
FRaQuE: A Framework for Rapid Query

Processing Evaluation

Jean-Rémi Bourguet and Luca Pulina

POLCOMING, Università di Sassari, Italy
Viale Mancini 5 – 07100, Sassari – Italy
boremi@uniss.it - lpulina@uniss.it

Abstract. In this paper we present FRaQuE (Framework for Rapid
Query Processing Evaluation). The main purpose of FRaQuE is to
offer to a non-expert user a “push-button” solution aimed to help her to
evaluate query processors for Ontology Based Data Access, focusing only
on input and output data, without take into account both theoretical and
technical issues.

1 Introduction

The choice of W3C to make ontologies the main tool to attach semantic in-
formation to web contents, and, consequently, the potential applications in the
Semantic Web [2], has attracted a lot of interest inside the Automated Reasoning
community, particularly in the past decade. It is well-established that reasoning
with ontologies is one of the core task of research in description logics – see,
e.g., [1] – and it is also witnessed by the large amount of reasoners currently
available1.

One of the reasoning tasks that can be accomplished by reasoning tools is
query answering. In particular, in order to match the competing requirements of
KR&R-style data handling with DB-style data size, research on ontology-based
data access (OBDA) emerged at the crossroads of the two fields. According to [7],
the keyword OBDA characterizes scenarios where access to data is mediated by
an ontology, and data is either physically stored in a traditional DB, or comes
in sizes which are typical of DB applications anyway. To this purpose, there are
actually several OWL reasoners with the ability to support the SPARQL query
language [18] – the W3C standard for querying semantic-enabled data stores.

Given the wide range of possible practical applications in which OBDA can
be used, e.g., Decision Support Systems [8, 5, 3], practitioners aimed to lever-
age OBDA in their applications have to answer the question “Which query
processor should I use?”. In order to answer to this question, recently sev-
eral events and projects have been implemented, e.g., the Joint Workshop on
Scalable and High-Performance Semantic Web Systems [11] and the SEALS
project http://www.seals-project.eu. More, the OWL Reasoner Evaluation

1 See, e.g., http://www.w3.org/2007/OWL/wiki/Implementations or http://www.cs.
man.ac.uk/~sattler/reasoners.html for a list



workshops organizes since 2012 a competitive event, in the same spirit of other
Automated Reasoning communities, e.g., the CADE ATP System Competition
(CASC) [24] for theorem provers in first order logic, the QBF Evaluation [17] for
quantified Boolean formulas solvers, and the ASP Competition [6] for Answer
Set Programming solvers. Also if in such kind of events reasoners are evaluated
using transparent and fair methods, in a practical application context a prac-
titioner could be interested to understand the current state of the art related
to a particular problem or another for which data could not be available to the
research community. This can lead a non-expert user to deal with several issues,
both technical and theoretical.

In this paper we present FRaQuE (Framework for Rapid Query Processing
Evaluation), a framework aimed to offer to a non-expert user the possibility to
evaluate query processors for OBDA.The main purpose of FRaQuE is to offer
to the user a “push-button” solution aimed to help the user to answer to the
question above, focusing only on input data and queries at the user execution
stage, and showing data in order to evaluate both correctness and performance
at the user validation stage. Currently we include in FRaQuE research pro-
totypes that can be considered active OBDA projects as soon as systems like
Pellet [23], a full-fledged commercial description logic reasoner and ARQ [21],
the built-in query processor of the Jena library. An important element in the
selection is the ability to support the SPARQL query language [18]. However,
the FRaQuE architecture is modular, allowing the extension to other reasoners
in an easy way, as we will describe in Section 2, where we will detail both design
and implementation of FRaQuE. About the rest of the paper, in Section 3 we
discuss about some open points coming from the usage of the query processors,
and we conclude in Section 4 with some final remarks.

2 Design and implementation of FRaQuE

Figure 1 presents the architecture of FRaQuE2. Because of, given a knowledge
base K and a query α, the goal of FRaQuE is to run different systems on the
task of query answering, we also refer to the OBDA systems as query processors.
Looking at the figure, we can see that FRaQuE is composed of the four modules
described in the following.

INTERFACE manages both the input received by the user and the output of the
whole system. It also dispatches the input data to both QUERY MANAGER

and ONTOLOGY MANAGER, as denoted by the outgoing arrows. In particular,
INTERFACE collects (i) the name of the query processor to fire; (ii) the TBox
file name in RDF/XML or OWL/XML format; (iii) the ABox file name
in RDF/XML or OWL/XML format; and (iv) a text file containing the
query in SPARQL 1.0. Finally, INTERFACE manages the output received from
REASONER MANAGER, in order to present it to the user. Actually, FRaQuE

2 FRaQuE is available for download at http://sites.google.com/site/

ore2013fraque.



Fig. 1: The architecture of FRaQuE. The dotted box denotes the whole system and,
inside it, each solid box represents its modules, while each dashed box represents a
sub-module. Arrows denote functional connections between modules.

outputs the ontology loading CPU time, the query answering CPU time, and
a text file containing the query result.

QUERY MANAGER is devoted to process the query input file received by INTERFACE.
It checks the compliance of the query with the SPARQL 1.0 syntax, and,
considering the query processor passed by INTERFACE, it applies syntactic
modification to the input query file or returns to INTERFACE an error message
if the input query is not supported by the selected query processor (see
Section 3 for details).

ONTOLOGY MANAGER is devoted to manage both TBox and ABox input file, by
means of sub-modules TBOX MANAGER and ABOX MANAGER, respectively.

REASONER MANAGER manages the interaction with the reasoners. It receives from
INTERFACE information about the engine to fire, while it receives from ONTOLOGY

MANAGER and QUERY MANAGER information about the ontology file and the
query to process, respectively. At the end of the query processing, REASONER
MANAGER returns to INTERFACE the result.

Concerning the modules described above, we can consider REASONER MANAGER

as the core of FRaQuE, because it interacts with different query processors in
a transparent way to the user. In particular, SPARQL expression semantics
can change according to different entailment regimes. In our case, there are
two entailment regimes which are relevant, namely the RDFS entailment and



the OWL-DL entailment. Under the second regime, we focus on the notion of
entailment for the semantics of OWL 2 QL. In particular, the OWL 2 QL profile
is described in the official W3C’s recommendation as “[the sub-language of OWL
2] aimed at applications that use very large volumes of instance data, and where
query answering is the most important reasoning task.”. Given our intended
applications, we consider knowledge bases encoded using OWL 2 QL.

In details, the query processors actually included in FRaQuE are the fol-
lowing.

– ARQ [21] (version 2.9.4) is the built-in query processor of the Jena library.
It processes queries according to the RDFS regime.

– HermiT [22] (version 1.3.6) is a DL reasoner based on hypertableau cal-
culus [15]. It can be used to answer sparql1.0 queries by means of the
sparql1.0 wrapper owl-bgp [10, 13]. For the sake of simplicity, in the fol-
lowing we will mention the composition between the reasoner and the wrap-
per simply as “HermiT”.

– kaon2 [12, 14] (version 2008-06-29) implements reasoning algorithms aimed
to reduce a knowledge base to a disjunctive datalog program, allowing the us-
age of deductive database techniques. So, with respect to other DL reasoners
like HermiT, Pellet and TrOWL, it does not implement a tableau-like
calculus. Queries can be formulated using a specific subset of sparql1.0

syntax – see http://kaon2.semanticweb.org/ for details.
– Pellet [23] (version 2.3.0) is a description logic reasoner accepting sparql1.0

queries. As such, it supports OWL-DL regime and it could be used to per-
form logically-aware queries also on full-fledged OWL 2 knowledge bases.

– Quest [20] (version 1.7) is a reasoner that supports the OWL-DL entailment
regime restricted to OWL 2 QL. Quest converts queries over the knowledge
base into equivalent SQL queries over an internal relational database. In par-
ticular, Quest uses h2 (version 1.3)3 and while the schema used internally
to store triples is similar to the standard 〈S, P,O〉 schema, it is optimized
to generate very small SQL queries even if there are big hierarchies in the
ontology, as described in [19].

– TrOWL [25] (version 1.1) is an infrastructure aimed to reasoning, and
querying OWL 2 ontologies by means of several techniques, e.g., quality
guaranteed approximations and forgetting. In general, considering OWL 2
ontologies, TrOWL could not give complete answers, but it should not be
the case considering OWL 2 QL ontologies, as in our case (see [25] for de-
tails). In FRaQuE we include TrOWL with the Jena library.

Finally, in Figure 2, we present the class diagram of FRaQuE. In the di-
agram, we denote Java classes with boxes, “part of” relationship with hollow
diamond shape arrows, while the inheritance relationship is denoted using ordi-
nary arrows. The upper part of boxes holds the name of the class, the middle
part contains the attributes and the bottom part contains methods, “+”, “-”
and “#” are respectively public, private and protected attributes or methods.

3 H2 Database Engine http://www.h2database.com/html/main.html.



Fig. 2: Class diagram of FRaQuE.

3 Discussion

The main purpose of FRaQuE is to offer to a non-expert user a simple platform
to evaluate both correctness and reasoning times of OBDA query processors.
With this aim, about the evaluation of correctness of the answer, a text file
containing the answer to the input query is produced by FRaQuE at the end
of query processing – as mentioned in the description of the INTERFACE module.
Concerning the reasoning time, we consider values that could be easily evaluated
by a non-expert user aimed to roughly compare the CPU time needed to answer
a query, avoiding technical details concerning different strategies implemented
in a reasoner.

Considering query processors currently included in FRaQuE, we list in the
following some technical issues. We report that queries containing some key-
words, e.g., FILTER and OPTIONAL, are actually not supported by both kaon2

and Quest. About the query processors mentioned above, we also report that
they do not allow the usage of variables after a rdf:type predicate. Some other
features in the sparql syntax can lead to a failure during the query loading. In
Quest, comment lines (starting with #) have to be removed, while in kaon2



absence of a white space between an object and the final dot is not allowed,
while it is allowed between object and semi-colon4.

The modular architecture of FRaQuE allows the user to easily extend the
pool of query processors. Looking at Figure 2, we can see that all query processors
currently available in FRaQuE are wrapped in a Java class derived from the
abstract class REASONER. Such abstract class provides a common interface
to manage input (ontology and query) and output (the query answer) files.
Once implemented the derived class related to a new query processor – see the
source code available at http://sites.google.com/site/ore2013fraque for
an example – it is sufficient to update the code of FRaQuE* files.

Finally, we report that a preliminary version of FRaQuE has been used for
the experimental evaluation in [4].

4 Conclusions and Future Works

In this paper, we presented the design and the implementation of FRaQuE.
Our modular framework can allow to a non-expert user a rapid evaluation of the
state of the art concerning query processors for OBDA.

Currently, we are working to extend FRaQuE in several directions. Firstly,
we are extending the architecture in order to integrate query processors using
rewriting-based techniques, e.g., clipper [9] and requiem [16]. Secondly, we
are considering the usage of SPARQL 1.1 as input query format. This is mainly
motivated by the fact that our tool aims to simplify practitioner’s work, and
the usage of operators like COUNT, MIN, MAX, or SUM could simplify the
query formulation. Actually, ARQ is the only system supporting SPARQL 1.1
natively, so we are working on QUERY MANAGER in order to add a translator able
to convert the input query to SPARQL 1.0 and use some JAVA code to replicate
the behaviour of the operators above. Finally, we are designing a GUI version of
INTERFACE.

Acknowledgments The authors are grateful to the reviewers for their valuable
comments and suggestions for improving the paper. The authors would like to
thank Giuseppe Cicala and Armando Tacchella for fruitful discussion, and Mar-
iano Rodriguez-Muro for his help in using Quest.

This work is supported by Regione Autonoma della Sardegna e Autorità
Portuale di Cagliari con L.R. 7/2007, Tender 16 2011, CRP-49656 “Metodi in-
novativi per il supporto alle decisioni riguardanti lottimizzazione delle attività
in un terminal container”

4 Notice that the usage of white spaces aiming to separate two terminals is a W3C
recommendation [18].



References

1. F. Baader. The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, 2003.

2. Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific
american, 284(5):28–37, 2001.

3. Eva Blomqvist. The use of semantic web technologies for decision support – a
survey. Semantic Web, 2012.

4. Jean-Remi Bourguet, Giuseppe Cicala, Luca Pulina, and Armando Tacchella. An
experimental evaluation of tools for ontology-based data access. In Proceedings
of the 20th RCRA International Workshop on Experimental Evaluation of Algo-
rithms for solving problems with combinatorial explosion, 2013. Avalaible on-line
from https://docs.google.com/file/d/0B8dEUbPKR1laYjFnMUJLcks0ZnM/edit?

usp=sharing.

5. Jean-Remi Bourguet, Giuseppe Cicala, Luca Pulina, and Armando Tacchella.
Obda and intermodal logistics: Active projects and applications. In Web Reason-
ing and Rule Systems (RR) 2013, volume 7994 of LNCS, pages 210–215. Springer
Verlag, 2013.

6. Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano, Anna-
maria Bria, Gelsomina Catalano, Susanna Cozza, Wolfgang Faber, Onofrio Feb-
braro, Nicola Leone, et al. The third answer set programming competition: Pre-
liminary report of the system competition track. In Logic Programming and Non-
monotonic Reasoning, pages 388–403. Springer, 2011.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, and R. Rosati. Ontologies and Databases: The DL-Lite approach. Reasoning
Web. Semantic Technologies for Information Systems, pages 255–356, 2009.

8. Matteo Casu, Giuseppe Cicala, and Armando Tacchella. Ontology-based data
access: An application to intermodal logistics. Information Systems Frontiers,
2012.

9. Thomas Eiter, Magdalena Ortiz, M Simkus, Trung-Kien Tran, and Guohui Xiao.
Towards practical query answering for horn-shiq. Description Logics, 846, 2012.

10. Birte Glimm et al. OWL-BGP – A framework for parsing SPARQL basic graph
patterns (BGPs) into an OWL object representation. http://code.google.com/

p/owl-bgp.

11. Achille Fokoue, Thorsten Liebig, Eric Goodman, Jesse Weaver, Jacopo Urbani,
and David Mizell. Joint workshop on scalable and high-performance semantic web
systems (ssws+ hpcsw 2012). 2012.

12. Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing shiq- description logic
to disjunctive datalog programs. Proc. KR, 4:152–162, 2004.

13. Ilianna Kollia, Birte Glimm, and Ian Horrocks. Sparql query answering over owl
ontologies. In The Semantic Web: Research and Applications, pages 382–396.
Springer, 2011.

14. Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with
rules. Web Semantics: Science, Services and Agents on the World Wide Web,
3(1):41–60, 2005.

15. Boris Motik, Rob Shearer, and Ian Horrocks. Optimized reasoning in description
logics using hypertableaux. Automated Deduction–CADE-21, pages 67–83, 2007.

16. Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. Efficient query answering
for owl 2. In The Semantic Web-ISWC 2009, pages 489–504. Springer, 2009.



17. Claudia Peschiera, Luca Pulina, Armando Tacchella, Uwe Bubeck, Oliver Kull-
mann, and Inês Lynce. The seventh qbf solvers evaluation (qbfeval10). In Theory
and Applications of Satisfiability Testing–SAT 2010, pages 237–250. Springer, 2010.

18. E. Prud’Hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C
working draft, 4(January), 2008.

19. M. Rodriguez-Muro and D. Calvanese. High Performance Query Answering over
DL-Lite Ontologies. In Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2012), pages 308–318, 2012.

20. M. Rodrıguez-Muro and D. Calvanese. Quest, an OWL 2 QL Reasoner for
Ontology-based Data Access. OWLED 2012, 2012.

21. A. Seaborne. ARQ – A SPARQL Processor for Jena, 2010. http://jena.

sourceforge.net/ARQ/ – [accessed 1/5/2010].
22. Rob Shearer, Boris Motik, and Ian Horrocks. Hermit: A highly-efficient owl rea-

soner. In Proceedings of the 5th International Workshop on OWL: Experiences and
Directions (OWLED 2008), pages 26–27, 2008.

23. E. Sirin, B. Parsia, B. Cuenca-Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. Web Semantics: science, services and agents on the World
Wide Web, 5(2):51–53, 2007. Available on-line from http://pellet.owldl.com/.

24. Geoff Sutcliffe. The cade-23 automated theorem proving system competition–casc-
23. AI Communications, 25(1):49–63, 2012.

25. Edward Thomas, Jeff Z. Pan, and Yuan Ren. TrOWL: Tractable OWL 2 Rea-
soning Infrastructure. In the Proc. of the Extended Semantic Web Conference
(ESWC2010), 2010.


