
OBDA with Ontop

Mariano Rodŕıguez-Muro1, Roman Kontchakov2 and Michael Zakharyaschev2

1 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
2 Dept. of Computer Science and Inf. Syst., Birkbeck, University of London, U.K.

Abstract. We evaluate the performance of the OBDA system Ontop
and compare it with other systems. Our experiments show that (i) the
Ontop tree-witness query rewriter is fast and outperforms the competi-
tors, and (ii) query evaluation in Ontop using the semantic index is as
efficient as in materialisation-based systems (but without the materiali-
sation overhead).

1 Introduction

Ontop (ontop.inf.unibz.it) is an ontology-based data access (OBDA) system
implemented at the Free University of Bozen-Bolzano and available as a plugin
for Protégé 4, SPARQL end-point and OWLAPI and Sesame libraries. The ar-
chitecture of Ontop is as follows:

CQ q

ontology T

UCQ qtw

T -mappingmapping M

dependencies Σ

SQL

data D

ABox AD

H-complete ABox A

+

tw-rewriting Ê

+

unfolding

+

ABox virtualisation

+

ABox virtualisation

+

ABox completion

+

composition Ë
SQO

Ì

SQ
O

Í

A user formulates a conjunctive query (CQ) q in the signature of an OWL 2 QL
ontology T . The ontology T is related to the data D by means of a GAV mapping
M, which is a collection of database queries defining the vocabulary of T . The
mapping M could be applied to the data D to obtain the so-called virtual ABox
AD [9]. Ontop does not materialise it. Instead, it constructs a T -mapping [9]
by taking the composition (Ë) of M with the taxonomy in T and simplifying it
using SQL features (disjunction and interval expressions) and Semantic Query
Optimisation (SQO Ì) with database integrity constraints (dependencies Σ).
By applying the resulting T -mapping to the data D, we could obtain another
virtual ABox, A, which is H-complete with respect to T in the sense that:

A(a) ∈ A if A′(a) ∈ A, T |= A′ v A or R(a, b) ∈ A, T |= ∃R v A,

P (a, b) ∈ A if R(a, b) ∈ A and T |= R v P.

Ontop constructs the tree-witness rewriting qtw of q and T over H-complete
ABoxes [5], and then uses the T -mapping to unfold qtw to an SQL query, which
is then simplified with SQO (Í) and passed to a database system for evaluation.

In the remainder of the paper, we evaluate the performance of Ontop and
compare it with other OBDA systems (more details can be found at tinyurl.

com/ontop-benchmark and www.dcs.bbk.ac.uk/~roman/tw-rewriting). We begin
by analysing the structure of tree-witness rewritings over H-complete ABoxes
and show that dealing with concept/role hierarchies (taxonomies) is the most
critical component of any OBDA system. We then concentrate on a particular
shape of T -mappings, called the semantic index [9], which is most suitable for
triple stores or data in the form of universal tables in a database and which
allows Ontop to deal with taxonomies efficiently.

2 Tree Witnesses: The Topology of Ontop Rewritings

We have run the Ontop tree-witness rewriter on the usual set of CQs and on-
tologies: Adolena, StockExchange and the extension LUBM∃

20 [6] of LUBM [7]
tailored to stress query answering techniques for OWL 2 QL. Our aim was to
understand the size of the topological part of the rewritings reflecting matches
(tree witnesses) in the anonymous part of the canonical models (as opposed to
the taxonomical one). The tables below provide the statistics on the tree-witness
rewritings over H-complete ABoxes: the number of tree witnesses, the number
of CQs in the rewriting (which is a UCQ), the number of atoms in the original
query, and the number of atoms in each of the CQs in the rewriting.

Adolena StockExchange

s1 s2 s3 s4 s5 s′1 s′2 s′3 s′4 s′5

tree witnesses 1 1 0 1 0 0 0 0 0 0
CQs in qtw 2 2 1 2 1 1 1 1 1 1
atoms in q 2 3 5 3 5 1 3 5 5 7

atoms in qtw 2+2 1+3 5 2+3 5 1 1 3 2 4

For LUBM∃
20, r1–r5 are the queries from the Requiem evaluation [7], q1–q6 from

the combined approach evaluation [6], and q7–q9 from the Clipper evaluation [11]:

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9

tree witnesses 0 0 0 0 0 1 1 0 1 0 0 0 3 1
CQs in qtw 1 1 1 1 1 2 2 1 2 1 1 1 1 1
atoms in q 2 3 6 3 4 8 4 6 8 5 8 13 13 34

atoms in qtw 2 1 4 1 2 4+6 3+4 5 5+8 4 6 12 6 33

Note first that these CQs and ontologies have very few tree witnesses. More
precisely, in 67% of the cases there are no tree witnesses at all, and in 29% we
have only one tree witness. Even for the specially designed q8, the structure of
tree witnesses is extremely simple (they do not even overlap). Note also that,
although q8 and q9 do have tree witnesses, the resulting UCQs contain only one
CQ because these tree witnesses are generated by other atoms of the queries.

The size of each of the CQs in the rewritings does not exceed the size of the
input query; moreover, the domain/range optimisation simplifies the obtained
CQs further for r2–r5, q1, q3, q5–q8 and most of the StockExchange queries. To
illustrate, consider the following subquery of q8:

q0(x0) = Publication(x0), publicationAuthor(x0, x11), Subj1Professor(x11),

worksFor(x11, x12), Department(x12),

where x11, x12 do not occur in the remainder of q8. This CQ has a tree witness
with the last two atoms because of the LUBM∃

20 axiom Faculty v ∃worksFor.
However, Subj1Professor is a subconcept of Faculty, and so any of its instances
will anyway be connected to Department by worksFor (either in the ABox or
in the anonymous part). It follows that the last two atoms of q0 do not change
answers to the CQ and can be ignored. The first atom is also redundant because
the ontology contains the domain axiom ∃publicationAuthor v Publication. As
q0 represents a natural and common pattern for expressing queries—select a
Publication whose publicationAuthor is a Subj1Professor, etc.—any OBDA sys-
tem should be able to detect such redundancies automatically. Finally, we note
that all of the rewritings in our experiments contain at most two CQs.

For comparison, we computed the rewritings of the CQs over LUBM∃
20 us-

ing Requiem [7], Nyaya [4], IQAROS (v 0.2) [10], Clipper (v 0.1) [3] and Rapid
(v 0.3) [2]. The first 3 return UCQ rewritings, while the last 2 nonrecursive dat-
alog rewritings, with Rapid having an option to rewrite into UCQs, too. The
rewritings are over arbitrary ABoxes; to make them comparable with Ontop, in
the last 2 cases we omitted the taxonomical rules for completing the ABoxes.

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9
UCQ (number of CQs)

Requiem 2 1 23 2 10 DNF 2 DNF 14,880 690 DNF DNF DNF DNF

Nyaya 2 1 23 2 10 DNF 2 DNF DNF 690 DNF DNF 8 DNF

IQAROS 2 1 23 2 10 DNF 1 15,120 14,400 990 23,552 DNF DNF DNF

Rapid 2 1 23 2 10 3,887 2 15,120 14,880 690 23,552 DNF DNF 16

datalog (number of non-taxonomical rules)

Rapid 1 1 1 1 1 2 3 1 2 1 1 1 27 1
Clipper 1 1 1 1 1 8 7 1 5 1 1 1 512 16
tw-rewriter 1 1 1 1 1 2 2 1 2 1 1 1 1 1

The UCQs returned by Requiem, Nyaya, IQAROS and Rapid correspond to
our tree-witness rewritings with every concept/role replaced by all of its sub-
concept/subroles (IQAROS’s rewritings of q2 and possibly of q4, q5 are incor-
rect): for instance, q7 produces 216,000 (= 303×23) CQs, q3 produces 15,120
(=4×5×21×36) CQs and q1 produces 3,887 (= 23 + 2×4×21×23) CQs because
Student, Faculty and Professor have 23, 36 and 30 subconcepts, respectively,
worksFor has 2 subroles, etc. Evidently, these large UCQs are generated by the
taxonomies and none of the query subsumption algorithms can reduce the num-
ber of CQs in them. In fact, all four systems require substantial resources (in
particular, for query subsumption checks): e.g., Nyaya rewrites q8 in 91s and
runs out of memory on q1, q3, etc.; IQAROS rewrites q6 in 546s and runs out

of memory on q1, q7–q9; Rapid rewrites q6 in 247s, q9 in 90.2s and runs out of
memory on q7, q8 (but is quite fast in all other cases); Requiem takes 232s on
r3, 236s on q4, 64.7s on q5 and does not terminate in 600s on q1, q3, q6–q8.

On the other hand, Ontop and the datalog-based systems produce rewritings
very quickly: Rapid needs < 0.1s for all CQs except q8 (0.41s) and q9 (10.8s);
it was impossible to extract the rewriting time in Clipper, but each query was
processed in < 2s; Ontop computes the rewritings in < 0.025s (except the last
two that take < 0.055s). Clearly, the huge UCQs could be produced in fractions
of a second by simply unfolding a few CQs by means of the taxonomy. Interest-
ingly, Clipper and Rapid return single-CQ rewritings in the cases without tree
witnesses, but generate more CQs than Ontop (e.g., q8 and q9) otherwise.

3 T -mappings: Concept and Role Hierarchies

We compare the query execution time in Ontop, Stardog 1.2 [8] and OWLIM [1].
Both Stardog and OWLIM use internal data structures to store data in the
form of triples. Stardog is based on rewriting into UCQs (as we saw in Sec-
tion 2, such systems can run out of memory during the rewriting stage, even
before accessing data). OWLIM is based on materialising the inferences (for-
ward chaining); but the implemented algorithm is incomplete for OWL 2 QL [1].
In the presented experiments, Ontop uses DB2 and MySQL to store the data
as triples based on the semantic index technique, which chooses concept/role
IDs in such a way that the resulting T -mapping uses SQL interval expressions
(e.g., (ID>=1) AND (ID<=10)) rather than UNIONs to obtain all instances of a
concept including its subconcepts (and similarly for roles). It was impossible to
compare Ontop with other systems: Rapid and IQAROS are just query rewriting
algorithms; the publicly available Clipper v 0.1 supports only Datalog engines
that read queries and triples at the same time, which would be a serious disad-
vantage for large datasets. All experiments were run on an HP Proliant with 144
cores 3.47GHz in 24 Intel Xeon CPUs, 106GB RAM and a 1TB@15000rpm HD
under 64-bit Ubuntu 11.04 with Java 7, MySQL 5.6 and DB2 10.1.

We took LUBM∃
20 with the data created by the modified LUBM data gen-

erator [6] for 50, 100 and 200 universities (with 5% incompleteness) with 7m,
14m and 29m triples, respectively. OWLIM requires a considerable amount of
time for loading and materialising the inferences—14min, 33min and 1h 23min,
respectively—producing about 93% additional triples and resulting in 13m, 26m
and 52m triples (neither Stardog nor Ontop need an expensive loading stage).
The results of executing the queries from Section 2 are presented in Table 1. We
first note that Stardog runs out of memory on 50% of queries, with a likely cause
being the query rewriting algorithm, which is an improved version of Requiem
(cf. the results in Section 2). On the remaining queries, however, Stardog is fast,
which might be due to its optimised triple store. In contrast to Stardog, both
OWLIM and Ontop return answers to all queries (although the former is incom-
plete) and their performance is comparable: in fact, in 76% of the cases Ontop
with DB2 outperforms OWLIM (the lines ‘DB2 *’ give the execution times for

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9
50 universities

DB2 fetch 0 0.02 0.76 0.04 0 1.38 4.16 0 1.50 1.77 1.24 1.83 1.47 0
DB2 * 0 0.11 0.93 0.03 0 125.0 0.86 0 0.39 2.13 0.24 0.21 0.48 0

O
n
to
p

MySQL 0 1.53 12.40 1.57 0 681.6 6.91 0 1.76 5.52 1.26 8.88 2.69 0
OWLIM 0.00 1.85 2.81 0.58 0.16 20.64 2.83 0.24 0.34 6.16 0.87 0.26 0.27 0.04
Stardog 0.01 0.79 1.56 0.34 0.10 DNF 0.10 DNF DNF DNF DNF DNF DNF 0.04
result size – 102k 12k 34k – 1.1m – – – 302k – – – –

100 universities
DB2 fetch 0 0.02 0.81 0.05 0 1.78 5.06 0 2.15 3.41 1.36 1.85 2.11 0
DB2 * 0 0.28 1.38 0.29 0 131.0 5.15 0 2.24 3.98 1.09 1.26 2.10 0

O
n
to
p

MySQL 0 2.98 24.89 2.90 0 1445 12.63 0 3.37 11.08 2.52 17.71 5.19 0
OWLIM 0.00 3.72 5.51 1.20 0.38 41.12 5.82 0.49 0.67 12.92 1.83 0.51 0.55 0.04
Stardog 0.01 1.78 2.56 0.60 0.38 DNF 0.20 DNF DNF DNF DNF DNF DNF 0.03
result size – 205k 24k 69k – 2.4m – – – 607k – – – –

200 universities
DB2 fetch 0 0.02 0.97 0.05 0 2.05 6.37 0 3.97 6.84 1.47 1.86 5.97 0
DB2 * 0 0.34 1.79 0.37 0 157.0 6.26 0 3.79 7.94 1.20 1.26 5.83 0

O
n
to
p

MySQL 0 5.73 58.24 7.78 0 2888 27.68 0 6.66 20.96 4.35 36.21 11.16 0
OWLIM 0.00 8.49 11.85 2.73 0.64 95.87 11.37 1.03 17.64 29.61 3.60 1.01 1.00 0.04
Stardog 0.01 3.27 2.92 1.12 0.27 DNF 0.33 DNF DNF DNF DNF DNF DNF 0.06
result size – 410k 48k 137k – 4.7m – – – 1.2m – – – –

Table 1. Query execution time (in seconds) and the result size over LUBM∃
20.

queries that return the size of the result). Moreover, some of the slowest queries
return enormous results (e.g., 4.7m tuples for q1 over 200 universities). Such
queries are hardly typical for databases, and both DB2 and MySQL show a
significant degradation in performance. However, as can be seen from the lines
‘DB2 fetch’ that give the time required to plan the query and fetch the first 500
answers (which does not depend much on the size of the result), DB2 is very fast.
It is to be emphasised that Ontop can work with a variety of database engines
and that, as these experiments demonstrate, Ontop with MySQL is consider-
ably worse in executing queries than with DB2 (but is still competitive with
OWLIM). Finally, observe that some queries do not need evaluation because
Ontop simplifies them to empty queries: in fact, r1, r5, q3, q6 contain atoms that
have no instances in the generated data and only 5 out of the 14 CQs return any
answers (which probably reflects the artificial nature of the benchmark).

These experiments confirm once again that rewritings into UCQs over arbi-
trary ABoxes can be prohibitively large even for high-performance triple stores
such as Stardog. The materialisation approach should obviously cope with large
taxonomies. However, the semantic index used in Ontop is able to cope with this
problem as well as (and often better than) inference materialisation, but does
not incur its considerable extra costs.

We have also evaluated the performance of T -mappings when answering
queries over the Movie Ontology (MO, www.movieontology.org) and the data

from the SQL version of the Internet Movie Database (IMDb, www.imdb.com/

interfaces). The reader can find all the results at tinyurl.com/ontop-benchmark.
Those experiments demonstrate that on-the-fly inference over real databases by
means of the tree-witness rewriting and T -mappings is efficient enough to com-
pete (and often outperform) materialisation-based techniques. Moreover, the
usual problems associated with approaches based on query rewriting do not
affect Ontop: T -mappings efficiently deal with hierarchical reasoning, avoiding
the exponential blowup, which is usually associated with query rewriting, and
the SQO is able to improve performance of the produced SQL queries by taking
account of the structure and integrity constraints of the database.

4 Conclusions

To conclude, this paper shows that—despite the negative theoretical results on
the worst-case query rewriting and sometimes disappointing experiences of the
first OBDA systems—high-performance OBDA is achievable in practice when
applied to standard ontologies, queries and data stored in relational databases.
In such cases, query rewriting together with SQO and SQL optimisations is fast,
efficient and produces SQL queries of high quality whose performance makes
materialisation of inferences unnecessary in the OWL 2 QL setting.

Acknowledgements. We thank Giorgio Orsi for providing Nyaya, Guohui Xiao
for providing queries and the Ontop development team (Josef Hardi, Timea
Bagosi and Mindaugas Slusnys) for their help with the experiments.

References

1. B. Bishop and S. Bojanov. Implementing OWL 2 RL and OWL 2 QL rule-sets for
OWLIM. In Proc. of OWLED, 2011.

2. A. Chortaras, D. Trivela, and G. Stamou. Optimized query rewriting for OWL 2
QL. In Proc. of CADE-23, volume 6803 of LNCS, pages 192–206. Springer, 2011.

3. T. Eiter, M. Ortiz, M. Šimkus, T.-K. Tran, and G. Xiao. Query rewriting for
Horn-SHIQ plus rules. In Proc. of AAAI 2012. AAAI Press, 2012.

4. G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimiza-
tion. In Proc. of ICDE 2011, pages 2–13. IEEE Computer Society, 2011.

5. S. Kikot, R. Kontchakov, and M. Zakharyaschev. Conjunctive query answering
with OWL 2 QL. In Proc. of KR 2012. AAAI Press, 2012.

6. C. Lutz, İ. Seylan, D. Toman, and F. Wolter. The combined approach to OBDA:
Taming role hierarchies using filters. In Proc. of SSWS+HPCSW, 2012.

7. H. Pérez-Urbina, B. Motik, and I. Horrocks. A comparison of query rewriting
techniques for DL-lite. In Proc. of DL 2009, volume 477 of CEUR-WS, 2009.

8. H. Pérez-Urbina, E. Rodŕıguez-Dı́az, M. Grove, G. Konstantinidis, and E. Sirin.
Evaluation of query rewriting approaches for OWL 2. In SSWS+HPCSW, 2012.

9. M. Rodŕıguez-Muro and D. Calvanese. Dependencies: Making ontology based data
access work. In Proc. of AMW 2011, volume 749. CEUR-WS.org, 2011.

10. T. Venetis, G. Stoilos, and G. Stamou. Query extensions and incremental query
rewriting for OWL 2 QL ontologies. Journal on Data Semantics, 2013.

11. G. Xiao. Personal communication, 2013.

