
Arti�
ial Intelligen
e applied on the Risk! gameLu
a Fuligni (lu
a.fuligni�studio.unibo.it), Andrea Franzon(andrea.franzon�studio.unibo.it), Orfeo Ciano (orfeo.
iano�studio.unibo.it)Alma Mater Studiorum - Università di BolognaAbstra
t. Our goal is to
reate an appli
ation that uses arti�
ial play-ers for the game of Risk!. Some of the existing implementations of Risk!present
ustomizable arti�
ial players but their behavior seems to beneither too smart nor naive and this
an tire out the human player. Weintent to a
hieve the goal in a di�erent way: we
hose to use Prolog,a de
larative language, in
ontrast with the existing open-sour
e imple-mentations. We learnt that the usage of Prolog redu
es the developmenttime and e�orts by o�ering a good abstra
tion.Keywords:arti�
ial intelligen
e, Prolog, Risk, game, di
es.1 Introdu
tionOur goal is to
reate an appli
ation that uses arti�
ial players for the game ofRisk! The
ontext is the usage of the Arti�
ial Intelligen
es on this game that isa strategy, turn-based, multiplayer game and
ontains some randomness due tothe throwing of di
es. More exa
tly we use A.I. for the game strategy. We
hooserisk! be
ause unlike games in the theory's games it presents many problemati
for example the
hoi
e of the atta
king territories or the predi
tion of whi
hterritory the enemy will atta
k.Usually the existing open-sour
e implementations of this game uses impera-tive languages to des
ribe the A.I. strategy. We, instead, propose to separate theA.I. aspe
t from the program by using a de
larative logi
 language. We
hooseProlog be
ause it in
ludes the �rst-order logi
 and ba
kward
haining me
ha-nism natively. Moreover we don't
hoose an imperative language, like Java, forthe A.I. aspe
t be
ause all the tree sear
h and inferen
e fun
tionality in
ludedin some libraries are less e�
ient than the Prolog engine.As a de
larative language we
hoose Prolog instead of other languages likeLisp be
ause we have to infer more on re
ords than on lists. Our intent is to usethe Prolog language for des
ribing the arti�
ial player's de
isions.The ability of ea
h arti�
ial player (and so the di�
ulty for a human player) is
hara
terized by the set of rules that de�ne the inferen
e engine of ea
h arti�
ialplayer. The parti
ularity of our solution is the
onne
tion between prolog thatrepresents the A.I. and Java with whi
h we develop the rest of our appli
ation.

2 The game of Risk!Risk! is a turn-based strategi
 board game for two to six players in whi
h thegoal is indi
ated by an obje
tive
ard. The game is played on a board depi
ting apoliti
al map of the Earth that
ontains 42 territories distributed in 6
ontinents.There are several goals but in our appli
ation, for simpli
ity and for a generalpurpose, we
onsider only the aim to own 24 territories.At the start-up ea
h player distributes a �xed number of armies on the board.In ea
h turn there are three phases: pla
ing armies, atta
king, fortifying. In the�rst phase the player puts new armies into the owned territories. In the se
ondthe player atta
k a nearby enemy territory, the su

ess or fail of an atta
k isde
ided by the throw of di
es. In the third phase the player
an move somearmies between two owned nearby territories only on
e. The phases will repeatthemselves until a player rea
hes his goal.3 Related worksThis approa
h
an be used in games whi
h present randomness and multiplayerissues or in games where the arti�
ial player's behavior is stri
tly
onne
ted withlogi
al des
ription like Risk!.Nowadays there are several implementations of Risk!. The most famous isRisk Digital of Hasbro but there are a lot of Risk!
lones like Lux for Linux,Dominion for mobile phones or other �ash games
an be found over the Internet.Some of those implementations present
ustomizable arti�
ial players but theirbehavior seems to be neither too smart nor naive and this
an tire out the humanplayer.Our approa
h, besides fo
using on e�
ien
y,
hallenges the logi
al aspe
t ina di�erent and more suitable way in order to improve the game-play.4 MethodologyOur �rst implementation is a Java model apt to represent the game board andall the informations that it
ontains (territory borders, neighborhood relations,
ontinents, territory ownership, . . .). We also de�ne the Prolog knowledge-basestru
ture paying attention on data
onsisten
y with the Java model.We propose three di�erent A.I. di�
ulty levels: easy, medium and hard. Theeasy level performs random a
tions. Instead the hard level will be an extensionof the medium level that is an �intelligent� implementation of the same Prologpredi
ates. Ea
h skill that distinguish medium and hard di�
ulty is mappedinto Prolog predi
ates. We use �GNU Prolog for Java� to embed the Prologinterpreter into our Java appli
ation be
ause it respe
ts the ISO standards.We assume that the aim is to
onquer 24 territories to simplify the study ofthe game. We
hoose to guide the A.I. through some well-known
ases in ea
hphase of the player's turn.

4.1 Knowledge BaseThe Risk! Map
an be
onsidered as a set of
ountries (territories). For ea
hterritory we de�ne:� a relation of neighborhood between territories;� the territory's ownership;� the number of armies a territory holds;We represented this knowledge in Prolog by de�ning the following set of fa
ts:player/1 represents a player, identi�ed by his
olor (blue, red, green, pink,bla
k, yellow).territory/1 represents a territory, identi�ed by his name.owner/2 represents the ownership of a territory identi�ed by the denotedplayer.neighbor/2 represents the relation of the neighborhood between two territories.army/2 represents the army number for ea
h territory.So this is the simplest knowledge base we
an have:p l aye r (red) .p l aye r (green) .t e r r i t o r y (s i b e r i a) .t e r r i t o r y (j a
u z i a) .t e r r i t o r y (
 i t a) .owner (s i b e r i a , red) .owner (j a
uz i a , red) .owner (
 i t a , green) .neighbor (s i b e r i a , j a
u z i a) .neighbor (s i b e r i a ,
 i t a) .neighbor (j a
uz i a ,
 i t a) .neighbor (j a
uz i a , s i b e r i a) .neighbor (
 i t a , j a
u z i a) .neighbor (
 i t a , s i b e r i a) .army (s i b e r i a , 3) .army (ja
uz i a , 4) .army (
 i ta , 2) .4.2 MovesSin
e a turn is made up of three phases, we de�ne three separated predi
ates:

pla
e_army/2 Given the player's
olor, it gives ba
k the territory on whi
h anarmy should be pla
ed.atta
k/3 Given a player's
olor,it gives ba
k two territories: an atta
k sour
e(territory owned by the player), and an atta
k destination (territoryowned by an enemy player).move/3 Given a player's
olor,it gives ba
k two territories: the territory-sour
e from whi
h the armies should be moved, and the territory-destination to whi
h the armies should be moved.Here are some sample queries:?− pla
e_army(red , Des t ina t i on) .Yes , Des t ina t i on=s i b e r i a .?− atta
k (red , Sour
e , Des t ina t i on) .Yes , Sour
e=ya
uzia , Des t ina t i on=
 i t a .?− move(red , Sour
e , Des t ina t i on) .Yes , Sour
e=s i b e r i a , Des t ina t i on=ja
u z i a .The implementation of those predi
ates will vary a

ording to A.I. di�
ulty.In this way the responsibility of the Java engine is to update the knowledge baseand perform the move suggested by the prolog engine.4.3 Randomness representation in PrologBe
ause of randomness
omponent of the game, exploring a de
isional tree to
hoose whi
h territory to atta
k,
ould lead to a general low-responsivity. Thisis be
ause we'd have to insert two randomness level (atta
k and defense di
es)into the de
ision tree in
reasing exponentially the number of the nodes in thatlevel.Therefore we de
ide to represent the randomness
omponents using a tablethat
ontains, given the numer of atta
ker and defender army, the probability towin an atta
k. Inside the Knowledge Base in Prolog we represent this informationwith vi
tory/3 :v i
 t o r y (Atta
k#Army, Defense#Army, P robab i l i t y) .So that the predi
ate �atta
k�,given a �xed threshold value, knew the
on�g-uration atta
ker army/defender army that two territories must have to performan atta
k.4.4 From Java to PrologJava has the responsibility of generating the knowledge base. In order to a

om-plish this task we use the Visitor pattern on the game table (map) obje
t.

1 Pro l o gV i s i t o r v i s i t o r = new Pro l o gV i s i t o r () ;2 for (Continent
ont inent :
ont inent s)3 {4 for (Ter r i t o ry t e r r i t o r y :
ont inent . g e tT e r r i t o r i e s ())5 v i s i t o r . v i s i t (t e r r i t o r y) ;6 } On
e the knowledge base is updated, it is loaded by the Prolog engine:1 Environment env = new Environment () ;2 //Loading the knowledge base f i l e and A. I . implementat ion3 env . ensureLoaded (AtomTerm . get ("knowledge . p l ")) ;4 env . ensureLoaded (AtomTerm . get (" easy . p l ")) ;5 i n t e r p r e t e r = env .
 r e a t e I n t e r p r e t e r () ;6 env . r u n I n i t i a l i z a t i o n (i n t e r p r e t e r) ;The exe
ution of a query:1 // Ca l l i n g the query : ?− pla
e_army (red , Terr i t o ry) .2 VariableTerm answerTerm = new VariableTerm ("Ter r i t o ry ") ;3 Term [℄ args = {AtomTerm . get (p layerColor) , answerTerm} ;4 CompoundTerm goalTerm = new CompoundTerm(AtomTerm . get ("pla
e_army") , args) ;56 // Exe
uting the query and t e s t i n g i f su

eded7 int r
 = i n t e r p r e t e r . runOn
e (goalTerm) ;8 i f (r
==PrologCode .SUCCESS | | r
==PrologCode .SUCCESS_LAST)9 {1011 // Get t ing the Prolog i nd i
 a t e d t e r r i t o r y from thegame t a b l e12 Term value = answerTerm . d e r e f e r en
 e () ;13 St r ing name = TermWriter . t oS t r ing (va lue) ;14 Ter r i t o ry d e s t i n a t i on = tab l e . g e tTe r r i t o r y (name) ;15 } The result of this query will be used by the Risk game engine that performsthe
orresponding move.5 Case-studyDuring an atta
k, to handle the randomness of the di
es, we generate a table(based on Markov
hains) whi
h
ontains the probability of winning an atta
kby the number of atta
k and defense armies.Ea
h player's di�
ulty is
hara
terized by a threshold value, only if the prob-ability of winning is above this value, the player will atta
k. Due to this de
ision

sometimes the A.I. rea
hes a deadlo
k situation where no one either atta
ks ormoves armies between the territories. To break the deadlo
k we need to hard
odesome spe
i�
 Prolog
onditions.After thit we again tested the system by letting two players, with the sameA.I. di�
ulty level, �ght ea
h-other. Otherwise, if there is at least one playerwith a di�erent di�
ulty level, then the spe
i�

onditions are not so evident,so the Turing test is passed.To over
ome these problems a �ner solution
ould be to represent the modelas a Constraint Linear Programming problem in whi
h every de
ision is driven byan obje
tive fun
tion that will either be minimized or maximized, depending onthe a
tion that the player has performed. The obje
tive fun
tion varies a

ordingto the evaluation of di�erent variables. This evaluation is either rough or re�neddepending on the player's di�
ulty level.6 Con
lusionsOur implementation grants a good level of playing for every kind of player.Otherwise the CPL solution would require a �ne tuning of the obje
tive fun
tionfor ea
h di�
ulty in order to meet the optimal value for ea
h A.I. level. Thiswill produ
e an unnatural playing style. The Prolog interpreter is an optimalsolution for these kinds of problems. By using Prolog it is easier to swit
h betweendi�erent A.I. logi
s (and approa
hes) leaving the
ore appli
ation un
hanged.Referen
es1. Osborne, Jason A. April 2003: "Markov Chains for the RISK Board Game Revis-ited", Mathemati
s Magazine 762. S. Russell e P. Norvig, 2005: "Intelligenza arti�
iale. Un appro

io moderno" volume1 Se
onda Edizione.3. L.Console, E.Lamma, P.Mello, M.Milano, 1997: "Programmazione Logi
a e Pro-log"Se
onda Edizione UTET.

