
INEX – a Broadly Accepted Data Set for XML
Database Processing??

Pavel Loupal and Michal Valenta

Dept. of Computer Science and Engineering
FEE, Czech Technical University

Karlovo náměst́ı 13, 121 35 Praha 2
Czech Republic

P.Loupal@sh.cvut.cz, valenta@fel.cvut.cz

Abstract. The aim of the article is to inform about the INEX initia-
tive, its testing data set, actual results, and future plans. We discuss and
demonstrate possible utilization of the INEX data set for our own re-
search and testing purposes. Our example – adaptation of approximate
tree embedding algorithm - provides a basis for discussion about INEX
data set suitability and about eventual consecutive experiments.

1 Introduction

Until now, there is no broadly accepted database nor data set for testing new
search or index algorithms or query language specifics in branch of XML process-
ing research. Such referential data set would be useful mainly for more accurately
comparing of individual algorithms and approaches.

INEX data set can be discussed as a hot candidate for such purposes, al-
though the INEX initiative focuses itself rather to information retrieval research
than to XML query languages aspects. But its data set seems suitable, because
it is large enough and its structure is also appropriately complex.

Hence the aim of the article is to inform about INEX initiative, its back-
ground, participants, plans, and results in order to initiate relevant discussion
of accepting or rejecting INEX data set as a referential database for comparing
research results.

We have developed a simple web based application which provides access to
INEX data set and enables easy algorithm testing and results evaluation. We
have prepared an example – adaptation of approximate tree embedding algo-
rithm – in order to provide couple of concrete arguments for discussion about
INEX data set relevance.

The paper is organized as follows: The second section brings basic informa-
tion about INEX initiative. Subsection 2.1 informs about background, plans,
founders, and participants of INEX initiative. Subsection 2.2 discusses INEX
? The research was partially supported by the grant GAČR 201/03/0912

c© V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2004, pp. 106–116, ISBN 80-248-0457-3.
VŠB – Technical University of Ostrava, Dept. of Computer Science, 2004.

INEX – a Broadly Accepted Data Set for XML Database Processing? 107

data set structure, organization of consecutive tasks, and several results. The
third section is dedicated to our utilization of INEX data set. Subsection 3.1
introduces our approach for accessing the INEX data set. Subsection 3.2 demon-
strates the application on concrete example – adaptation of approximate tree
embedding algorithm.

2 INEX initiative

2.1 History, participants, purposes

INitiative for the Evaluation of XML retrieval (INEX) was founded three years
ago. The motivation and the main aim of the project is to provide a referential
database for purposes of data retrieval research community.

Actually 69 participants mainly from universities have taken their active part
in INEX project. Concrete list of participant’s organizations and responsible
persons could be found in INEX home page [5]. In the head of initiative stand
Norbert Fuhr, Saadia Malik (Duisburg-Essen University) and Maunia Lalmas
(Queen Mary University London).

Project is organized as a set of consecutive steps. Each step consists of the
set of tasks which are spred among all participants. When all individual tasks
are solved by their responsible participants, the result is considered together
and evaluated by participants forum discussion. Then step is closed and project
moves to the next stage.

The first step of the project consisted only from acquiring appropriate data
set. It was supplied by IEEE – several volumes of IEEE journals. In the second
step set of data retrieval queries were developed and evaluated by participants.
The third step consisted of hand made relevance assessment process of individual
queries. The next step is actually object of participant’s discussion. It should be
focused to the efectivity of relevance assessment process and to the study of
searchers behaviors and also to the topics of distributed data sources. Follow
open discussion of the third INEX workshop in [5].

2.2 Data structure, queries, relevance assessments

INEX data set (actual version 1.4) has 536MB of XML data. It is exactly 12,107
articles from 6 IEEE transactions and 12 journals from years 1995 to 2002.
Pictures are not included – data set consists only of XML formated text.

Data set is organized in file structure. Root directory consists of two subdi-
rectories – dtd (holds structure information - DTD specification article element)
and xml. Each journal/transaction has its own two-letter named subdirectory
inside xml directory. Journal/transaction is further divided into the directories
by the year of publication. Finally each article is stored in individual xml file,
which name consists of a letter following by four-digit number and xml suffix.
Structure is schematically shown in figure 1.

108 Pavel Loupal, Michal Valenta

In average each article contains 1,532 XML nodes, where the average depth
of node is 6.9. See [3] for detail characteristics of data set.

/inex-1.4

/dtd

...

xmlarticle.dtd

/xml

/an

/1995

...

a1019.xml

a1032.xml

a1034.xml

...

/...

/2002

/...

/ts

Fig. 1. INEX data set file structure

DTD specification or article element is too complex to be clearly presented
here. Instead of this more illustrative fragment of typical article is shown in
figure 2. Picture is taken from [3].

The second stage of INEX project was focused to construction of suitable data
retrieval queries (topics). Topics were constructed by individual participants and
then were accepted or rejected by discussion forum of all participants. Each
participant had to design 6 queries.

Topics were divided into two groups – Content Only (CO) and Content And
Structure (CAS) topics. CAS topics have a structure condition inside their spec-
ification, for example they interests only in abstracts etc. CAS topics are then
classified either Strict (SCAS) or Vague (VCAS). The final set of INEX’03 topics
consists of 36 CO and 30 CAS queries.

Then each participant did 3 runs of each topic and select the first 1000 most rel-
evant documents. Individual runs were averaged so there was a set of 1000 most
relevant documents for each topic. Statistics of individual runs were computed
and they are available for participants purposes.

Evaluation stage covers hand made relevance assessments of 1000 documents
selected in the previous stage with respect to the given topic. The evaluation
was done through web based assessment application, see figure 4. Relevance as-
sessment was expressed by two independent scales – specificity and exhaustivity.

INEX – a Broadly Accepted Data Set for XML Database Processing? 109

|<article> | <sec>

| <fm> | <st>...</st>

| ... | ...

| <ti>IEEE Transactions on ...</ti> | <ss1>...</ss1>

| <atl>Construction of ...</atl> | <ss1>...</ss1>

| <au> | ...

| <fnm>John</fnm> | </sec>

| <snm>Smith</snm> | ...

| <aff>University of ...</aff> | </bdy>

| </au> | <bm>

| </au>...</au> | <bib>

| ... | <bb>

| </fm> | <au>...</au><ti>...</ti>

| <bdy> | ...

| <sec> | </bb>

| <st>Introduction</st> | ...

| <p>...</p> | </bib>

| ... | </bm>

| </sec> |</article>

Fig. 2. INEX typical article structure

Each scale has three values – marginal, fairly, high specific/exhaustive, so el-
ement can be maked by one of nine assessment values. The tenth assessment
value is not relevant. This is the way to express more relevant parts inside the
document. Icons were used to express given relevance mark for chosen XML node
in INEX assessment interface.

Moreover there are several parent-child dependencies in assigning relevance
mark to the element. For example exhaustivity level of a parent element is al-
ways equal to or greater than the exhaustivity level of its children elements.
These dependencies are fixed and they are automatically checked by assessment
interface.

The result of assessment process is published as XML document according
to DTD specification is shown in figure 3.

Nowadays, all INEX topics have been processed and there is XML file with
assessment results for each topic. This stage of project has been discussed in the
second INEX workshop, see [4] for details.

The next stage of INEX project will focus on detail study of searchers behaviors
(this research starts from analysis of handy made assessments from previous
stage) and also to data retrieval from heterogeneous sources and distributed
systems. Actually, details of the further stage of INEX project are discussed in
forum of project participants. See discussion in [5] for details.

110 Pavel Loupal, Michal Valenta

<!ELEMENT assessments (file+)>

<!ATTLIST assessments

topic CDATA #REQUIRED

>

<!ELEMENT file (path*)>

<!ATTLIST file

file CDATA #REQUIRED

>

<!ELEMENT path EMPTY>

<!ATTLIST path

path CDATA #REQUIRED

exhaustiveness (0 | 1 | 2 | 3) #REQUIRED

specificity (0 | 1 | 2 | 3) #REQUIRED

>

Fig. 3. INEX DTD topic assessments

Fig. 4. INEX XML assessment interface

INEX – a Broadly Accepted Data Set for XML Database Processing? 111

3 Data set utilization

The first step for utilization of the INEX data set for our research purposes is
preparation of common interface for data access. As shown in figure 1 data is
stored in directories relevant to journals and volumes. Our approach should keep
this structure to avoid any disorders. Also for that reason we decided to use a
solution based on a native XML database.

3.1 Native XML storage

Native XML databases have some advantages in comparison with ordinary
method of storing XML files in a file system. The concept of native XML
databases is based on filesystem structure i.e. data can be stored in collections
which mean the same as directories in filesystems but additionally this kind of
databases has many enhanced features useful for processing XML data.

For our purposes and with respect to INEX structure we decided to build our
approach on the Apache Xindice native XML database [6]. This product is an
open source project developed by the Apache Software Foundation with several
contributors involved into its advancement.

Starting from version 1.1, Xindice is not a standalone server anymore. The
server functions are now based on any Servlet 2.2 (or higher) compliant appli-
cation server - in our case we decided to use Apache Tomcat 5.0.16 application
server. Bundling database core functionality into a servlet container allows users
not to create only standalone console applications but easily develop also web
based applications using e.g. Java Server Pages (we use this technology in our
tree-embedding example).

Regarding to user documentation Xindice was not designed for handling huge
documents, rather, it was designed for collections of small to medium sized doc-
uments. The INEX structure complains optimally this requirement (see section
2.2).

Following built-in key features are important for data processing:

– Standard API for accessing data - In this case it is the XML:DB interface
[7]. This simple interface is developer-friendly and supports common data
processing methods.

– XPath expresions - In many applications XPath is only applied at the
document level but in Xindice XPath queries are executed at the collection
level. This means that a query can be run against multiple documents and
the result set will contain all matching nodes from all documents in the
collection.

– Usage of metadata - Xindice allows an user to store metadata that is
associated with any collection or document. Metadata is data that is asso-
ciated with a document or collection but is not part of that document or
collection. This metadata could be used for storing temporar information

112 Pavel Loupal, Michal Valenta

e.g. algorithm’s subresults or more permanent data such as a list of indexed
keywords contained by that collection or document.

Actually there are two ways for developers how to access Xindice database:

– XML:DB XML Database API - is used for developing applications in
Java language. An example of usage of this Application Programming Inter-
face (API) is shown in figure 5. This example shows an basic approach for
retrieving a document from specified collection.

– Xindice XML-RPC API - is used when accessing Xindice from language
other than Java.

One example of usage of the XML:DB API is shown in figure 5.

Collection col = null;

try {

String driver = "org.apache.xindice.client.xmldb.DatabaseImpl";

Class c = Class.forName(driver);

Database database = (Database) c.newInstance();

DatabaseManager.registerDatabase(database);

col =

DatabaseManager.getCollection(

"xmldb:xindice://nonstop.sh.cvut.cz:8080/db/inex/mu/2001");

XMLResource document = (XMLResource) col.getResource("a1019.xml");

if (document != null) {

// Print out document’s content

System.out.println(document.getContent());

}

else {

System.out.println("Document not found");

}

}

Fig. 5. Example Java code for retrieving an XML document from database

3.2 Example – Approximate tree embedding algorithm

We have addopted an approximate tree embedding algorithm using the INEX
data set. Our implementation uses core tree embedding algorithm written by
Jan Váňa (see [2]) and is wrapped into a simple graphical user interface. This
interface allows user to select a collection (with or without all subcollections)
where to search and a query to search for. Details of this algorithm are described
in following section.

INEX – a Broadly Accepted Data Set for XML Database Processing? 113

The algorithm. Approximate tree embedding algorithms were studied in early
90’s and Kilpelainen showed that the decision problem whether a tree can be
embedd into another is NP-complete. Schlieder [1] created an algorithm which
behaviour is polynomial in practical examples. Váňa [2] modified that algorithm
and added few improvements in some special boundary cases and exceptional
situations.

The core part of this algorithm could be described as embeddTree(Tq, Td),
where Tq is a query tree and Td is data tree. One possible matching mapping
between query and data tree is shown in figure 6. Algorithm searches for all
embeddings of query tree in data tree and also returns a rating for each match
- this ”cost” basically means the number of elements which had to be skipped
when embedding tree.

Fig. 6. Example matching between two trees. a) query tree Tq, b) data tree Td

This paper is not primarily addressed to discuss this problem. This example
was chosen for showing adaptation of such algorithm over the INEX data set.
Detailed description of this algorithm can be found in [1], [2].

Implementation. We have created an application which integrates approx-
imate tree embedding algorithm with access to documents stored in XML
database. Web-based user interface allows user submit his query over specified
collection and get results with their ranking. Our algorithm traverses (recur-
sively) specified collection, fetches list of XML resources stored in and tries to
embedd query tree into all documents.

Actually algorithm uses two metrics for rank matched result. The first one is
based on number node which need to be skipped when embedding tree and the
second one is the level of root node of the query tree Tq in data tree Td.

114 Pavel Loupal, Michal Valenta

Fig. 7. Simple web interface for querying database

Results. Our adaptation of the approximate tree embedding algorithm allows
user to get results as supposed by its description, i.e. it finds all embeddings in
documents contained in specified collection(s). The correctness of the implemen-
tation was not proved exactly but our queries and their respective results were
manually checked for match.

Performace. Our implementation uses platform independent Java XML:DB in-
terface outlined above. This approach is probably slower than a similar native
solution written in language like C++ but in this case speed is not the crucial
requested property.

To get an estimation of time consumption when performing our algorithm
we ran a simple query (see figure 8) on a computer with the Intel Pentium III
processor (500MHz) with 256 MB of memory. This run over the complete INEX
data set took about 68 minutes and returned 101 matches.

Usability. In spite of correctness of the algorithm, practical benefit is a moot
question. The main drawback is strict comparison of data items used - the con-
tent of an element must exactly match data in given query. For practical purposes
users would usually ask queries not about structual match but more on approx-

INEX – a Broadly Accepted Data Set for XML Database Processing? 115

<article>

<yr>2001</yr>

<au>

<snm>Smith</snm>

</au>

</article>

Fig. 8. Query example - all articles published in the year 2001 written by author
with surname ”Smith”

imate content. Therefore, operators such as contains() or starts-with() known
from XPath could extend practical algorithm applicability.

4 Conclusions

The INEX data set is a huge collection of ”real” and meaningful documents.
Storing such data in native XML database (in our case Apache Xindice) allows
researchers to implement and test wide range of algorithms over these data.
Technical environment supports developing both console and web-based Java
applications using common standards for manipulating XML data.

Our example, approximate tree embedding algorithm, shows one example of
possible utilization of the INEX data set. It is just one of possible implemen-
tations but the common access interface allows researches to ”plug in” another
solution of the embedding algorithm or even to use another algorithm which has
a different goal.

Further work on this algorithm should be focused on experiments with order
evaluating function. Some hypothesis about local and global rate of the order
function had been stated in an unformal discussion in the last DATESO work-
shop. These hypothesis should be formalized, implemented, and proved on a
”real” data set.

In addition the INEX data set has been adopted into our frame and can
be used for arbitral experiments in the branch of XML database processing
research. Although it is only a side-effect of the INEX project, we have shown
in this article, it can be used also for our own research with a good benefit.

References

1. Schlieder, T., Naumann, F.: Approximate tree embedding for querying XML data.
In ACM SIGIR Workshop On XML and Information Retrieval, Athens, Greece,
2000.

2. Váňa, J.: Integrity of XML data (in Czech). Master Thesis, Dept. of Software En-
gineering, Charles University, Prague. 2001.

116 Pavel Loupal, Michal Valenta

3. Fuhr, N., Gvert, N., Kazai, G., Lalmas, M.: INitiative for the Evaluation of XML
retrieval (INEX). Proceedings of the First INEX Workshop.ERCIM Workshop Pro-
ceedings. ERCIM, Sophia Antipolis, France, 2003.

4. Fuhr, N., Malik, S., Kazai, G., Lalmas M. (Editors): Proceedings of the 2nd Initiative
on the Evaluation of XML Retrieval (INEX 2003). ERCIM Workshop Proceedings.
2003

5. INEX 2003 - home page. http://inex.is.informatik.uni-duisburg.de:2003/index.html.
6. Apache Xindice - Native XML database. http://xml.apache.org/xindice.
7. XML:DB initiative - Application Programming Interface for accessing native XML

databases. http://www.xmldb.org.

