e.g. axioms of the form > v C) and take Γ = Sig(G).
We then keep adding to Γ the signatures of all the axioms in O that would only
be ⊥-local w.r.t. ΣELK if some symbol in Γ was left outside ΣELK, until no more
symbols need to be added to Γ .

Then, we will only ever consider sets Σi such that Γ ⊆ Σi. As the following
example shows, this can sometimes mark the difference between finding a non-
empty LELK-signature or not.

Example 3. Consider the ontology O′
ex = Oex ∪ {> v ∃R.E}. In the previous

example we saw how both Sig(Oex)\{A,B,C,D} and Sig(Oex)\{A,B,C,E} were
equally good choices when choosing a suitable Σ1 for Oex . This is not the case
any more with O′

ex, as after choosing Sig(O′
ex) \ {A,B,C,E} we would need to

try to keep > v ∃R.E outsideM[O′
ex,Σ

ELK] too; but this is not possible, so in the
end we would have ΣELK = ∅. ♦

Reducing Nondeterminism In each iteration of the algorithm, instead of
considering the set Si as a whole, we split it into two subsets: Snondeti , containing
those axioms in S for which there are several ways in which Σi can be reduced
to make them ⊥-local, and Sdeti , those for which there is only one way.

Whenever Sdeti 6= ∅, we obtain Σi+1 by removing from Σi the symbols re-
quired by each axiom in Sdeti , and ignore Snondeti . When Sdeti = ∅, we deal with
the axioms in Snondeti taking a greedy approach —finding the optimal solution
is often too expensive.

The intuition behind this heuristic is that, by postponing making any nonde-
terministic decisions as much as possible, we might eliminate the need to make
them altogether.

Note that, using this heuristic, we are not guaranteed to handle all the non
LELK-axioms in the first iteration any more, therefore we also have to consider
in each Si those non-LELK axioms that are still not ⊥-local w.r.t. Σi.

Example 4. Consider the ontology O′′
ex consisting of all the axioms in Oex, plus

the following additional axioms:

E v C H v ∃R.E I ≡ (E u F) t (G u H)

We first get Snondet0 = {I ≡ (E u F) t (G u H)} and Sdet0 = {A ≡ B t C}. The
new non-LELK axiom, I ≡ (E u F) t (G u H), goes into Snondet0 because it could
be handled by removing any of the following sets of symbols: {I,E,G}, {I,F,G},
{I,E,H} or {I,F,H}. For now we only deal with Sdet0 = {A ≡ B t C}, and we do
so by taking Σ0 = Sig(O′′

ex) \ {A,B,C}.
Then we obtain the sets Snondet1 = {B ≡ D u ∃R.E, I ≡ (E u F) t (G u H)} and

Sdet1 = {E v C} and we deal with E v C by taking Σ1 = Sig(O′′
ex) \ {A,B,C,E}.



Table 1. Ontology metrics

Ontology

Metrics
Expressivity |Sig(O)| |O| |O \ OLELK | |MOWL2|

Gazetteer ALE+ 517,039 652,361 0 0%

Cardiac Electrophys. SHF(D) 81,020 124,248 22 1%

Protein S 35,205 46,114 15 22%

Biomodels SRIF 187,577 439,248 22,104 45%

Cell Cycle v0.95 SRI 144,619 511,354 1 <0.1%

Cell Cycle v2.01 SRI 106,517 624,702 9 98%

NCI v09.12d SH(D) 77,571 109,013 4,682 58%

NCI v13.03d SH(D) 97,652 136,902 158 57%

SNOMED15t ALCR 291,216 291,185 15 3%

SNOMED+LUCADA ALCRIQ(D) 309,405 550,453 122 0.1%

In the next iteration, we get Snondet2 = {I ≡ (E u F) t (G u H)} —note that
axiom B ≡ D u ∃R.E has been taken care of indirectly— and Sdet2 = {H v ∃R.E},
and we handle H v ∃R.E by taking Σ2 = Sig(O′′

ex) \ {A,B,C,E,H}.
After that, we find Snondet2 = ∅ and Sdet2 = {I ≡ (E u F) t (G u H)}, and take

Σ3 = Sig(O′′
ex) \ {A,B,C,E,H, I}, which finally gives S3 = ∅. Thus, we have

computed ΣELK = Σ3 without making any nondeterministic decisions.

3 Evaluation

We have tested MORe using an Ubuntu 12.04 64-bit machine with 7.8 GiB of
RAM (fully assigned to the JVM) and an Intel Core i7-3770 CPU @ 3.40GHz x
8 processor. Our test ontology suite includes six BioPortal ontologies5 [3] —for
Biomodels we consider only its TBox—, two different versions of NCI6 [5], and
two extensions of SNOMED7 [9]: SNOMED15t was built from a 2012 version
of SNOMED, following the suggestions of domain experts, by adding 15 axioms
containing disjunctions; SNOMED+LUCADA was obtained by mapping a 2011
version of SNOMED to the terminological part of the LUCADA ontology8 [10,
11] using the ontology matching system LogMap [7]. Table 1 gives an overview
of the general features of these ontologies, including the number of non-LELK

axioms they contain and the size of the module extacted by MORe for the OWL
reasoner, M[O,Sig(O)\ΣELK], referred to as MOWL2 in Table 1.

5 http://bioportal.bioontology.org/ontologies/1397
6 http://evs.nci.nih.gov/ftp1/NCI Thesaurus/archive
7 http://www.ihtsdo.org/snomed-ct/
8 The LUCADA ontology (ALCHI(D)) contains 476 entities and can be classified by

both HermiT and Pellet in less than 2 seconds



Table 2. Classification times in seconds

Ontology

Reasoner MOReHermiT
HermiT

MORePellet
Pellet

HermiT total Pellet total

Gazetteer 0 20.6 651 0 20.3 1,414

Cardiac Electrophys. 0.3 6.3 22.7 0.3 5.5 11.0

Protein 2.0 4.8 10.0 2.0 4.7 2,920

Biomodels 377 487 582 373 483 1,915

Cell Cycle v0.95 <0.1 9.9 mem <0.1 10.4 3,433

Cell Cycle v2.01 mem mem mem mem mem 3,435

NCI v09.12d 244 252 261 256 266 93.6

NCI v13.03d 45.1 62.7 68.4 45.7 62.9 191

SNOMED15t 4.5 25.4 1,395 4.4 22.9 4,314

SNOMED+LUCADA 1.1 28.8 1,302 1.2 29.2 mem

We analyse our results by comparing the performance of MORe using HermiT
vs. HermiT alone, and of MORe using Pellet vs. Pellet alone. A summary of all
results can be found in Table 2. mem indicates an out of memory error.

When integrating HermiT, MORe is always able to improve, or at least main-
tain its performance. We remark the case of Cell Cycle v0.95, where the perfor-
mance is improved from an out of memory error to termination in under 10s.

Integrating Pellet, however, sometimes has an unexpected effect. In the cases
of NCI v09.12d and Cell Cycle v2.01, Pellet takes longer to classifyMOWL2 when
integrated in MORe than to classify the whole ontology on its own. This however,
does not happen when Pellet is used to classifyMOWL2 independently of MORe.
We are still unsure about the causes of this phenomenon. Apart from these two
cases, MORe is still often able to improve on the performance of Pellet.

It is worth mentioning that the reason why, in the case of Cell Cycle v2.01,
the portion of the ontology that the OWL reasoner has to process is so close
to the whole ontology (98%) is because the 9 non LELK axioms are symmetric
property axioms, which force their 9 respective properties out of ΣELK, reducing
it to a very small set.

4 Conclusions and Future Directions

We are continuing to develop MORe, exploring new ways of further reducing
the workload assigned to a general purpose OWL 2 classification algorithm.
We are looking into the possibility of alternative modularity notions specific
for this application, and also into exploiting computational properties of other
lightweight ontology languages to combine our modular approach with one based
on finding lower and upper bounds for the classification.
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