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Abstract. Real-time response is a basic characteristic of the Web. Yet 
semantic reasoning at transaction-time supporting real-time response 
remains challenging. Here we report how the iPlant Semantic Web 
Platform uses SSWAP (Simple Semantic Web Architecture and Protocol; 
http://sswap.info) for transaction-time reasoning, service discovery, 
workflow construction, and execution. The platform enables users at web 
sites, such as TreeGenes’ DiversiTree and CartograTree, to select data 
and use it for real-time semantic discovery into a knowledge base of 
semantic web services. The platform uses first-order, description logic 
reasoning and just-in-time ontologies to allow users to drag-n-drop 
independent, distributed semantic web services into a semantic pipeline. 
This enables biodiversity research using data sets from TreeGenes, 
FLUXNET (Ameriflux), WorldClim, and TRY-DB integrated under a 
common web front-end called CartograTree. Scientific use cases are for 
tree scientists to associate phenotype and/or environmental traits with 
underlying genotypes in geo-referenced forest trees across a distribution 
of Web resources. 
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1 Introduction 

Bioinformatic software exhibits long-tail characteristics: a relatively small 
number of programs and web sites are widely used (e.g., [1,2]), while a much 
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larger number are used by varied audiences for specialized applications (e.g., 
[3,4]). The iPlant Collaborative [5] seeks to enable data-driven scientific 
integration, both within the enterprise and across Web resources, including 
widely used programs of general interest and niche programs for specific needs. 
Emphasis is on having software layers handle data and service syntax and 
semantics (including independently developed and maintained long-tail 
offerings) thereby freeing the scientist to focus on data and service discretionary 
use. To achieve this, iPlant is using SSWAP (Simple Semantic Web 
Architecture and Protocol [6]) in a drag-n-drop semantic pipeline motif with 
third-party Web site integration. In this paper we report how a collaboration 
with TreeGenes [7] enables biodiversity applications in forest genetics. 
Exemplary applications in land management and biodiversity include the 
identification of specific genotypes that may be best suited for reforestation, or 
the development of strategies for tree migration as it relates to climate change. 
In both cases, genotypes that influence traits such as cold-hardiness, drought-
tolerance, and disease resistance can be examined in relation to environmental 
characteristics of target regions including elevation, soil composition, and 
precipitation. 

2 The Platform 

Architecture The iPlant Semantic Web Platform is a Web architecture of 
four distributed actors: i) providers of services; ii) consumers of services; iii) 
ontology severs; and iv) a semantic Discovery Server (pipeline-maker and 
match-maker). Data—be it unstructured, semi-structured, or structured (e.g., as 
in relational database stores)—enters the system via a service interface layer; 
i.e., the platform does not operate on raw data per se, but via service interfaces, 
the invocations of which yield access to, and transformations of, data. This 
service interface layer is key to enabling distributed data to be integrated 
“rationally” under a first-order description logic protocol. 

SSWAP (Simple Semantic Web Architecture and Protocol) SSWAP is a 
100% W3C OWL DL-compliant light-weight protocol of five classes and 12 
properties. It allows services to describe what they are, the types of data they 
consume, and the types of data they produce. The protocol’s ontology in its 
entirety is at [8]. The five classes correspond to: i) the service Provider, ii) the 
service itself, called a Resource, iii) a data structure construct called a Graph, iv) 
input data (a Subject), and v) output data (an Object). SSWAP is the service 
analog of the fundamental RDF data model of mapping a subject to an object via 
a property; in the cases of SSWAP, the protocol maps a Subject to an Object via 
the implicit operation of a service (the Resource). Subject and Object instances 
may be URIs, thereby allowing for indirection and non-serialization of data, or 
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they may identify data structures of arbitrary OWL sub-graphs, with properties 
and serialized data. Instances of Resource, Subject, and Object may be annotated 
with user-defined ontologies and thus are “unlimited” in domain scope; the 
protocol simply defines the scaffold. Services may have multiple Subjects 
mapping to multiple Objects. A protocol description of a service is called an 
RDG (Resource Description Graph). An HTTP GET on the Resource URL of 
the RDG returns the RDG in W3C-compliant OWL RDF/XML. Because service 
descriptions are just text documents retrievable by a simple GET, they are 
readily available for search engine traversal and viewable by browsers1. An 
RDG with input data creates an RIG (Resource Invocation Graph). An HTTP 
POST of the RIG or a GET with ontology term=value assignments in the query 
string invokes the service. An RIG with output data is called an RRG (Resource 
Response Graph). Thus SSWAP creates an ecosystem of protocol graphs, all 
sharing a canonical model, with a common syntax (OWL RDF/XML), under a 
common services’ semantic (SSWAP), amendable to customization by user 
semantics (adding ontology terms to the Resource, Subject, and Object). 
SSWAP is a wrapper technology, so it can semantically enable legacy and non-
semantic services. Notably, a SSWAP service description yields the service 
amenable to automated semantic discovery, invocation, and response. 

Semantic Querying A service’s protocol description encapsulates the 
information needed for its discovery and invocation. Thus one can consider any 
putative RDG as a query graph (called an RQG: Resource Query Graph) into a 
knowledge base of all RDGs. For semantic querying, we find all services for 
which the RQG’s: i) Resource is a subclass, and ii) Subject is a super-class, and 
iii) Object is a subclass, of any service in the knowledge base. Subsumption 
reasoning covers arbitrary complex, inferred, anonymous classes. The resultant 
services, and only these services, are guaranteed to be of the type of service 
queried (or more specialized), to operate on the input data (or generalizations of 
it), and return data of the requested output type (or specializations of it). This 
allows us to use a reasoner for match-making based on the output of one service 
being logically sufficient for the input of another. Thus reasoning is used to 
examine service descriptions, input data types, and output data types, to enable 
semantic matching with published services. 

Constructing semantic pipelines At http://sswap.info, a Web front-
end to a backend pipeline manager allows users to connect services into 
pipelines. Pipelines are built on-demand by using transaction-time reasoning to 
aid the user in building a workflow of distributed services. 

Start with a lexical search Users at http://sswap.info may search for 
services using keywords. Upon selecting a service and adding it to a new 

                                                             
1  Visit http://sswap.info, search for a service, click on ‘Service URI’ to view 

the RDG, or visit http://sswap.info/api/makeRDG for examples. 
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pipeline via web-based drag-n-drop, we present the user with all downstream 
services that can operate on the upstream service via semantic querying as 
described above. In this manner, the user can build a pipeline of services. For 
each service, we reason over the service’s RDG to determine its necessary and 
sufficient conditions, and based on this construct on-demand a custom user 
dialog that allows the user to enter the service’s required and optional 
parameters, if any. In a similar manner the Subject is examined, and the user 
may upload data to be ontologically tagged via the RDG. The protocol declares 
a datatype property sswap:inputURI2 which allows service providers to write 
custom Web pages to solicit user input for their services. If sswap:inputURI 
resolves to a Web page, the platform will present that page to the user in 
addition to allowing the user to use the auto-generated, custom user dialog. 

Start with data launched from a web site We provide a Javascript snippet that 
allows any webmaster to add a “sswap.info” button to their web pages.  We call 
this Web Discovery. We provide a service to allow the Web master to package 
or reference the data using JSON (see /api)3. Upon the user pressing the Web 
Discovery button, the JSON is sent to our Discovery Server, where we translate 
it into an RDF/XML RQG, perform semantic querying, and present the user 
with a new pipeline preloaded with their data and the semantic results of all 
matching candidate downstream services. 

Start with the results from previous pipelines Because the last service in a 
pipeline returns a standard RRG, this can be used to start a new pipeline. In this 
manner, a pipeline can seed new pipelines. Data is private, but pipelines may be 
published for public use and are semantically discoverable like services. In this 
manner, we grow a database of user-built combinations of Web distributed 
services; this has deep social networking value. We note that public sharing of 
pipelines does not imply unregulated execution of services: any service is free to 
gate-keep resources with logins, HTTPS, and so forth. 

Pipeline invocation is orchestrated, but execution is distributed RDGs 
represent published SSWAP services that are offered by third-parties on the 
Web. When the user initiates a pipeline, we coordinate the invocation and 
callback of services, but do not ourselves execute the services: the services run 
independently, asynchronously on their host machines. Downstream services 
retrieve the upstream RRG from the upstream service with a token and convert it 
to an RIG without passing through our servers. In this manner we are not privy 
to non-serialized data being transferred between services, thereby maintaining 
an important privacy safe-guard. 

Transaction-time reasoning SSWAP graphs (RDGs, RIGs, RRGs, and 
RQGs) are small documents of a few dozen lines of W3C OWL [DL] 

                                                             
2 sswap: prefix resolves to http://sswapmeet.sswap.info/ 
3 Relative URLs are RESTful endpoints on http://sswap.info/ 
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RDF/XML that typically expand to a few thousand triples after first-order 
reasoning. We use reasoning in four places: i) when Providers publish their 
RDGs with us, we resolve ontology terms by dereferencing them on the Web; 
we then infer over the closure RDG and store the resulting inferred graph in a 
triple-store [9]. We use a combination of transaction-time reasoning at 
publication time and offline processing to maintain the knowledge base; ii) 
when users initiate Web Discovery from a web site by sending us a JSON 
representation of an RRG, we resolve the RRG, convert it to a RQG, and 
execute transaction-time semantic querying; iii) when users build pipelines we 
reason during the transaction process to satisfy semantic querying and other 
pipeline duties; iv) when third-party services receive an RIG they need to 
process the request and return a RRG that complies with the logical contract of 
their RDG. We provide a kit (/sdk) that allows third-parties to run their own 
servlet reasoner to handle transaction-time reasoning to process requests. 

Pipeline management Control is architected as three separate components: i) 
we use Vaadin [10] to offer a RIA (Rich Internet Application) enabling an 
intuitive, drag-n-drop user experience; ii) communication to the backend is 
performed by a 100% RESTful JSON API, making heavy use of idempotent 
HTTP GETs and PUTs. This means that a user may start building a pipeline, 
bookmark it, close their browser, and open it anywhere, anytime, and continue 
their work. It means that users may begin long-running pipelines, and return at 
their convenience with a different browser and Web session; iii) the pipeline 
manager communicates with the Discovery Server via a RESTful API. 

Platform APIs We wrote ~185,000 lines of open-source Java code to build a 
platform, Java API (/javadocs), and helper services. We use the Java API 
internally, and package it as part of our SDK (Software Development Kit) so 
anyone may write their own SSWAP services (/sdk). Many developers are 
fluent in JSON, but not in OWL RDF/XML, so we wrote a RESTful translator 
that allows SSWAP graphs and user ontologies to be written in JSON and then 
translated to OWL RDF/XML (/api; see also /make and [11]). We expose 
Discovery Server engagements as RESTful endpoints (/wiki/api). 

3 Ontologies 

A challenge for the semantic web services is how to enable and incorporate 
distributed ontologies. We enable the use of user-defined OWL ontologies to 
allow services to describe their data, and to allow clients to query and engage 
said services. 

Just-In-Time ontologies We used Smart GWT [12] to write an application 
that allows anyone to host their ontologies on our servers [11]. Users register for 
a free iPlant account and may create and administer new ontologies (called 
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“namespaces”). Users build ontologies term-by-term using a JSON syntax [13], 
translate them to RDF/XML with the press of a button, and publish them on-
demand. Terms are separately dereferenceable and immediately available to 
anyone on the web. Just-In-Time ontologies lower the barrier to entry for 
creating and using small, agile ontologies, but they are not required: ontologies 
residing anywhere on the web may be freely used, subject to byte and time 
limits during transaction processing. Ontological statements (e.g., definitions 
and relation to other terms) are read and used in reasoning if dereferencing term 
URIs returns OWL RDF/XML statements. 

Support for “large” legacy ontologies: module extraction with BioPortal 
BioPortal [14] is a major repository funded by the National Center for 
Biomedical Ontology. It contains over 320 ontologies, and over 180 OWL 
ontologies. We use the method of [15,16] to process each OWL ontology offline 
to generate “atoms,” such that at transaction-time we can compute the subset of 
statements (called a “module”) that are necessary and sufficient for complete 
entailment over any subset of terms (called a “signature”). Importantly, for 
moderate sized signatures the module is often much smaller than the ontology 
itself [15], thus lending it as a key approach to bringing large, legacy ontologies 
to transaction-time applications in the semantic Web. Currently, ontology 
modularization is available as a service at /modularize. As of this writing, 
we are implementing a strategy to incorporate it into transaction-time processing 
but this is not yet part of the larger platform. 

Ontologies enable semantic querying and reasoner-assisted semantic 
pipeline construction When we process a SSWAP graph, we extract ontology 
terms and dereference them to retrieve their OWL statements. If these 
documents themselves contain terms, we dereference those, and continue this 
cascade until closure is achieved, subject to traversal depth, byte, and time 
limits. For Web Discovery and pipeline construction we then use Semantic 
Querying (described above) to find matches between data and/or the output  
semantics of the upstream service and the input semantics of all putative 
downstream services. Subsumption determination is performed at transaction 
time, so axiomatic subsumption claims (e.g., rdfs:subClassOf) are 
supported but not required: the reasoner uses transaction-time classification to 
determine subsumption. Note that it is the SSWAP protocol that makes this 
possible, because the protocol ensures that the subject and object semantics of 
RDGs, RIGs, RRGs, and RQGs are comparable. 
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4 Integrating Enterprise,  HPC, and the Semantic Web for 
Biodiversity 

Enterprise resources TreeGenes [7] is a large biological resource serving 
over 2500 forest geneticists from over 800 organizations. It contains data from 
15 yrs on over 1200 species, including genomic, phenotypic, and other data. We 
wrote 11 SSWAP services to expose slices of this data and added SSWAP Web 
Discovery to TreeGenes’ DiversiTree [17]. For geographically-oriented tree 
scientists, we wrote a mapping tool called CartograTree [18,19]. Researchers 
can search specific geographic regions, tree species, phenotypes, or 
environmental parameters and customize their analysis accordingly. We enabled 
CartograTree with SSWAP Web Discovery so that scientists can launch directly 
into semantic discovery. The iPlant Collaborative serves over 7500 scientists 
with enterprise-class and High Performance Computing (HPC) resources, 
petabyte-scale storage, and other resources. We wrote semantic pipeline support 
to engage HPC XSEDE resources [20] and used SSWAP to semantically wrap 
10 resources in the domain of multiple sequence alignment and phylogenetic 
tree reconstruction. 

Biodiversity The DiversiTree/CartograTree/SSWAP integration is driven by 
questions arising from climate change, disease resistance, and conservation. 
Knowledge of the adaptive genetic potential of forest tree populations is 
critically important for evaluating their vulnerability to a changing climate [21]. 
Forests are key to sequestering carbon and consequently contribute an important 
role to mitigating or reinforcing the impacts of climate change. Healthy forests 
provide fundamental habitat for valued biodiversity and essential ecosystem 
services in the form of global carbon cycling, clean water and air, fiber, and 
recreation. Sustaining healthy forests in the face of climate change is a central 
challenge for resource management [22]. Towards this goal, researchers are 
examining candidate loci to understand how individuals and populations are 
impacted by environmental factors. Specifically, a fusion of population genetics 
and landscape ecology to layered geographic information systems allows for 
focused studies of how landscape features affect genetic variation [23-25]. 

Experimental design often focuses on first identifying candidate genes under 
selection from geoclimatic factors, determining their allelic diversity, and testing 
for associations between trees’ genotype, phenotype, and the environment. 
CartograTree connects the TreeGenes’ repository of genotype and sequence data 
to environmental and phenotypic resources. TreeGenes houses approximately 
901,000 sequences, 24 million genotypes, and 20,000 phenotypes on individuals 
from over 1,200 different forest tree species. Sequencing includes either Sanger-
based or next-generation approaches, and used to identify polymorphisms in 
small populations. The polymorphisms are then validated in larger populations 
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through the use of high-throughput genotyping assays. In many cases, genotyped 
trees are phenotyped for various traits. Barcode identifiers assigned during 
sample collection are maintained through DNA extraction, sequencing, 
genotyping, and phenotyping, while also associating trees with their geo-
referenced coordinates. The external sources supplying environmental and 
phenotypic data include relevant portions of the FLUXNET (Ameriflux) [26], 
WorldClim [27], and TRY-DB [28] repositories. Ameriflux represents 81 
remote sensing sites across North and South America; WorldClim is a 
compilation of five different climate databases covering the globe; TRY-DB 
enhances phenotypic data with approximately 80,366 geo-referenced phenotypic 
records represented by 368 species. Within CartograTree, specific queries and 
filters are available to select by genus, species, or phenotype of interest. The 
phenotypic selections include economically relevant traits, disease evaluations, 
and developmental metrics. The map portion of the interface gives users the 
option to select regions of interest, and capture the associated environmental 
data, such as slope, elevation, precipitation, seasonal temperatures, and more. 
From this, scientists can send selected data for SSWAP Web Discovery, for 
example, to perform multiple sequence alignment and phylogenetic tree 
reconstruction on high performance computing clusters. A full description of 
CartograTree and SSWAP is published at [19]. Association studies are 
facilitated through the ability to create flat files based on the common 
phenotypic or environmental evaluations for a selection of trees. The results of 
these studies are aimed at improving land-management decisions through the 
identification of genotypes that will thrive in specific environments; information 
that is necessary for reforestation, disease resistance, and climate change. 

5 Conclusion 

Semantics and biodiversity is still in its nascent years. Our work is focused on 
a division of scientific labor between domain-specific information resources 
such as TreeGenes, infrastructural resources such as iPlant, high performance 
computing assets such as underlying the phylogenetic applications available on 
XSEDE, and the larger Web. iPlant’s Semantic Web Platform is developed as 
the technological conduit for integration across these resources. It uses 
transaction-time first-order description logic reasoning to allow semantic web 
services to be discovered, connected, and invoked via a simple drag-n-drop web 
interface. TreeGenes, DiversiTree, and CartograTree offer an initial foray into 
the use of these technologies for forest tree biodiversity. 
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