
Arti�ial Intelligene applied on the Risk! gameLua Fuligni (lua.fuligni�studio.unibo.it), Andrea Franzon(andrea.franzon�studio.unibo.it), Orfeo Ciano (orfeo.iano�studio.unibo.it)Alma Mater Studiorum - Università di BolognaAbstrat. Our goal is to reate an appliation that uses arti�ial play-ers for the game of Risk!. Some of the existing implementations of Risk!present ustomizable arti�ial players but their behavior seems to beneither too smart nor naive and this an tire out the human player. Weintent to ahieve the goal in a di�erent way: we hose to use Prolog,a delarative language, in ontrast with the existing open-soure imple-mentations. We learnt that the usage of Prolog redues the developmenttime and e�orts by o�ering a good abstration.Keywords:arti�ial intelligene, Prolog, Risk, game, dies.1 IntrodutionOur goal is to reate an appliation that uses arti�ial players for the game ofRisk! The ontext is the usage of the Arti�ial Intelligenes on this game that isa strategy, turn-based, multiplayer game and ontains some randomness due tothe throwing of dies. More exatly we use A.I. for the game strategy. We hooserisk! beause unlike games in the theory's games it presents many problematifor example the hoie of the attaking territories or the predition of whihterritory the enemy will attak.Usually the existing open-soure implementations of this game uses impera-tive languages to desribe the A.I. strategy. We, instead, propose to separate theA.I. aspet from the program by using a delarative logi language. We hooseProlog beause it inludes the �rst-order logi and bakward haining meha-nism natively. Moreover we don't hoose an imperative language, like Java, forthe A.I. aspet beause all the tree searh and inferene funtionality inludedin some libraries are less e�ient than the Prolog engine.As a delarative language we hoose Prolog instead of other languages likeLisp beause we have to infer more on reords than on lists. Our intent is to usethe Prolog language for desribing the arti�ial player's deisions.The ability of eah arti�ial player (and so the di�ulty for a human player) isharaterized by the set of rules that de�ne the inferene engine of eah arti�ialplayer. The partiularity of our solution is the onnetion between prolog thatrepresents the A.I. and Java with whih we develop the rest of our appliation.

2 The game of Risk!Risk! is a turn-based strategi board game for two to six players in whih thegoal is indiated by an objetive ard. The game is played on a board depiting apolitial map of the Earth that ontains 42 territories distributed in 6 ontinents.There are several goals but in our appliation, for simpliity and for a generalpurpose, we onsider only the aim to own 24 territories.At the start-up eah player distributes a �xed number of armies on the board.In eah turn there are three phases: plaing armies, attaking, fortifying. In the�rst phase the player puts new armies into the owned territories. In the seondthe player attak a nearby enemy territory, the suess or fail of an attak isdeided by the throw of dies. In the third phase the player an move somearmies between two owned nearby territories only one. The phases will repeatthemselves until a player reahes his goal.3 Related worksThis approah an be used in games whih present randomness and multiplayerissues or in games where the arti�ial player's behavior is stritly onneted withlogial desription like Risk!.Nowadays there are several implementations of Risk!. The most famous isRisk Digital of Hasbro but there are a lot of Risk! lones like Lux for Linux,Dominion for mobile phones or other �ash games an be found over the Internet.Some of those implementations present ustomizable arti�ial players but theirbehavior seems to be neither too smart nor naive and this an tire out the humanplayer.Our approah, besides fousing on e�ieny, hallenges the logial aspet ina di�erent and more suitable way in order to improve the game-play.4 MethodologyOur �rst implementation is a Java model apt to represent the game board andall the informations that it ontains (territory borders, neighborhood relations,ontinents, territory ownership, . . .). We also de�ne the Prolog knowledge-basestruture paying attention on data onsisteny with the Java model.We propose three di�erent A.I. di�ulty levels: easy, medium and hard. Theeasy level performs random ations. Instead the hard level will be an extensionof the medium level that is an �intelligent� implementation of the same Prologprediates. Eah skill that distinguish medium and hard di�ulty is mappedinto Prolog prediates. We use �GNU Prolog for Java� to embed the Prologinterpreter into our Java appliation beause it respets the ISO standards.We assume that the aim is to onquer 24 territories to simplify the study ofthe game. We hoose to guide the A.I. through some well-known ases in eahphase of the player's turn.

4.1 Knowledge BaseThe Risk! Map an be onsidered as a set of ountries (territories). For eahterritory we de�ne:� a relation of neighborhood between territories;� the territory's ownership;� the number of armies a territory holds;We represented this knowledge in Prolog by de�ning the following set of fats:player/1 represents a player, identi�ed by his olor (blue, red, green, pink,blak, yellow).territory/1 represents a territory, identi�ed by his name.owner/2 represents the ownership of a territory identi�ed by the denotedplayer.neighbor/2 represents the relation of the neighborhood between two territories.army/2 represents the army number for eah territory.So this is the simplest knowledge base we an have:p l aye r (red) .p l aye r (green) .t e r r i t o r y (s i b e r i a) .t e r r i t o r y (j a u z i a) .t e r r i t o r y (i t a) .owner (s i b e r i a , red) .owner (j a uz i a , red) .owner (i t a , green) .neighbor (s i b e r i a , j a u z i a) .neighbor (s i b e r i a , i t a) .neighbor (j a uz i a , i t a) .neighbor (j a uz i a , s i b e r i a) .neighbor (i t a , j a u z i a) .neighbor (i t a , s i b e r i a) .army (s i b e r i a , 3) .army (jauz i a , 4) .army (i ta , 2) .4.2 MovesSine a turn is made up of three phases, we de�ne three separated prediates:

plae_army/2 Given the player's olor, it gives bak the territory on whih anarmy should be plaed.attak/3 Given a player's olor,it gives bak two territories: an attak soure(territory owned by the player), and an attak destination (territoryowned by an enemy player).move/3 Given a player's olor,it gives bak two territories: the territory-soure from whih the armies should be moved, and the territory-destination to whih the armies should be moved.Here are some sample queries:?− plae_army(red , Des t ina t i on) .Yes , Des t ina t i on=s i b e r i a .?− attak (red , Soure , Des t ina t i on) .Yes , Soure=yauzia , Des t ina t i on= i t a .?− move(red , Soure , Des t ina t i on) .Yes , Soure=s i b e r i a , Des t ina t i on=ja u z i a .The implementation of those prediates will vary aording to A.I. di�ulty.In this way the responsibility of the Java engine is to update the knowledge baseand perform the move suggested by the prolog engine.4.3 Randomness representation in PrologBeause of randomness omponent of the game, exploring a deisional tree tohoose whih territory to attak, ould lead to a general low-responsivity. Thisis beause we'd have to insert two randomness level (attak and defense dies)into the deision tree inreasing exponentially the number of the nodes in thatlevel.Therefore we deide to represent the randomness omponents using a tablethat ontains, given the numer of attaker and defender army, the probability towin an attak. Inside the Knowledge Base in Prolog we represent this informationwith vitory/3 :v i t o r y (Attak#Army, Defense#Army, P robab i l i t y) .So that the prediate �attak�,given a �xed threshold value, knew the on�g-uration attaker army/defender army that two territories must have to performan attak.4.4 From Java to PrologJava has the responsibility of generating the knowledge base. In order to aom-plish this task we use the Visitor pattern on the game table (map) objet.

1 Pro l o gV i s i t o r v i s i t o r = new Pro l o gV i s i t o r () ;2 for (Continent ont inent : ont inent s)3 {4 for (Ter r i t o ry t e r r i t o r y : ont inent . g e tT e r r i t o r i e s ())5 v i s i t o r . v i s i t (t e r r i t o r y) ;6 } One the knowledge base is updated, it is loaded by the Prolog engine:1 Environment env = new Environment () ;2 //Loading the knowledge base f i l e and A. I . implementat ion3 env . ensureLoaded (AtomTerm . get ("knowledge . p l ")) ;4 env . ensureLoaded (AtomTerm . get (" easy . p l ")) ;5 i n t e r p r e t e r = env . r e a t e I n t e r p r e t e r () ;6 env . r u n I n i t i a l i z a t i o n (i n t e r p r e t e r) ;The exeution of a query:1 // Ca l l i n g the query : ?− plae_army (red , Terr i t o ry) .2 VariableTerm answerTerm = new VariableTerm ("Ter r i t o ry ") ;3 Term [℄ args = {AtomTerm . get (p layerColor) , answerTerm} ;4 CompoundTerm goalTerm = new CompoundTerm(AtomTerm . get ("plae_army") , args) ;56 // Exeuting the query and t e s t i n g i f sueded7 int r = i n t e r p r e t e r . runOne (goalTerm) ;8 i f (r==PrologCode .SUCCESS | | r==PrologCode .SUCCESS_LAST)9 {1011 // Get t ing the Prolog i nd i a t e d t e r r i t o r y from thegame t a b l e12 Term value = answerTerm . d e r e f e r en e () ;13 St r ing name = TermWriter . t oS t r ing (va lue) ;14 Ter r i t o ry d e s t i n a t i on = tab l e . g e tTe r r i t o r y (name) ;15 } The result of this query will be used by the Risk game engine that performsthe orresponding move.5 Case-studyDuring an attak, to handle the randomness of the dies, we generate a table(based on Markov hains) whih ontains the probability of winning an attakby the number of attak and defense armies.Eah player's di�ulty is haraterized by a threshold value, only if the prob-ability of winning is above this value, the player will attak. Due to this deision

sometimes the A.I. reahes a deadlok situation where no one either attaks ormoves armies between the territories. To break the deadlok we need to hardodesome spei� Prolog onditions.After thit we again tested the system by letting two players, with the sameA.I. di�ulty level, �ght eah-other. Otherwise, if there is at least one playerwith a di�erent di�ulty level, then the spei� onditions are not so evident,so the Turing test is passed.To overome these problems a �ner solution ould be to represent the modelas a Constraint Linear Programming problem in whih every deision is driven byan objetive funtion that will either be minimized or maximized, depending onthe ation that the player has performed. The objetive funtion varies aordingto the evaluation of di�erent variables. This evaluation is either rough or re�neddepending on the player's di�ulty level.6 ConlusionsOur implementation grants a good level of playing for every kind of player.Otherwise the CPL solution would require a �ne tuning of the objetive funtionfor eah di�ulty in order to meet the optimal value for eah A.I. level. Thiswill produe an unnatural playing style. The Prolog interpreter is an optimalsolution for these kinds of problems. By using Prolog it is easier to swith betweendi�erent A.I. logis (and approahes) leaving the ore appliation unhanged.Referenes1. Osborne, Jason A. April 2003: "Markov Chains for the RISK Board Game Revis-ited", Mathematis Magazine 762. S. Russell e P. Norvig, 2005: "Intelligenza arti�iale. Un approio moderno" volume1 Seonda Edizione.3. L.Console, E.Lamma, P.Mello, M.Milano, 1997: "Programmazione Logia e Pro-log"Seonda Edizione UTET.

