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Preface

These are the proceedings of the International Workshop on Petri Nets and
Software Engineering (PNSE’12) in Hamburg, Germany, June 25–26, 2012.
It is a co-located event of Petri Nets 2012, the 33rd international conference
on Applications and Theory of Petri Nets and Concurrency, and ACSD 2012,
the 12th International Conference on Application of Concurrency to System
Design.

More information about the workshop can be found at

http://www.informatik.uni-hamburg.de/TGI/events/pnse12/

For the successful realisation of complex systems of interacting and reactive
software and hardware components the use of a precise language at different
stages of the development process is of crucial importance. Petri nets are be-
coming increasingly popular in this area, as they provide a uniform language
supporting the tasks of modelling, validation, and verification. Their popular-
ity is due to the fact that Petri nets capture fundamental aspects of causality,
concurrency and choice in a natural and mathematically precise way without
compromising readability.

The use of Petri nets (P/T-nets, coloured Petri nets and extensions) in
the formal process of software engineering, covering modelling, validation,
and verification, is presented as well as their application and tools supporting
the disciplines mentioned above.

The program committee consists of:

Kamel Barkaoui (France)
Didier Buchs (Switzerland)
Lawrence Cabac (Germany) (Chair)
Piotr Chrzastowski-Wachtel (Poland)
Gianfranco Ciardo (USA)
José-Manuel Colom (Spain)
Jörg Desel (Germany)
Raymond Devillers (Belgium)
Michael Duvigneau (Germany) (Chair)
Jorge C.A. de Figueiredo (Brasilia)
Luís Gomes (Portugal)
Stefan Haar (France)
Xudong He (USA)
Thomas Hildebrandt (Danmark)
Kunihiko Hiraishi (Japan)
Vladimir Janousek (Czech republic)
Peter Kemper (USA)
Hanna Klaudel (France)
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Radek Koci (Czech republic)
Fabrice Kordon (France)
Lars Kristensen (Norway)
Johan Lilius (Finland)
Niels Lohmann (Germany)
Daniel Moldt (Germany) (Chair)
Berndt Müller (Great Britain)
Chun Ouyang (Australia)
Wojciech Penczek (Poland)
Laure Petrucci (France)
Lucia Pomello (Italy)
Heiko Rölke (Germany)
Catherine Tessier (France)
H.M.W. (Eric) Verbeek (Netherlands)

We received 27 high-quality contributions. The program committee has ac-
cepted eight of them for full presentation. Furthermore the committee ac-
cepted four papers as short presentations. Eight more contributions were ac-
cepted as posters.

The international program committee was supported by the valued work
of Paulo Barbosa, Robin Bergenthum, Luca Bernardinello, Jean-Yves Di-
dier, Bachir Djafri, Carlo Ferigato, Agata Janowska, Alban Linard, Edmundo
Lopez, Romain Soulat, and Maciej Szreter as additional reviewers. Their work
is highly appreciated.

Furthermore, we would like to thank our colleagues in the local organization
team here at the University of Hamburg, Germany, for their support.

Without the enormous efforts of authors, reviewers, PC members and the or-
ganizational team this workshop wouldn’t provide such an interesting booklet.

Thanks!

Lawrence Cabac, Michael Duvigneau, Daniel Moldt
Hamburg, June 2012
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Part I

Invited Talks





What should we teach about Petri nets?

Wolfgang Reisig

Institut für Informatik, Humboldt-Universität zu Berlin
Theory of Programming

reisig@informatik.hu-berlin.de

Abstract

I challenge the traditional choice of topics and the usual style of presentation
for introductory courses on Petri nets. For such a course I suggest a number
of aspects that usually are not considered fundamental. This includes faithful
models, a slight revision of formalisms and terminology, specific techniques to in-
crease the expressive power of Petri net models, aspects derived from distributed
runs, and particular mathematics to specify and verify properties of Petri net
models.
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Using Integer Time Steps for Checking
Branching Time Properties of Time Petri Nets

Agata Janowska1, Wojciech Penczek2, Agata Półrola3, and Andrzej Zbrzezny4

1 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
janowska@mimuw.edu.pl

2 Institute of Computer Science, PAS, Ordona 21, 01-237 Warsaw, Poland
penczek@ipipan.waw.pl

3 University of Łódź, FMCS, Banacha 22, 90-238 Łódź, Poland
polrola@math.uni.lodz.pl

4 Jan Długosz University, IMCS, Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland
a.zbrzezny@ajd.czest.pl

Abstract. Verification of timed systems is an important subject of re-
search, and one of its crucial aspects is the efficiency of the methods de-
veloped. Extending the result of Popova which states that integer time
steps are sufficient to test reachability properties of time Petri nets [5,
8], in our work we prove that the discrete-time semantics is also suffi-
cient to verify ECTL∗ and ACTL∗ properties of TPNs with the dense
semantics. To show that considering this semantics instead of the dense
one is profitable, we compare the results for SAT-based bounded model
checking of ACTL−X properties and the class of distributed time Petri
nets.

1 Introduction

Verification of time-dependent systems is an important subject of research. The
crucial problem to deal with is the state explosion: the state spaces of these
systems are usually very large due to infinity of the dense time domain, and
are likely to grow exponentially in the number of concurrent components of the
system. This influences strongly the efficiency of the model checking methods.

The papers of Popova [5, 8] show that in the case of checking reachability
for systems modelled by time Petri nets (i.e., while testing whether a marking
of a net is reachable) one can use discrete (integer) time steps instead of real-
valued ones. This reduces the state space to be searched. The aim of our work
is to investigate whether the result of Popova can be extended, i.e., whether
the discrete-time semantics can replace the dense-time one also while verifying
a wider class of properties of dense-time Petri net systems. In this paper we
present our preliminary result, i.e., prove that the discrete-time model can be
used instead of the dense-time one while verifying ECTL∗ and ACTL∗ properties.
To show that such an approach can be profitable we perform some experiments,
using an implementation for SAT-based bounded model checking of ACTL−X



and the class of distributed time Petri nets with the discrete-time semantics [4],
as well as its modification for the dense-time case.

The rest of the paper is organised as follows: Sec. 2 discusses the related
work. Sec. 3 introduces time Petri nets and their dense and discrete models.
Sec. 4 presents the logics ECTL∗ and ACTL∗. Sec. 5 deals with the theoretical
considerations, while Sec. 6 presents the experimental results. Sec. 7 contains
final remarks and sketches directions of the further work.

2 Related Works

We would like to stress that in our work we are interested in branching time
properties. To our best knowledge the fact that the discrete-time semantics is
sufficient to verify ECTL∗ or ACTL∗ properties of time Petri nets (TPNs) with
the dense-time semantics has never been proven before.

The topic of verification of dense-time Petri nets using integer time steps has
been studied in several publications. In paper [5] it is shown how to construct a
reachability graph whose vertices are reachable integer states for time Petri nets
in which all the latest firing times are finite. The main theorem of [5] (Thm 3.2)
states that for each run of a TPN, starting at its initial state, it is possible to find
a corresponding run which starts at the initial state as well, and visits integer
states only. Due to this theorem a discrete analysis of boundedness and liveness
of a TPN is possible. The work [6] extends the results of [5] to arbitrary TPNs.
It uses the idea of “freezing” the clock values of transitions with infinite Lft
just as their Eft is reached. This way a reduced (finite) reachability graph of
“essential” (integer) states is obtained.

In [8] and [7] the state space of a TPN is characterised parametrically. The
main theorems (Thm 3.1 and Thm 3.2) of [8] state that for an arbitrary feasible
execution path where the clocks have real values it is possible to replace these
real values by integer ones and obtain another feasible path. The differences
between the clocks values of each enabled transition at a given marking in the
former and the latter path are always smaller than 1, and so are the differences
between total times of both the executions. The main idea of the proof is as
follows: the integer values are constructed out of the given assignments of real
values by successive transforming all the non-integer numbers to nearby integers
in n + 1 steps, where n is the length of the path. According to the theorems
the minimal and maximal time duration of a transition sequence are integer
values. In the paper [7] an enumerative procedure for reducing the state space
is introduced. The idea is to divide a problem into a finite number of smaller
problems, which can be solved recursively with a methodology inspired from
dynamic programming. Moreover, it extends the method of [8] to the nets with
real-valued time steps (in [8] rational time steps were allowed only) and infinite
latest firing times.

The authors of the above-mentioned papers claim that the knowledge of the
reachable integer states is sufficient to determine the entire behaviour of the
net at any point in time. However, all these papers show the trace equivalence
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Fig. 1. Two trace equivalent models which are not (bi)similar. A formula distinguishing
them is e.g. ϕ = EF(EXp1 ∧ EXp2) which holds for the model on the right only

between a continuous model and a (restricted) discrete one. It is very well known
that trace equivalence preserves linear time properties, but it does not preserve
branching time properties (see Fig. 1 and [1]), so the word “behaviour” should
probably be understood in a way following from a fragment of [7]: “The properties
of a Petri net, both the classical one as well as the TPN, can be divided into two
parts: There are static properties, like being pure, ordinary, free choice, extended
simple, conservative, etc., and there are dynamic properties like being bounded,
live, reachable, and having place- or transitions invariants, deadlocks, etc. While
it is easy to prove the static behavior of a net using only the static definition, the
dynamic behavior depends on both the static and dynamic definitions and is quite
complicated to prove.”, so as the dynamic properties listed. Moreover, the result
of the papers [5, 6] does not imply bisimulation between both the models, as the
construction given in these papers cannot be used to prove it. We discuss this on
p. 27, showing that the relation R used in our proof and derived from the result
of [5, 6] cannot be used to prove bisimulation. This follows from the fact that
the integer run π′ “justifying” σ′Rσ (generated according to the construction of
[5]) and the dense run π occurring in the relation do not need to “branch” in
the same way. Similarly, the result of [8, 7] does not imply (bi)simulation as well.
Although it is not stated directly, the construction given in these papers is based
on a parametric description of the classes of the forward-reachability graph for
a net considered (i.e., a structure in which the initial state class contains the
initial state of the net and all the time successors of this state, and given a
state class Cx corresponding to firing a sequence of transitions x, its successor
class on a transition t contains all the concrete states which can be obtained by
firing t at a concrete state σ ∈ Cx and then passing some time not disabling any
enabled transition). It is well known that such a structure preserves reachability
and linear time properties, but it does not preserve branching time properties.
The discrete runs constructed in both the papers are retrieved from the dense
ones to preserve nothing but visiting the same state classes as the runs they
correspond to.

The current paper is a modified and improved version of our work [3] (pub-
lished in the proceedings of a local workshop, and containing a completely dif-
ferent proof which does not define simulation explicitely).

A. Janowska et al.: Checking Branching Time Properties of Time Petri Nets 17



3 Time Petri Nets

We start from introducing some basic definitions related to time Petri nets. For
simplicity of the presentation we focus on 1-safe time Petri nets only. However,
our result applies also to unbounded nets, which is explained in more details in
the final section.

Let IN be the set of natural numbers (including zero), and IR (IR+) be the
set of (nonnegative) reals. Time Petri nets are defined as follows:

Definition 1. A time Petri net (TPN, for short) is a six-element tuple N =
(P, T, F,Eft, Lft,m0), where P = {p1, . . . , pnP

} is a finite set of places, T =
{t1, . . . , tnT

} is a finite set of transitions, F ⊆ (P × T ) ∪ (T × P ) is the flow
relation, Eft : T → IN and Lft : T → IN ∪ {∞} are functions describing the
earliest and the latest firing time of the transition, where for each t ∈ T we have
Eft(t) ≤ Lft(t), and m0 ⊆ P is the initial marking of N .

For a transition t ∈ T we define its preset •t = {p ∈ P | (p, t) ∈ F} and postset
t• = {p ∈ P | (t, p) ∈ F}, and consider only the nets such that for each transition
the preset and the postset are nonempty. We need also the following notations
and definitions:

– a marking of N is any subset m ⊆ P ,
– a transition t ∈ T is enabled atm (m[t〉 for short) if •t ⊆ m and t•∩(m\•t) =
∅; and leads from m to m′, if it is enabled at m, and m′ = (m \ •t) ∪
t•. The marking m′ is denoted by m[t〉 as well, if this does not lead to
misunderstanding.

– en(m) = {t ∈ T | m[t〉};
– for t ∈ en(m), newly_en(m, t) = {u ∈ T | u ∈ en(m[t〉) ∧ (t • ∩ • u 6=
∅ ∨ u • ∩ • t 6= ∅)}.

Concerning the behaviour of time Petri nets, it is possible to consider a dense-
time semantics, i.e. the one in which the time steps can be of an arbitrary
(nonnegative) real-valued length, and the discrete one which considers integer
time passings only. Below we define both of them.

3.1 Dense-Time Semantics

In the dense-time semantics (the dense semantics in short) a concrete state σ of a
net N is defined as a pair (m, clock), where m is a marking, and clock : T → IR+

is a function which for each transition t ∈ en(m) gives the time elapsed since
t became enabled most recently, and assigns zero to other transitions. Given
a state (m, clock) and δ ∈ IR+, denote by clock + δ the function defined by
(clock+δ)(t) = clock(t)+δ for each t ∈ en(m), and (clock+δ)(t) = 0 otherwise.
By (m, clock) + δ we denote (m, clock+ δ). The dense concrete state space of N
is a structure (T ∪ IR+, Σ, σ

0,→r), where Σ is the set of all the concrete states
of N , σ0 = (m0, clock0) with clock0(t) = 0 for each t ∈ T is the initial state of
N , and →r⊆ Σ × (T ∪ IR+)×Σ is a timed consecution relation defined by:

18 PNSE’12 – Petri Nets and Software Engineering



– for δ ∈ IR+, (m, clock)
δ→r (m, clock + δ) iff (clock + δ)(t) ≤ Lft(t) for all

t ∈ en(m) (time successor),
– for t ∈ T , (m, clock)

t→r (m′, clock′) iff t ∈ en(m), Eft(t) ≤ clock(t) ≤
Lft(t), m′ = m[t〉, and for all u ∈ T we have clock′(u) = 0 for u ∈
newly_en(m, t) and clock′(u) = clock(u) otherwise (action successor).

Notice that firing of a transition takes no time.
Given a set of propositional variables PV , we introduce a valuation function

V : Σ → 2PV which assigns the same propositions to the states with the same
markings. We assume the set PV to be such that each q ∈ PV corresponds to
exactly one p ∈ P , and use the same names for the propositions and the places.
The function V is then defined by p ∈ V (σ) iff p ∈ m for each σ = (m, ·). The
structure Mr(N ) = (T ∪ IR+, Σ, σ

0,→r, V ) is a dense concrete model of N .
A dense σ-run of TPN N is a (maximal) sequence of states: σ0

a0→r σ1
a1→r

σ2
a2→r . . ., where σ0 = σ ∈ Σ and ai ∈ T ∪ IR+ for each i ≥ 0. A state σ is

reachable in Mr(N ) if there is a dense σ0-run σ0
a0→r σ1

a1→r σ2
a2→r . . . such that

σ = σi for some i ∈ IN.

3.2 Discrete-Time Semantics

Alternatively, one can consider integer time passings only. In such a discrete-
time semantics (discrete semantics in short) a (discrete) concrete state σn of
a net N is a pair (m, clockn), where m is a marking, and clockn : T → IN is
a function which for each transition t ∈ en(m) gives the time elapsed since t
became enabled most recently, and assigns zero to the other transitions. Given a
state (m, clockn) and δ ∈ IN, we define clockn+δ and (m, clockn)+δ analogously
as in the dense-time case. The discrete concrete state space of N is a structure
(T ∪ IN, Σn, σn

0,→n), where Σn is the set of all the discrete concrete states of
N , σn0 = (m0, clockn

0) with clockn0(t) = 0 for each t ∈ T is the initial state of
N , and →n⊆ Σn × (T ∪ IN)×Σn is a timed consecution relation defined by:

– for δ ∈ IN, (m, clockn)
δ→n (m, clockn + δ) iff (clockn + δ)(t) ≤ Lft(t) for all

t ∈ en(m) (time successor),
– for t ∈ T , (m, clockn)

t→n (m′, clockn
′) iff t ∈ en(m), Eft(t) ≤ clockn(t) ≤

Lft(t), m′ = m[t〉, and for all u ∈ T we have clockn
′(u) = 0 for u ∈

newly_en(m, t) and clockn′(u) = clockn(u) otherwise (action successor).

Again, firing of a transition takes no time.
Given a set of propositional variables PV , we introduce valuation function

Vn : Σn → 2PV which assigns the same propositions to the states with the same
markings. Similarly as in the dense case, we assume the set PV to be such that
each q ∈ PV corresponds to exactly one p ∈ P , and use the same names for the
propositions and the places. The function Vn is then defined by p ∈ Vn(σn) iff
p ∈ m for each σn = (m, ·). The structure Mn(N ) = (T ∪ IN, Σn, σn

0,→n, Vn) is
a discrete concrete model of N .

A. Janowska et al.: Checking Branching Time Properties of Time Petri Nets 19



A discrete σn-run of TPN N is a (maximal) sequence of states: σn0
a0→n

σn1
a1→n σn2

a2→n . . ., where σn0 = σn ∈ Σn and ai ∈ T∪IN for each i ≥ 0. A state
σn is reachable inMn(N ) iff there is a σn0-run of N σn0

a0→n σn1
a1→n σn2

a2→n . . .
such that σn = σni for some i ∈ IN.

4 Temporal Logics ACTL∗ and ECTL∗

In our work we deal with verification of properties of time Petri nets expressed
in certain sublogics of the standard branching time logic CTL∗. Below, we define
the logics of our interest.

4.1 Syntax and Sublogics of CTL∗

Let PV = {℘1, ℘2 . . .} be a set of propositional variables. The language of CTL∗

is given as the set of all the state formulas ϕs (interpreted at states of a model),
defined using path formulas ϕp (interpreted along paths of a model), by the
following grammar:

ϕs := ℘ | ¬ϕs | ϕs ∧ ϕs | ϕs ∨ ϕs | Aϕp | Eϕp

ϕp := ϕs | ϕp ∧ ϕp | ϕp ∨ ϕp | Xϕp | U(ϕp , ϕp) | R(ϕp , ϕp).

In the above ℘ ∈ PV , A (’for All paths’) and E (’there Exists a path’) are path
quantifiers, whereas U (’Until’) and R (’Release’) are state operators. Intuitively,
the formula Xϕp specifies that ϕp holds in the next state of the path, whereas
U(ϕp, ψp) expresses that ψp eventually occurs and that ϕp holds continuously
until then. The operator R is dual to U: the formula R(ϕp, ψp) says that either
ψp holds always or it is released when ϕp eventually occurs. Derived operators

are defined as Gϕp
def
= R(false, ϕp) and Fϕp

def
= U(true, ϕp), where true def

=

℘ ∨ ¬℘, and false def= ℘ ∧ ¬℘ for an arbitrary ℘ ∈ PV . Intuitively, the formula
Fϕp specifies that ϕp occurs in some state of the path (’Finally’), whereas Gϕp

expresses that ϕp holds in all the states of the path (’Globally’).
Next, we define some sublogics of CTL∗:

ACTL∗ : the fragment of CTL∗ in which the state formulas are restricted such
that negation can be applied to propositions only, and the existential quan-
tifier E is not allowed,

ECTL∗ : the fragment of CTL∗ in which the state formulas are restricted such
that negation can be applied to propositions only, and the universal quanti-
fier A is not allowed,

ACTL : the fragment of ACTL∗ in which the temporal formulas are restricted
to positive boolean combinations of A(ϕUψ), A(ϕRψ), and AXϕ only.

ECTL : the fragment of ECTL∗ in which the temporal formulas are restricted
to positive boolean combinations of E(ϕUψ), E(ϕRψ) and EXϕ only.

L−X denotes the logic L without the next-step operator X.

20 PNSE’12 – Petri Nets and Software Engineering



4.2 Semantics of CTL∗

Let PV be a set of propositions. Amodel for CTL∗ is a tupleM = (L, S, s0,→, V ),
where L is a set of labels, S is a set of states, s0 ∈ S is the initial state,
→ ⊆ S × L× S is a total successor relation5, and V : S −→ 2PV is a valuation
function. For s, s′ ∈ S the notation s→s′ means that there is l ∈ L such that
s

l→ s′. Moreover, for s0 ∈ S a path π = (s0, s1, . . .) is an infinite sequence of
states in S starting at s0, where si→si+1 for all i ≥ 0, πi = (si, si+1, . . .) is the
i-th suffix of π, and π(i) = si.

Given a model M , a state s, and a path π of M , by M, s |= ϕ (M,π |= ϕ) we
mean that ϕ holds in the state s (along the path π, respectively) of the model
M . The model is sometimes omitted if it is clear from the context. The relation
|= is defined inductively as follows:

M, s |= ℘ iff ℘ ∈ V (s), for ℘ ∈ PV,
M, s |= ¬℘ iff M, s 6|= ℘, for ℘ ∈ PV,
M, x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ, for x ∈ {s, π},
M, x |= ϕ ∨ ψ iff M,x |= ϕ or M,x |= ψ, for x ∈ {s, π},
M, s |= Aϕ iff M,π |= ϕ for each path π starting at s,
M, s |= Eϕ iff M,π |= ϕ for some path π starting at s,
M, π |= ϕ iff M,π(0) |= ϕ, for a state formula ϕ,
M, π |= Xϕ iff M,π1 |= ϕ,
M, π |= ϕUψ iff (∃j ≥ 0)

(
M,πj |= ψ and (∀0 ≤ i < j) M,πi |= ϕ

)
,

M, π |= ϕRψ iff (∀j ≥ 0)
(
M,πj |= ψ or (∃0 ≤ i < j) M,πi |= ϕ

)
.

Moreover, we assume M |= ϕ iff M, s0 |= ϕ, where s0 is the initial state of M .

4.3 Equivalence Preserving ACTL∗ and ECTL∗

Let M = (L, S, s0,→, V ) and M ′ = (L′, S′, s′0,→′, V ′) be two models.

Definition 2 ([2]). A relation ;sim⊆ S′ × S is a simulation from M ′ to M if
the following conditions hold:

• s′0 ;sim s0,
• for each s ∈ S and s′ ∈ S′, if s′ ;sim s, then V (s) = V ′(s′), and for every

s1 ∈ S such that s l→ s1 for some l ∈ L, there is s′1 ∈ S′ such that s′ l
′
→
′
s′1

for some l′ ∈ L′ and s′1 ;sim s1.

The modelM ′ simulatesM (M ′ ;sim M) if there is a simulation fromM ′ toM .
The models M , M ′ are simulation equivalent iff M ;1

sim M ′ and M ′ ;2
sim M

for some simulations ;1
sim⊆ S × S′ and ;2

sim⊆ S′ × S. Two models M and
M ′ are called bisimulation equivalent if M ′ ;sim M and M(;sim)−1M ′, where
(;sim)−1 is the inverse of ;sim.

5 Totality means that (∀s ∈ S)(∃s′ ∈ S) s→s′.
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The following theorem holds:

Theorem 1 ([2]). Let M , M ′ be two simulation equivalent models, where the
range of the valuation functions V, V ′ is 2PV . Then, M, s0 |= ϕ iff M ′, s′0 |= ϕ,
for any formula ϕ over PV such that ϕ ∈ ACTL∗∪ ECTL∗.

5 Discrete- vs. Dense-Time Verification for ACTL∗ and
ECTL∗

It is easy to see that both the modelsMr(N ) andMn(N ) can be used in ACTL∗

and ECTL∗ verification for a net with the semantics a given model corresponds
to (as both meet the definition of the model for CTL∗). However, it is also
not difficult to see that the second model is smaller and less prone to the state
explosion problem. The aim of our work is then to show that both the models
are equivalent w.r.t. checking ACTL∗ and ECTL∗ properties of time Petri nets
with the dense-time semantics. In our proof we make use of the approach of
Popova presented in the paper [5].

Consider the dense concrete model Mr(N ) = (T ∪ IR+, Σ, σ
0,→r, V ) of a

TPN N . A state σ = (m, clock) ∈ Σ is called an integer-state if clock(t) ∈ IN for
all t ∈ T . A integer σ-run of N is a sequence of states σ0

a0→r σ1
a1→r σ2

a2→r . . .,
where σ0 = σ ∈ Σ and ai ∈ T ∪ IN for each i ≥ 0. Note that all the states of an
integer-run which starts at an integer-state are integer-states as well. Thus, it is
easy to see that the following holds:

Lemma 1. For a given time Petri net N the model Mr(N ) reduced to the
integer-states and the transition relation between them is equal to Mn(N ).

Given a number x ∈ IR+, let bxc denote the floor of x, i.e., the greatest a ∈ IN
such that a ≤ x, and let dxe denote the ceiling of x, i.e. the smallest a ∈ IN such
that x ≤ a. Moreover, let fire(σ) denote a set of transition that are ready to fire
in the state σ ∈ Σ, i.e., fire(σ) = {t ∈ en(m) | clock(t) ∈ [Eft(t), Lft(t)]}. We
define the integer-states to be neighbour states of real-valued ones as follows:

Definition 3 (Neighbour states). Let σ = (m, clock) be a state of a TPN N .
An integer-state σ′ = (m′, clock′) is a neighbour state of σ (denoted σ′ ∼n σ) iff

– m′ = m,
– for each t ∈ en(m), bclock(t)c ≤ clock′(t) ≤ dclock(t)e.

Intuitively, a neighbour state of σ is an integer-state of the same marking, and
such that the values of its clocks, for all the enabled transitions, are “in a neigh-
bourhood” of these of σ. However, it is easy to see that these values can be such
that they make more transitions ready to fire than the corresponding values in σ
do: each transition t which can be fired at a given value of clock(t) can be fired
both at bclock(t)c and at dclock(t)e since all these three values are either equal
if clock(t) is a natural number, or belong to the same (integer-bounded) interval
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[Eft(t), Lft(t)] if clock(t) 6∈ IN; on the other hand, a transition t′ which is not
ready to fire at clock(t′) can be firable at dclock(t′)e if dclock(t′)e = Eft(t′).
This implies fire(σ) ⊆ fire(σ′).

Let π := σ0
a0→r σ1

a1→r . . . be a σ0-run in Mr(N ). By π[k], for k ∈ IN, we
denote the prefix σ0

a0→r σ1
a1→r . . .

ak−1→ r σk of π, and by π(k) - the k-th state
of π, i.e., σk. Moreover, we assign a time δi to each step σi

ai→r σi+1 in the run,
i.e., define δi = ai if ai ∈ IR, and δi = 0 otherwise. By ∆G(σi, π), for i ∈ IN,
we denote the value Σi−1

j=0δi (i.e., the time passed along π before reaching σi).

Moreover, given k ∈ IN and a π(k)-run ρ := σk
b0→r β1

b1→r β2
b2→r . . ., by π[k] · ρ

we denote the run σ0
a0→r σ1

a1→r . . .
ak−1→ r σk

b0→r β1
b1→r β2

b2→r . . . (i.e, the run
obtained by “joining” π[k] and ρ). The above definitions apply to discrete runs in
an analogous way. Next, we introduce the following definition (see also Fig. 2):

σ 
0

σ 
1

σ 
2

σ 
k−2

σ 
k−1

π :

10
σ σ 

k−1k−22

σ 
k

σ ’
k

σ ’ ’σ ’σ ’ ’

a a a

a a a

a

:π ’

0 k−1

k−10

1

a1

k−2

’’ ’
k−2

’

Fig. 2. Neighbour prefix of π[k] (denoted π′[k]). If ai ∈ T , then a′i = ai; the states of
π[k] and π′[k] related by ∼n are linked by dashed lines.

Definition 4 (Neighbour prefix). Let π := σ0
a0→r σ1

a1→r . . . be a run in

Mr(N ), and let π′ := σ′0
a′0→r σ

′
1

a′1→r . . . be an integer run. For k ∈ IN, the prefix
π′[k] is a neighbour prefix of π[k] (denoted π′[k] ∼n π[k]) iff for each i = 0, . . . , k
it holds

– σ′i ∼n σi,
– ai ∈ T iff a′i ∈ T , and if ai, a′i ∈ T then a′i = ai.

Intuitively, a neighbour prefix “visits” neighbour states of these in π[k], and the
corresponding steps of these prefixes are either both firings of the same transition,
or both passages of time (possibly of different lengths).

In order to show that Mn(N ) can replace Mr(N ) in ACTL∗/ECTL∗ verifi-
cation we shall prove the following lemma:

Lemma 2. The models Mr(N ) and Mn(N ) are simulation equivalent.

Proof. It is obvious from Lemma 1 that Mr(N ) simulates Mn(N ), with the
relation R1 ⊆ Σ ×Σn defined as R1 = {(σ, σ′) | σ = σ′}.
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Let Rr(N ) and Rn(N ) denote respectively the sets of all the dense σ0-runs
(discrete σn0-runs) of the net N . In order to prove that Mn(N ) ;sim Mr(N )
we shall show that the relation R ⊆ Σn ×Σ given by

R = {(σ′, σ) | ∃π ∈ Rr(N ) ∃π′ ∈ Rn(N ) ∃k ∈ IN s.t.

σ = π(k) ∧ σ′ = π′(k) ∧ π′[k] ∼n π[k] ∧ ∀j≤k ∆G(σ′j , π
′) = b∆G(σj , π)c}

is a simulation from Mn(N ) to Mr(N ). Intuitively, the states σ, σ′ are related
by R if they both are reachable from the initial state of N in k steps for some
natural k, on runs π, π′ such that π′[k] is a neighbour prefix of π[k] and for each
j ≤ k the total time passed along π′[j] is the floor of that passed along π[j].

It is obvious that (σn
0, σ0) ∈ R due to equality of these states. Next, consider

σ, σ′ such that (σ′, σ) ∈ R. Assume that the runs “justifying” this relation (for

some k) are of the form π := σ0
a0→r σ1

a1→r . . . and π′ := σ0
n = σ′0

a′0→n σ
′
1

a′1→n . . .
respectively, and that σi = (mi, clocki), σ′i = (m′i, clock

′
i) for each i ∈ IN (which

implies also the notation σ = (mk, clockk) and σ′ = (m′k, clock
′
k) used below).

– if σ t→r γ for a transition t ∈ T and a state γ = (mγ , clockγ), then from
σ′ ∼n σ (and therefore fire(σ) ⊆ fire(σ′)) the transition t can be fired
at σ′ as well, leading to a state ξ = (mξ, clock

′
ξ). Let ρ be a σ-run of the

form σ
t→r γ →r . . . (i.e., a σ-run whose first step is σ t→r γ), and let ρ′

be a σ′-run of the form σ′
t→n ξ →n . . . (i.e., a σ′-run whose first step is

σ′
t→n ξ; see Fig. 3). We shall show that (π′[k] · ρ′)[k+1] ∼n (π[k] · ρ)[k+1] and

σ 
h

σ 
0

σ 
1

π
[k]
’

ρ’

σ k

σ k’0
σ 
1

σ 
h

σ ’’ ’  σ 

π’:

’

π
[k]

π :

ρ

δ 

=  σ  =α 

’= =α

’

ξ

γ 

Fig. 3. Relation between π, π′, ρ and ρ′ in the proof of Lemma 2.

that ∆G(ξ, π′[k] · ρ′) = b∆G(γ, π[k] · ρ)c.
• In order to prove (π′[k] · ρ′)[k+1] ∼n (π[k] · ρ)[k+1] it is sufficient to show

that ξ ∼n γ. It is obvious that the markings mγ and mξ are equal, and
that newly_en(mk, t) = newly_en(m′k, t). Next, consider t

′ ∈ en(mγ).
If t′ 6∈ newly_en(mk, t) then the value of its clock in γ is the same as in σ
(since firing of t does not influence the value of the clock of t′). In turn, if
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t′ ∈ newly_en(mk, t) then the values of its clock in γ and in ξ are equal
to 0. Thus, from the fact that for σ, σ′ we have bclockk(t)c ≤ clock′k(t) ≤
dclockk(t)e we have also bclockγ(t)c ≤ clock′ξ(t) ≤ dclockγ(t)e, which
implies ξ ∼n γ.

• the condition ∆G(ξ, π′[k] · ρ′) = b∆G(γ, π[k] · ρ)c holds in an obvious way
(∆G(ξ, π′[k] ·ρ′) = ∆G(σ′, π′) = b∆G(σ, π)c = b∆G(γ, π[k] ·ρ)c as the step
consisting in firing a transition is assigned the time 0).

– if σ δ→r γ for a time δ ∈ IR+ and a state γ = (mγ , clockγ), then let ρ be a
σ-run σ δ→r γ

·→r . . . (i.e., a σ-run of the first step σ δ→r γ; see Fig. 3), and
let π[k] · ρ denote the run σ0

a0→r σ1
a1→r . . .

ak−1→ r σk
δ→r γ →r . . . (i.e, the

run obtained by “joining” π[k] and ρ). Next, assume

δ′ = b∆G(γ, π[k] · ρ)c −∆G(σ′, π′)

(which is an integer value due to ∆G(σ′, π′) ∈ IN). We shall show first that
the time δ′ can pass at σ′, leading to a state ξ = (mξ, clock

′
ξ).

• To show that δ′ can pass at σ′ notice that

δ = ∆G(γ, π[k] · ρ)−∆G(σ, π[k] · ρ),

and that

∆G(σi, π) = ∆G(σi, π[k] · ρ) for each i = 0, . . . , k.

Moreover, we have that clockγ(t) = clockk(t) + δ ≤ Lft(t) for each
t ∈ en(mk).
Consider a transition t ∈ en(m′k) (where en(m′k) = en(mk) = en(mγ)).
Let h be an index along π[k] pointing to a state (denoted α) at which t
became enabled most recently, and let h′ be an index along π′[k] pointing
to a state (denoted α′) at which t became enabled most recently. From
the fact that π′[k] ∼n π[k] we have h = h′ (for each j ≤ k − 1 the
corresponding j-th steps of π[k] and π′[k] are either both firings of the
same transition or both time passings, which implies that for each i ≤ k
a transition t becomes enabled in π(i) iff it becomes enabled in π′(i)).
From the definitions of clock, clock′ it is easy to see that

clockk(t) = ∆G(σ, π)−∆G(α, π),

clockγ(t) = ∆G(γ, π[k] · ρ)−∆G(α, π)

and
clock′k(t) = ∆G(σ′, π′)−∆G(α′, π′)

Moreover, it holds
clock′k(t) + δ′ = ∆G(σ′, π′)−∆G(α′, π′) + δ′ =
∆G(σ′, π′)−∆G(α′, π′) + b∆G(γ, π[k] · ρ)c −∆G(σ′, π′) =

b∆G(γ, π[k]·ρ)c−∆G(α′, π′)
def. of R and h=h′

= b∆G(γ, π[k]·ρ)c−b∆G(α, π)c.
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From clockγ(t) ≤ Lft(t) we have dclockγ(t)e ≤ Lft(t), and from the
property bac − bbc ≤ da− be we get
clock′k(t) + δ′ = b∆G(γ, π[k] · ρ)c − b∆G(α, π)c ≤ d∆G(γ, π[k] · ρ)−
∆G(α, π)e = dclockγ(t)e ≤ Lft(t);
Thus, we have that clock′k(t) + δ′ ≤ Lft(t) for each t ∈ en(m′k), and
therefore the time δ′ can pass at σ′.

Next, let ρ′ be a σ′-run of the form σ′
δ′→n ξ →n . . .. We shall show that

(π′[k] · ρ′)[k+1] ∼n (π[k] · ρ)[k+1] and that ∆G(ξ, π′[k] · ρ′) = b∆G(γ, π[k] · ρ)c.
• In order to prove (π′[k] · ρ′)[k+1] ∼n (π[k] · ρ)[k+1] it is sufficient to show

that ξ ∼n γ. It is obvious that the markings of these states are equal.
Consider t ∈ en(m). We show that bclockγ(t)c ≤ clock′ξ(t) ≤ dclockγ(t)e.
Let α, α′, h, h′ be defined as in the previous part of the proof (see the
8th line of the previous item). Similarly as before, from the definitions
of clock, clock′ we have that

clockγ(t) = ∆G(γ, π[k] · ρ)−∆G(α, π),

and that
clock′ξ(t) = ∆G(σ′, π′) + δ′ −∆G(α′, π′).

∗ From the property ba− bc ≤ bac− bbc (for a, b ∈ IR+ with a ≥ b) we
have
bclockγ(t)c = b∆G(γ, π[k] · ρ) − ∆G(α, π)c ≤ b∆G(γ, π[k] · ρ)c −
b∆G(α, π)c h=h

′and def. of R
= b∆G(γ, π[k]·ρ)−∆G(σ′, π′)+∆G(σ′, π′)c−

∆G(α′, π′) = b∆G(γ, π[k] ·ρ)c−∆G(σ′, π′)+∆G(σ′, π′)−∆G(α′, π′) =
δ′ +∆G(σ′, π′)−∆G(α′, π′) = clock′ξ(t).

∗ From the property bac − bbc ≤ da− be we have
clock′k(t) + δ′ = b∆G(γ, π[k] · ρ)c − b∆G(α, π)c ≤ d∆G(γ, π[k] · ρ) −
∆G(α, π)e = dclockγ(t)e

• Next, we have∆G(ξ, π′[k]·ρ′) = ∆G(σ′, π′)+δ′ = ∆G(σ′, π′)+b∆G(γ, π[k]·
ρ)c −∆G(σ′, π′) = b∆G(γ, π[k] · ρ)c, which ends the proof.

Therefore, we can formulate the following theorem:

Theorem 2. Let Mr(N ) and Mn(N ) be respectively a dense and a discrete
model for a time Petri net N , and let ϕ be an ACTL∗ (ECTL∗) formula. The
following condition holds:

Mr(N ) |= ϕ iff Mn(N ) |= ϕ.

Proof. Follows from Theorem 1 and Lemma 2 in a straightforward way.

It should also be explained that in the case of timed systems (and therefore
also TPNs) with the dense-time semantics, logics without the next-step operator
are usually used, due to problems with intepreting the “next” step in the case
of continuous time. However, Thm. 2 considers more general logics, in case one
would interpret the next-step operator over an arbitrary passage of time.
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t1 [0,1] t2 [1,2]

p1 p2

Fig. 4. A net

It should be noticed that the relation R used in our proof cannot be used to
prove bisimulation between the models, i.e., their equivalence w.r.t. the CTL∗

properties, since the integer run π′ “justifying” σ′Rσ and the dense run π oc-
curring in the relation do not need to “branch” in the same way. Thus, although
one can prove that each transition t which can be fired at σ can be fired at σ′
as well, the reverse does not hold. To see an example of the above consider the
net shown in Fig. 4 and its runs:

– the dense one:
π := (p1, (0, 0))

0.5→r (p1, (0.5, 0))
t1→r (p2, (0, 0))

0.6→r (p2, (0, 0.6))→r . . .
– and the discrete one (denoted π′), built in the way shown in [5] and used in

our proof in the definition of R (i.e., satisfying π′[3] ∼n π[3] and ∆G(σ′j , π
′) =

b∆G(σj , π)c for each j ≤ 3):
π′ := (p1, (0, 0))

0→n (p1, (0, 0))
t1→n (p2, (0, 0))

1→n (p2, (0, 1))→n . . ..

It is easy to see that in π(3) we have clock(t2) = 0.6, which means that t2 cannot
be fired at this state, while in π′(3) we have clock(t2) = 1, which means that
the transition t2 is firable.

6 Experimental Results

In order to show that using discrete-time models instead of the dense ones can
be profitable, we performed some tests, using as an example an implementation
of SAT-based bounded model checking (BMC) for a subclass of TPNs (i.e., dis-
tributed time Petri nets) with the discrete-time semantics and the logic ACTL−X
used in [4], and its modification for the dense-time case prepared for the current
paper. BMC is a technique applied mainly to searching for counterexamples for
universal properties, using a model truncated up to some specific depth k. The
formulas used by the method are then negations of these expressing properties
to be tested. So, in our case they are formulas of ECTL−X.

The first system we consider is the Generic Pipeline Paradigm Petri net
model (GTPP) shown in Fig. 5. It consists of three parts: Producer producing
data (ProdReady) or being inactive, Consumer receiving data (ConsReady) or
being inactive, and a chain of n intermediate Nodes which can be ready for
receiving data (NodeiReady), processing data (NodeiProc), or sending data
(NodeiSend). The example can be scaled by adding more intermediate nodes.
The parameters a, b, c, d, e, f are used to adjust the time properties of Pro-
ducer, Consumer, and of the intermediate Nodes. The formulas considered are
EGEFConsReceived, EG(ProdReady ∨ ConsReady) and EFNode1Send.

A. Janowska et al.: Checking Branching Time Properties of Time Petri Nets 27



[a, b][a, b]
[c, d] [c, d] [c, d] [c, d] [c, d]

[e, f ][e, f ]

Node1Ready Node2Ready

[e, f ]

NodenReady

Node1Proc Node2Proc NodenProc

ConsReadyProdReady

Node1Send NodenSendNode2Send

Fig. 5. A net for Generic Timed Pipeline Paradigm

The next system tested is the standard Fischer’s mutual exclusion protocol
(Mutex). The system consists of n time Petri nets, each one modelling a process,
plus one additional net used to coordinate the access of the processes to the
critical sections. A TPN modelling the system for n = 2 is presented in Fig. 6
In this case we have tested the formula EGEF(crit1 ∨ . . . ∨ critn).

waiting2

waiting1

setx0_1

enter1
trying1

critical1

idle2

start2

trying2 critical2

setx0_2

place 0

place 1

place 2

idle1 start1 setx1−copy1

setx1

setx1−copy2

setx2−copy2

setx2

enter2
setx2−copy1

[0,∞)

[0,∞)

[0,∞)

[0,∞)

[0, ∆]

[0, ∆]

[0, ∆]

[0, ∆]

[δ,∞)

[0, ∆]

[0, ∆]
[δ,∞)

Fig. 6. A net for Fischer’s mutual exclusion protocol for n = 2

The results are presented in Fig. 7–9 for GTPP, and in Fig. 10 for Mutex. It
can be seen that in all the cases we are able to verify systems containing more
components (indicated in the column n) than when discrete models are used,
and the total time (bmcT+satT ) and the memory required (max(bmcM, satM))
are usually smaller for the discrete-time case (the columns with “IN :”). In some
cases the differences are quite substantial, but there are also examples in which
the time and the memory used are similar for both the semantics. However, one
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n k LL IR: bmcT+satT IR: max(bmcM,satM) IN: bmcT+satT IN: max(bmcM,satM)
1 5 7 1.41 12.00 0.20 8.00
2 7 9 9.94 25.00 1.15 12.00
3 9 11 49.45 60.00 3.55 21.00
4 11 13 154.70 146.00 9.94 38.00
5 13 15 310.18 243.00 20.90 61.00
6 15 17 708.66 313.00 41.43 94.00
7 17 19 1934.63 818.00 76.81 145.00
8 19 21 4121.60 1071.00 131.98 215.00
9 21 23 6819.25 1640.00 237.21 314.00

10 23 25 20519.20 3455.00 361.03 377.00
11 25 27 - - 562.15 552.00

Fig. 7. Comparison of the results for GTPP and the formula EGEFConsReceived

n k LL IR: bmcT+satT IR: max(bmcM,satM) IN: bmcT+satT IN: max(bmcM,satM)
1 5 1 0.41 7.00 0.17 7.00
2 7 1 4.14 12.00 0.76 8.00
3 9 1 32.27 29.00 2.20 9.00
4 11 1 63.28 52.00 8.57 12.00
5 13 1 200.14 151.00 21.14 17.00
6 15 1 488.59 165.00 43.18 24.00
7 17 1 870.21 342.00 105.18 38.00
8 19 1 1870.65 415.00 234.00 54.00
9 21 1 3745.33 658.00 763.84 139.00

10 23 1 7097.01 1364.00 1696.58 283.00
11 25 1 - - 3013.98 306.00

Fig. 8. Comparison of the results: GTPP, the formula EG(ProdReady ∨ConsReady)

can see that the noticeable differences occur in the cases in which the length of
the witness for the formula (k) or the number of paths required to check this
formula (LL) grow together with the size of the system, making the verification
more expensive.

7 Conclusions and Further Work

We have shown that the result of Popova, stating that integer time steps are
sufficient to test reachability of markings in time Petri nets, can be extended
to testing ECTL∗ and ACTL∗ properties. We have focused on 1-safe TPNs for
simplicity of the presentation, but it is easy to see that the result applies also to
“general” time Petri nets: neither the definitions of a marking and of enabledness
of a transition, nor the way multiple enabledness of transitions is handled do
influence the proof.
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n k LL IR: bmcT+satT IR: max(bmcM,satM) IN: bmcT+satT IN: max(bmcM,satM)
100 2 1 2.02 23.00 1.60 19.00
200 2 1 7.04 76.00 5.74 51.00
300 2 1 15.03 153.00 12.15 102.00
400 2 1 26.30 270.00 18.59 179.00
500 2 1 40.50 412.00 28.47 273.00
600 2 1 58.71 563.00 40.45 397.00
700 2 1 79.71 738.00 54.69 537.00
800 2 1 104.84 992.00 72.06 654.00
900 2 1 133.78 1173.00 90.48 854.00

1000 2 1 169.19 1528.00 114.86 1005.00
1100 2 1 211.16 1772.00 140.22 1168.00
1200 2 1 - - 168.86 1506.00
1300 2 1 - - 203.24 1604.00

Fig. 9. Comparison of the results: GTPP, the formula EFNode1Send

n k LL IR: bmcT+satT IR: max(bmcM,satM) IN: bmcT+satT IN: max(bmcM,satM)
2 4 5 1.04 11.00 0.74 10.00
3 4 5 1.77 13.00 1.10 12.00
4 4 5 1.83 15.00 1.63 14.00
5 4 5 3.18 17.00 2.41 16.00

10 4 5 9.15 40.00 7.20 31.00
20 4 5 26.14 90.00 18.76 86.00
30 4 5 74.70 177.00 58.56 161.00
40 4 5 258.34 330.00 108.34 320.00
50 4 5 265.06 419.00 170.93 358.00
60 4 5 710.11 732.00 442.42 713.00
70 4 5 701.81 1092.00 728.20 1073.00
80 4 5 919.34 1001.00 2288.34 1349.00
90 4 5 780.89 1161.00 934.72 1140.00

100 4 5 4566.16 3181.00 4230.64 4549.00
110 4 5 4260.76 3414.00 4956.38 3237.00
120 4 5 - - 4217.44 3238.00
130 4 5 - - 2155.04 2571.00
140 4 5 - - 5087.76 3603.00

Fig. 10. Comparison of the results: mutex, the formula EGEF(crit1 ∨ . . . ∨ critn)

Our experimental results show that considering the discrete semantics while
verifying properties of dense-time nets can be profitable. Due to this, in our
further work we are going to check whether discrete-time semantics can be used
when testing other classes of properties of the dense-time Petri net systems (e.g.,
CTL∗−X).
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Abstract. Grading dozens of Petri net models manually is a tedious and
error-prone task. In this paper, we present Grade/CPN, a tool supporting
the grading of Colored Petri nets modeled in CPN Tools. The tool is
extensible, configurable, and can check static and dynamic properties.
It automatically handles tedious tasks like checking that good modeling
practise is adhered to, and supports tasks that are difficult to automatize,
such as checking model legibility. We propose and support the Britney
Temporal Logic which can be used to guide the simulator and to check
temporal properties. We provide our experiences with using the tool in
a course with 100 participants.

1 Introduction

Colored Petri nets (CPNs) [8] is a formalism useful for modeling a broad range
of real-life systems, including complex network protocols [8] and business infor-
mation systems [1]. It is thus natural to use CPNs or other Petri net formalisms
when teaching such subjects. As modeling can only really be learned by do-
ing, hands-on experience is a must. Larger classes can comprise more than one
hundred students, and manually checking models created by students is time
consuming and error-prone. This is particularly unpleasant because much of the
effort is spent on checking trivial things, including whether good modeling stan-
dards are adhered to and whether formal requirements to the model are satisfied.
In this paper, we aim at supporting the grading of many models implementing
the same specification by providing with Grade/CPN an extensible tool for auto-
matic assessment of such routine properties, allowing teachers to focus on more
complicated tasks.

The support required for grading assignments is similar to what is needed
for testing or model checking, as we need to check a model against some formal
requirements. As we aim at supporting grading for all kinds of models, we here
focus on the testing perspective, as a model may not be suitable for model
checking due to having a large or even unbounded state space. Thus, parts of
the work described here is also applicable to general testing of CPN models,
but we present it here in the context in which it was developed. The significant



difference to classical testing is that for grading a possibly large set of different
models is to be checked against the same specification in a uniform way.

CPN Tools [3] is a tool for editing, simulating and analysis of CPN models. It
supports the user during the construction of the model due to incremental syntax
checking, which gives immediate feedback about errors, and allows modelers to
experiment with incomplete and even only partially correct models. This is a
useful feature for inexperienced users and makes CPN Tools suitable in teaching.
Furthermore, the Windows version of CPN Tools is downloaded more than 5,000
times a year, indicating that it is broadly used. The broad usage also means
that CPN Tools has reached a fairly stable state, which reduces unnecessary
frustrations during modeling. Finally, CPN Tools has extensive online help and
video tutorials, which means it is easy for students to get started. For these
reasons, we think that CPN Tools is a good choice of a tool for teaching.

There are as many ways of using models as there are teachers, so it is im-
portant that the requirements for the model can be described easily. This means
that the grading tool must be configurable, allowing individual teachers to cus-
tomize what is checked and how adhering to or deviating from each requirement
is awarded or punished. In addition, it must be easily possible to extend the
tool with new requirements. Thus our tool must have a plug-in like architecture
allowing new requirements to be added with minimal effort. At the same time,
we do not desire a heavy-weight framework with a steep learning curve just to
add a simple custom requirement. Of course, such a tool should come with a set
of reasonable built-in plug-ins so it is useful for many scenarios without requiring
any programming.
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Fig. 1: Base model of a delivery service.

To illustrate our motivation
for developing such a tool, as-
sume we want students to model
a (simplified) delivery service us-
ing CPN Tools. The idea is
to model that customers order
products from a shop, and the
shop uses a delivery service to
deliver ordered products to the
customers. To this end, we would
provide students with a base
model as in Fig. 1. The CPN in Fig. 1 models the behavior of the customer
and the shop and provides the interface between customer and delivery service
(Reject, Offer, Accept, and Delivery) and the interface between shop and delivery
service (Shipment, Return, and Notification). A customer can choose a product from
the catalog and place an order via place Order. The shop prepares the ordered
product for shipment and sends the resulting packet to the delivery service via
Shipment. The delivery service shall in all tasks try to deliver packets to the re-
spective customers via place Offer. If a customer is not at home, a token is placed
on place Reject; otherwise, a token is produced on place Accept and, finally, the
delivery service hands over the packet to the customer via place Delivery. Place
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Return is used to send a packet back to the shop in case the packet could not be
delivered. In addition, the delivery service informs the shop via place Notification
that a packet has been successfully delivered. The pages Shop and Customer are
given but the DeliveryService is empty and intended to be modeled by the student.

When students are given such a base model, they are asked to model the
missing part(s) or to change or improve the given model. These changes must
adhere to certain constraints. In our example, we would need to be able to
check that the given environment has not been changed (as the environment
constitutes a contract with the external world) and that the model satisfies the
given requirements, which often means that behavioral properties need to be
checked. Our focus on the first version of our tool has therefore been on making
it easy to check these requirements.

We have also implemented checks that ensure good modeling practise, in-
cluding respecting data hiding (i.e., student solutions are not allowed to connect
to nodes of the environment other than the interface places) and proper termi-
nation (i.e., ensuring that tokens are not erroneously left behind), and simple
static analysis (e.g., ensuring that communication channels are used in the cor-
rect direction, i.e., no messages are produced on an input channel).

As we cannot check all properties mechanically—for example, whether the
model is readable and understandable—we have implemented functionality facil-
itating this. This includes generating a view of the model in which the student-
designed parts are highlighted and the given parts from Fig. 1 are dimmed. This
allows teachers to focus on the new parts without having to distinguish these
parts manually.

We have earlier encountered problems with students copying solutions from
one another. We would also like to detect this, so we have checks that at least
make it harder to cheat. This includes providing each student with a unique
copy of the base model from Fig. 1 with a cryptographic signature including the
student ID embedded. This makes it impossible to two students to use the same
base model as starting point (indicating that one got a copy from the other).

Finally, we want a report summarizing all findings; the report should be
useful for both teachers, who should be able to grade the model based on the
report only, without having to manually open the model in CPN Tools except
in special cases, and for students, who should be pointed to flaws in the model,
using error traces when applicable.

We have chosen to implement our tool as a vanilla Java application. The
language is chosen due to its popularity and platform-independence. We have
chosen not to rely on a framework for handling plug-ins, as these frameworks
often demand significant overhead due to providing features we do not need
(e.g., we do not need dynamic configuration of plug-ins). We have used the
library Access/CPN [14] as it provides an easy way to load CPN models and
programatically interact with the simulator.

To sum up, we need a tool that

1. Works with CPN Tools models,
2. Provides easy configuration,
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3. Is easily extensible,
4. Contains a reasonable base set of capabilities, including:

(a) Detect changes to a given environment,
(b) Check dynamic properties using simulation, and
(c) Check good modeling practise, including data hiding, proper termina-

tion, and provide simple static analysis,
5. Supports the manual part of the grading process,
6. Detects attempts to defraud, and
7. Provides a report that pin-points problems, aids the teacher in grading, and

allows students to understand problems.

We continue with the outline of the architecture of our tool and introduce
some simple plug-ins checking basic properties in Sect. 2. In Sect. 3, we in-
troduce a temporal logic which is powerful enough to describe most dynamic
requirements while still being easy to use. In Sect. 4, we sum up our experi-
ences using our tool in semi-automatically assessing assignments from close to
100 students. Finally, we discuss related work, conclude the paper, and provide
directions for future work.

2 Architecture

Java

Access/CPN

Grade/CPN

Configuration
File

Configuration

Reporting

Plug-in 1

Plug-in 2

Plug-in 3

Plug-in n

…

CPN Tools
Simulator

PDF/HTML
Report

PDF/HTML
Report

PDF/HTML
Reports(CPN) Model

File
(CPN) Model

Files
(CPN) Model

Files

Fig. 2: Overall architecture and envi-
ronment of Grade/CPN.

In this section, we outline the architec-
ture of Grade/CPN. We first give the
overall architecture and explain how
this solves requirements 1, 2, 3, and 7
from the introduction. Then, we pro-
vide the details of some of the built-
in plug-ins, focusing on requirements
4(a), 4(c), and 6. Requirement 5 is
handled partly in this section and in
the next section, where we also deal
with requirement 4(b) (checking dy-
namic properties).

2.1 Overall Architecture

Figure 2 shows the overall architecture of Grade/CPN. We see that we build on
top of Java and Access/CPN [14]. Access/CPN is a Java library making it possible
to interact directly with the CPN Tools Simulator, including loading models and
translating them to an object structure we can use for static analysis, and send
to the simulator process also used by CPN Tools to perform syntax check and
simulation of models. Grade/CPN comprises two important components, one
for Configuration and one for Reporting, as well as an interface to several Plug-ins.
The Configuration component is responsible for loading a configuration file and
using it to instantiate and configure the appropriate plug-ins. Each plug-in re-
turns messages useful for the Reporting component, which use this information to
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generate an on-screen status view showing the overall correctness of the checked
models and for generating an individual report for each student. The report can
be generated as either an HTML file suitable for reading in a Web-browser or a
PDF file suitable for printing or archival.

The central interface of Grade/CPN is PlugIn, shown in Listing 1 (ll. 1–5).
Each plug-in must implement this interface. The configure method is a factory
method to instantiate the plug-in, and takes how many points should be awarded
if the plug-in succeeds and a configuration string. The format of the configuration
string is defined by the plug-in, but will typically be a name identifying the
plug-in and a list of named parameters. If the plug-in can be instantiated with a
given configuration string, it returns a new configured instance and otherwise it
returns null. This allows us to create an abstract factory for instantiating plug-
ins from a string. Furthermore, a plug-in has a method grade, which is given a
student ID, a base model (base), the student solution (model), and a connection
to the simulator. The plug-in can use this information to arrive at its conclusion
and return a Message, which comprises how many points are awarded and a
descriptive message with the reason for the grade.

Fig. 3: Report overview.

Reporting. The Reporting component
of Fig. 2 is responsible for emitting a re-
port based on the result of the PlugIns.
All interfaced pertaining to reporting is
shown in Listing 1 (ll. 7–17). The main
class is Report (ll. 7–10), which is instan-
tiated for each student ID and contains
a set of pairs of PlugIns and Messages
(produced by the grade method PlugIns).

Listing 1: Plug-in interface and central components.� �
1 public interface PlugIn {
2 public PlugIn con f i gu r e (double maxPoints , S t r ing con f i gu r a t i on ) ;
3 public Message grade ( StudentID id , Petr iNet base , Petr iNet model ,
4 HighLevelSimulator s imulator ) ;
5 }

7 public c lass Report {
8 public Report ( StudentID s id ) { . . . }
9 void addReport ( PlugIn plugin , Message r e s u l t ) { . . . }

10 }
11 public c lass Message {
12 public Message (double points , S t r ing message , Deta i l . . . d e t a i l s ) { . . . }
13 }
14 public c lass Deta i l {
15 public Deta i l ( S t r ing header , S t r ing . . . d e t a i l s ) { . . . }
16 public Deta i l ( S t r ing header , JComponent component ) { . . . }
17 }

19 public c lass Tester {
20 public Tester ( TestSuite su i t e , List<StudentID> ids , Petr iNet base ) { . . . }
21 public List<Report> t e s t ( ) { . . . }
22 }
23 public abstract c lass TestSuite {
24 public TestSuite ( PlugIn matcher ) { . . . }
25 public abstract List<PlugIn> getPlugIns ( ) ;
26 }
27 public c lass Conf igurat ionTestSu i te extends TestSuite {
28 public Conf igurat ionTestSu i te ( F i l e c on f i g u r a t i o nF i l e ) { . . . }
29 }� �
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A Message (ll. 11–13) ties together a number of awarded points, a descriptive
message and a list of Details providing in-depth reasoning leading to the outcome.
Each Detail (ll. 14–17) consists of a descriptive header and either a list of textual
details or a single graphical component, which is rendered as an image in the
resulting report. For each student a report overview is generated (see Fig. 3 for
an example) and supplementary details are added in separate sections.

Configuration. The Configuration component of Fig. 2 is shown in Listing 1
(ll. 19–29). The main class is a Tester (ll. 19–22), which given a TestSuite, a list
of student IDs, and a base model can perform a test (l. 21) and yields a Report
for each student. A TestSuite (ll. 23–26) has a distinguished matcher, which is a
PlugIn mapping models to student IDs by yielding a high score for a model and
student ID pair if the model is created by the student with the given ID and a low
score otherwise. A TestSuite can also return a list of PlugIns for the main grading
process. One implementation of a TestSuite, the ConfigurationTestSuite (ll. 27–29),
is instantiated using a configurationFile which along with an abstract PlugIn factory
is used to instantiate the correct PlugIns according to the configuration.

An example configuration file is shown in Listing 2. The file comprises two
sections, matcher (ll. 1–2) and test (ll. 4–15), setting up the matcher and the
actual tests graded, respectively. The intuition is that each line corresponds to a
plug-in; a line starting with a + (ignoring white space) is considered part of the
preceding line. Each line starts with a number indicating how many points are
awarded for successful execution. If the number is negative, successful execution
yields 0 points but a failure yields a punishment. This is followed by a colon
and a configuration option recognized by the plug-in and optionally a list of
named parameters. For example, in line 5 we see that the plug-in identified by
declaration-preservation is instantiated with one named parameter. If the test fails,
it yields a punishment of 5 points and if it succeeds, it yields 0 points. Lines 13–
14 are merged (as line 14 starts with +). In the following we go into more detail
with this example.

2.2 Simple Plug-ins for Interface Preservation

In Listing 2, we use two plug-ins to ensure that the interface to the environment
and the environment itself are not modified. The declaration-preservation plug-

Listing 2: Example configuration file.� �
1 [matcher ]
2 −5: signature , threshold=65

4 [ tests ]
5 −5: declaration−preservation
6 −100: interface−preservation , addpages=fa l s e , initmark=true , subset=de l i v e r y s e r v i c e
7 −5: matchfilename
8 0 . 0 33 : btl , repeats=2,name="Accept 10 Orders " , t e s t=
9 + (10 ∗ (−−> Order ) −> (−−> Order ) => f a i l u r e ) &

10 + (10 ∗ (−−> Receive ) −> (−−> Receive ) => f a i l u r e ) &
11 + ((−−> Reject ) => f a i l u r e ) &
12 + [(−−> Handle_Return ) => f a l s e ]
13 0 . 0 33 : btl , repeats=2,name="Only two car s o f capac i ty 1" , t e s t=
14 + [ | Reject | + | Of f e r | + | Accept | < 3 ]� �
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in (l. 5) makes sure that no declaration in the provided model is removed or
changed. This ensures that it is impossible to change the type of the interface
by redefining color sets. If declarations are removed or changed, this is reported
as an error and if new declarations are added, they are added to the report so
it is easy to see what was added without having to compare the student model
with the base model manually.

The interface-preservation (l. 6) plug-in makes sure that students do not change
the given net structure, but only add new structure. In our example from Fig. 1,
students are only allowed to add new net structure, but not to modify the given
environment. Here, we are given four parameters. The addpages parameter is
set to false, which means that students are not allowed to add new pages. The
model used here is flat, and thus introducing hierarchy is considered an error.
The initmark option is set to true, which means that students are not allowed to
change the initial marking of the model. Finally, the subset parameter contains
a list of pages students are allowed to add structure to. Any page not in this
list is not allowed to be changed at all. Here, we specify that the students are
allowed to alter the deliveryservice page from Fig. 1. Any added page is listed in
the report as is any modified page. If the change is illegal, the error is listed (i.e.,
if a node of the interface is removed or altered, this is highlighted), and if the
model contains no errors, the entire environment is dimmed so only the student
solution is highlighted.

2.3 Fraud Prevention

We have two plug-ins for matching a model to a student ID. In Listing 2, we use
both to award points. We see in line 8 that we instantiate the matchfilename plug-
in. This plug-in simply checks if the student ID is a substring of the filename
(and punishes if it is not). This is fine for honest students; unfortunately, we
have in earlier years encountered students copying models from one another. To
catch that, we instead use the more elaborate signature plug-in as matcher (l. 2).

The signature matcher exploits that all elements of a CPN Tools model have
a unique identifier. This is necessary, e.g., to represent that an arc is connected
to a specific place and transition. While these identifiers must be unique in the
file and match for nodes and arcs, the actual contents of the identifiers have no
semantics. We have developed a simple signer application which, given a base
model, modifies the identifiers in a predictable way. By using a cryptographic
random number generator, we can generate a sequence of pseudo-random num-
bers using the student ID and a secret passphrase as seed. The idea is that if
we know the passphrase and the student ID, we can regenerate the sequence,
but using just the sequence (and optionally the student ID), it is not possible to
reverse-engineer the passphrase. Now, using the generated sequence of numbers
as identifiers of model elements in the file containing the environment, we create
a unique signature in the base file for each student.

The signature plug-in can check this signature. It queries for each student
ID and student model whether the two match. It regenerates the sequence of
random numbers for the student ID and the provided passphrase, and check
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that the identifiers are present in the file. If they are, the model is considered a
match and otherwise not. The plug-in takes a parameter threshold which indicates
how many identifiers must be present in the model. As the signing is a one-way
process, students are forced to use the appropriate base model and cannot just
hand in the same model (even after making cosmetic changes).

3 Britney Temporal Logic

An important requirement to our tool is to check dynamic properties, require-
ment 4(b) from the introduction. In the example in Fig. 1, we are for example
interested in the behavior when a customer accepts packets ten times in a row
and how many packets can be outstanding at any time. As CPN models tend to
have huge or even infinite state spaces, we cannot verify such properties in general
and especially not for models generated by students who have less experience
with modeling. Therefore, we check such properties by guiding the simulator;
that is, we apply a testing-based approach rather than exhaustive state-space
exploration, yielding a sound but not necessarily complete checking mechanism.

Guiding the simulator requires to specify which transition the simulator
should execute. Testing whether some property holds in a state of the model
requires a specification of this property. To this end, we introduce the Britney
Temporal Logic (BTL). This logic is similar to linear-time logic (LTL) [12] but in
addition to checking properties also allows guiding the simulator and to specify
constraints that should hold in a state. We also adopt a syntax more similar to
common descriptions of Petri net firing sequences rather than cryptic abbrevia-
tions or symbols to make it easier for practitioners to adopt the logic. The choice
for an LTL-like logic reflects our wish to have existential counterexamples that
can be represented by a simple firing sequence. Other kinds of counterexamples
are difficult to find using simulation only. In the following, we define the syntax
of BTL formulae and then their semantics based on Kripke structures [10] and
structural operational semantics (SOS) [11].

3.1 Syntax

A BTL formula is a 〈guide〉. A guide describes how simulation should be per-
formed; that is, it guides the simulator to a desired state. The atomic propositions
of a guide are described using 〈simple〉, which is an expression without temporal
operators but otherwise allowing full propositional logic on transitions and place
invariants. The temporal operators are various arrows emulating the arrows typ-
ically used to describe transition steps. Thus a->b means that first a must hold
and subsequently b must hold. For example, a and b can represent transitions,
meaning that for the formula to hold, the corresponding transitions are executed
one after the other. We lift this operator to a-->b meaning that a must hold
and at some point afterward b must hold. Finally, a--->[b] means that a must
hold and when the simulation stops b must hold. The brackets indicate that b
is not used for guiding the simulation anymore (it has terminated after all). We
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can omit a, which is an abbreviation for true. For each kind of arrow, we also
add a double arrow version indicating that if a holds, then b just holds at the
appropriate time. We also allow bounded and unbounded repetition using a star
syntax. In contrary to a regular Kleene star, we put it in front as it improves
readability for western readers. We allow conjunctions of guides using &, but
no disjunctions because for an expression like (a->b)|(c->d) it is not obvious
whether to guide the simulation with an a or a c if both are enabled (as we do
not know whether b or d are enabled in the next step).

A guide can also include 〈check〉s, which are not used to guide the simulator
but only to test assertions. They are therefore allowed to contain disjunctions
and negations and general boolean expressions. Finally, a guide can include the
special keyword ‘failure’, which is a synonym for ‘false’ but with a very
restricted syntax. This means that we try to stay clear of transitions that would
violate the formula. The BTL formula in Listing 2 (ll. 8-12) guides a model to
execute a transition Order exactly 10 times (l. 9) and a transition Receive exactly
10 times (l. 10) with any intermediate transitions allowed except for Reject (l. 11).

〈guide〉 :=-- � 〈simple〉� �〈guide〉� �� ‘->’ 〈guide〉 �
� �〈guide〉� �� ‘-->’ 〈guide〉 �
� �〈guide〉� �� ‘--->’ ‘[’ 〈check〉 ‘]’ �
� 〈guide〉 ‘=>’ 〈guide〉 �� 〈guide〉 ‘==>’ 〈guide〉 �� 〈guide〉 ‘===>’ ‘[’ 〈check〉 ‘]’ �� 〈number〉 ‘*’ 〈guide〉 �� ‘*’ 〈simple〉 �� ‘[’ 〈check〉 ‘]’ �� ‘(’ ‘-->’ 〈simple〉 ‘)’ ‘=>’ ‘failure’ �� 〈guide〉 ‘&’ 〈guide〉 �� ‘(’ 〈guide〉 ‘)’ �

� -�

〈check〉 ::=-- � 〈guide〉� 〈guide〉 ‘|’ 〈guide〉 �� ‘!’ 〈guide〉 �� 〈bexp〉 �� ‘(’ 〈check〉 ‘)’ �
� -�

〈simple〉 ::=-- � 〈name〉� ‘true’ �� ‘false’ �� ‘!’ 〈simple〉 �� 〈simple〉 ‘&’ 〈simple〉 �� 〈simple〉 ‘|’ 〈simple〉 �� ‘(’ 〈simple〉 ‘)’ �

� -�

In addition to the syntax for guiding, we also allow boolean expressions.
These are mostly for testing state properties, such as counting the tokens on a
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place or testing values of the global clock. Boolean expression are defined in the
standard way and shall not be repeated here due to space limitations. Line 12 in
Listing 2 tests that Handle Return is never executed (but does not enforce it like
the guides). The formula in line 14 checks that at any point during execution,
the three places Reject, Offer, and Accept never contain 3 or more tokens in total.

3.2 Semantics

We interpret formulae specified in BTL over the state space of a CPN. The state
space of a CPN can be seen as a Kripke structure K = (Q, δ, q0, Σ, λ), where
Q is a set of states, q0 ∈ Q is the initial state, Σ is a set of transition labels,
δ ⊆ Q×Σ ×Q is the transition relation, and function λ : Q −→ 2AP maps each
state q ∈ Q to a set of atomic propositions that hold in q. As usual, AP denotes
the set of all atomic propositions. As BTL is an LTL-like logic, we also introduce
the notion of a trace. A trace is a transition sequence q0, . . . , qk such that q0 is
the initial state and for all 0 ≤ i < k, there exists an a ∈ Σ with (qi, a, qi+1) ∈ δ.
The semantics is similar to a standard finite trace semantics for LTL like the
one defined in [5].

Our syntax includes a lot of conveniences. We already mentioned that avoid-
ing the precondition for the single-arrows is a convenience for a precondition of
true and that ‘failure’ is semantically the same as ‘false’. Furthermore, all
single arrows can be defined from the double arrows by forcing the precondition.
The eventuality defined by a==>b can be defined in terms of the unbounded
repetition and the next operator, and bounded repetition is just a syntactical
convenience:

->G ≡ true->G

-->G ≡ true-->G

--->[B] ≡ true--->[B]

failure ≡ false

G1->G2 ≡ G1&G1=>G2

G1-->G2 ≡ G1&G1==>G2

G--->[B] ≡ G&G===>[B]

G1==>G2 ≡ G1->(∗true->G2)

n ∗ (G) ≡
{
G->(n− 1) ∗ (G) if n ≥ 1

true otherwise.

The semantics of 〈simple〉 can now be defined over the traces of a Kripke
structure K. Attribute name in the grammar thereby refers to a transition label.

– Every trace (q0, . . . , qk) satisfies (q0, . . . , qk) |= true and (q0, . . . , qk) 6|= false.
– (q0, q1, . . . , qk) |= name iff q0

name−−−→ q1.
– (q0, q1, . . . , qk) |=!S iff (q0, q1, . . . , qk) 6|= S.
– (q0, q1, . . . , qk) |= S1&S2 iff (q0, q1, . . . , qk) |= S1 ∧ (q0, q1, . . . , qk) |= S2.
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– (q0, q1, . . . , qk) |= S1|S2 iff (q0, q1, . . . , qk) |= S1 ∨ (q0, q1, . . . , qk) |= S2.

Boolean expressions can be evaluated over the set AP of atomic proposi-
tions and are, therefore, evaluated at a state. The remaining operators are LTL-
like and are therefore defined over traces. We write q0

G−→ qk to denote that
(q0, . . . , qk) |= G. The first is unbounded repetition. We notice that this is satis-
fied regardless of what we do (as zero repetitions can be performed).

q
G−→ q′′, q′′

(‘*’G)−−−−→ q′

q
(‘*’G)−−−−→ q′

,
q

(‘*’G)−−−−→ q′
(1)

Operator => is similar to the next operator in LTL (though here it is condi-
tional): If G1 holds on a trace q0, . . . , qj then G2 must hold starting from qj .

q0
G1−−→ qj =⇒ qj

G2−−→ qk, 0 < j < k

q0
G1=>G2−−−−−→ qk

(2)

The following three rules define operators used for checking a property (ex-
pressed by putting the expression into squared brackets). We use them to check
whether a boolean expression holds, a boolean expression holds in a final state
after guiding the simulator using expression G, and whether a guide holds.

q0 |= B

q0
[B]−−→ qk

,
qk |= B

q0
G===>[B]−−−−−−→ qk

,
∀j ≤ k : ¬(q0

G−→ qj)

q0
G===>[B]−−−−−−→ qk

,
q0

G−→ qk

q0
[G]−−→ qk

(3)

Finally we define a conjunction as usual:

q0
G1−−→ qk ∧ q0 G2−−→ qk

q0
G1&G2−−−−−→ qk

(4)

The final consideration is how we guide. This is done by defining a set of
allowed transitions for each guide. For simulation, only transitions that are in this
set are considered. This in particular means that if the set of allowed transitions
is empty, the simulation is considered finished (and not with an error unless
the formula is not satisfied). We define the set guide over a set T of possible
transitions inductively as:

– guide(q, S) = {name ∈ T | q name−−−→ q′ =⇒ (q, q′) |= S},

– guide(q, n‘*’G)

{
guide(G) if n ≥ 1,

T otherwise,
– guide(∗G) = T ,
– guide(q,G1=>G2) = T ,
– guide(q, [B]) = T ,
– guide(q,G===>[B]) = T ,
– guide(q, [G]) = T ,

42 PNSE’12 – Petri Nets and Software Engineering



– guide(q,G1 ∧G2) = guide(q,G1) ∩ guide(q,G2),
– guide(q, (-->S) => failure) = T \ guide(q, S).

We more or less just allow concrete steps if they are needed to satisfy a formula
or forbid a step if it would violate a formula, and otherwise allow anything when
we do not care about the outcome.

3.3 Implementation

Our implementation of BTL uses simple formula rewriting. Our implementation
implements the guide set for filtering enabled transitions, pick and execute one
that is in the guide set and in the set of enabled transitions. We then rewrite
the formula according to the previous rules. For efficiency, we have expanded
some of the syntactical equivalences, most importantly the future temporal op-
erator (a==>b). When no more transitions are in the intersection, we check if the
rewritten formula is satisfied for the empty trace.

Fig. 4: Error report.

We evaluate formulae us-
ing a four-value logic similar
to [2]. The idea is that we
have two versions of both true
and false: the value is def-
inite and can never change
and the value is true/false but
may change with further ex-
ecution. For example, if we
have a formula a->b and ex-
ecute c we know for sure that
we can never satisfy the for-
mula (we say it is permanently false), whereas for -->b if we execute a c, the
formula is only temporarily false (we still have proof obligations but may be able
to satisfy them in the future). This allows us to terminate early once a formula
is permanently true or false. This has the added advantage of allowing us to
provide a rewritten formula after executing a sequence of steps, which often con-
tains hints of shortcomings of the model. Figure 4 shows such an error report,
containing an error trace (which we have shortened here), the violated formula
(ll. 10–14 from Listing 2), the formula at the error, and the marking at the error.
If a model has no error, we instead show the final state which can be manually
inspected for irregularities, e.g. improper termination.

In addition to the grader used by teachers to finally grade assignments, we
also have two tools for testing BTL formulas. One is used during construction to
help a teacher get immediate feedback on a formula and a solution by manually
or experimentally testing formulas on a proposed solution. A simplified version
of this tool allows students to check that their models conform to the formulas.
This tool also allows students to manually single-step through their model and
watch the formula progress, aiding in finding and avoiding obvious errors before
handing in.
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4 Practical Experience

In this section, we present first experiences we made with Grade/CPN in sup-
porting the evaluation of a CPN assignment in the course Business Information
Systems at the Eindhoven University of Technology. In this assignment, students
were given the base model in Fig. 1 and they had to model the delivery system
according to a textual specification. Each of the 94 students had to submit two
models. We received in total 130 models from 66 students.

In a first step of the assessment, we applied Grade/CPN by calling it with
a student model, the base model, and a configuration file (see Listing 2). Here,
we were interested whether the interface and declaration of the base model have
been preserved, whether there is a suspicion of fraud, and whether six scenarios
can be replayed on the model (only two are shown in the Listing). The scenarios
were part of the specification of the assignment, and we specified them using
BTL. As BTL refers to the interface, it is crucial that students have not changed
it. The runtime of the tool was about ten minutes for all students; that is, after
this time, a report had been generated for each student. The tool detected two
fraud attempts, though they turned out to be caused by students handing in a
subsequent assignment using the same base model as well.

In a second step, we manually checked each of the generated reports. On
average, this took less than five minutes for each report. Based on the feedback
provided by Grade/CPN, it was easy to check whether a model was actually cor-
rect or not. Basically, the violation of a certain scenario simplified the detection
of the cause for this violation drastically. In most cases, we did not even have
to look at the counterexample provided by our tool. Overall, we had to simulate
only five models manually to determine the cause of an error. The tool automat-
ically detected several subtle errors such as wrong guards and minor changes
to the environment without having the need to open the respective model; it is
highly unlikely we would have caught all of these completely manually. We even
found subtle errors in our own solutions, yielding better results.

Based on experience from previous years, the use of Grade/CPN reduced the
amount of time for grading the assignment by a factor of at least two to three.
This is factoring in that we used Grade/CPN for the first time and had to both
define and understand the defined logic BTL, and also did not place complete
confidence in the reported results which probably increased the manual labor as
well. As correcting models is a rather monotonous work, it is easily possible that
one oversees an error or forgets to check some scenario. Using Grade/CPN, this
is now impossible and, therefore, we think that we can provide students with a
fairer (in the sense of more equal) grading on the one hand and better feedback
on the other hand.

5 Conclusion and Future Work

We have presented Grade/CPN, a tool to semi-automatically grade CPN mod-
els. Using Access/CPN, we can support any model created using CPN Tools.
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The plug-in architecture makes the tool easily extendible: to do so, one must
just implement the interface in Listing 1 (ll. 1–5). The pluggable configuration
with a very simple base format makes configuration simple. Configuration com-
prises selecting which plug-ins to use, which weight to assign them, and which
parameters to instantiate them. Each plug-in only needs to consider its own op-
tions as the overall configuration format is handled by Grade/CPN. Reporting
is handled by making all plug-ins return simple messages optionally annotated
with more detailed reasoning (Listing 1 ll. 13–15). The information is automat-
ically gathered by Grade/CPN and presented both as an overview in the user
interface and as a detailed report. We have presented both simple plug-ins and
a very powerful one implementing guided checking of Britney Temporal Logic
(BTL). BTL allows us to guide the simulation toward desired scenarios and to
check that the environment contracts are adhered to. All plug-ins provide cat-
egorized information explaining the score and highlighting any changes made
to the model, so teachers processing the reports only have to focus on things
that cannot be automatically checked. We have designed and implemented an
infrastructure for detecting fraud. We have reported on our experience with the
Business Information Systems course where Grade/CPN was used to grade 130
assignments from 66 students. Using Grade/CPN instead of a completely man-
ual approach reduced the manual labor by a factor of three. Each student has
to hand in a total of five models during the course, so anticipated time savings
are immense.

The idea of (semi-)automatically grading assignments is not new and closely
related to testing. A known testing framework is JUnit [9], which also runs a
set of tests and reports the result. The advantage of our tool over JUnit is
that JUnit requires programming to even get started, whereas we use simple
configuration files. Also from the testing world is Jenkins (previously known as
Hudson) [7], which runs tests on a central server and provides near-instantaneous
feedback. The main disadvantage of Jenkins in our view is also complexity;
while it does not (necessarily) require programming, setup does require complex
XML configuration and extension either requires huge effort or makes it difficult
to get consolidated reports. There are many tools for automatically grading
programming assignments [6], for example, the tool peach3 [13], which more focus
on managing hand-ins, but can also run automatic tests. In contrast, we focus
on the tests and CPN models directly and assume that models already exist.
Our testing approach is similar to runtime LTL [2,5], but our logic also supports
guiding. This is similar to hot/cold events in Live-Sequence Charts [4], but our
sections are more urgent in that a guide is not only preferred, it is an immediate
failure if it is not possible to follow it. This makes BTL computationally easier
to check.

Future work includes loosening what is allowed in guides by having the tool
try resolving, e.g., disjunctions itself (by keeping track of which branches have
been explored and only reporting errors if no branch is successful). We also
consider a designer for automatically building BTL formulae and full configura-
tion files by manually guiding the simulation in a manner similar to our current
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tool for testing BTL formulas. We aim to integrate Grade/CPN with Jenkins
or peach3 so we can combine our simplicity of configuration with the more ad-
vanced features of those systems. While BTL is designed for grading assignments
using testing, it has also proved useful for finding errors in our model. It would
be interesting to investigate this further, including making testing complete by
exploiting the guiding perspective of our logic.

Acknowledgements. The authors thank Boudewijn van Dongen for fruitful dis-
cussions about the requirements for an automatic grader.
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Abstract. Organizations often do not want to reveal the way a product
is created or a service is delivered. As a consequence, if two organizations
want to cooperate, they contact a trusted third party. Each specifies how
it wants to communicate with the other party. The trusted third party
then needs to assure that the two organizations cooperate correctly. In
this paper, we study requirements on trusted third parties to ensure
correct cooperation between the different organizations.

1 Introduction

Organizations need to anticipate on the increasing dynamicity and complexity
of business markets. Therefore, organizations focus more and more on their core
activities. As a result, organizations need to cooperate in large networks. The
organizations in the network have as common goal the delivery of their services.
Such a network is called a virtual enterprise [11].

Communication between the organizations is asynchronous by nature: an
organization sends some data, like an inquiry, to some other organization, and
eventually the latter organization sends a response. Therefore, we use Petri nets
to model organizations using components. Components can be composed into
networks of components. Such a network is again a component. A component
has an initial state and a desired final state. We say that a component, or a
network of components communicates correctly if it is sound, i.e., if in all its
reachable states the component is always able to eventually reach the desired
final state.

Trust is an important property in a network of cooperating organizations:
organizations share business knowledge and intellectual property with other or-
ganizations within the network in order to organize the component network
properly and achieve desired goals. At the same time, organizations often want
to keep some intellectual property within their organization and avoid sharing
it for clear reasons. A common approach used in non-virtual life is the use of
trusted third parties. It becomes nowadays also quite common in the virtual
world. In this paper, we consider the use of a third party, also called a notary,
that is trusted by all the organizations in the network. By using a notary, each



A N N B

A N B

Fig. 1. If the notary N communicates correctly with A and B individually, we want
to conclude correctness of the network of A, B and N

.

of the organizations explains to the notary the way it wants to conduct business,
and the notary will assure that the organizations can do business together. This
requires the notary to ensure that it communicates correctly with each of the
organizations, i.e., that the notary with each of the individual organizations can
reach the common goals, and secondly, that the complete network with all the
organizations together can reach its common goals. If this is the case, we call
the notary trusted.

In this paper we limit ourselves to the cooperation between two organizations
using a notary. Rather than to use verification to check whether the communi-
cation between the notary and the two organizations is correct, we search for
conditions such that if the communication between the notary and each of the
individual organizations is correct, we can automatically conclude that the com-
munication between the three parties is correct, as depicted in Fig. 1.

This paper is structured as follows. Sec. 2 introduces the basic notions needed
throughout the paper. Sec. 3 explains the concept of components and their com-
position. In Sec. 4 we study the conditions under which the notary is guaranteed
to ensure soundness of the composition of the three parties. Sec. 5 concludes the
paper.

48 PNSE’12 – Petri Nets and Software Engineering



2 Preliminaries

Let S be a set. The powerset of S is denoted by P(S) = {S′ | S′ ⊆ S}. We use
|S| for the number of elements in S. Two sets S and T are disjoint if S ∩ T = ∅.

A bag m over S is a function m : S → N, where N = {0, 1, . . .} denotes the
set of natural numbers. We denote e.g. the bag m with an element a occurring
once, b occurring three times and c occurring twice by m = [a, b3, c2]. The set
of all bags over S is denoted by NS . Sets can be seen as a special kind of bag
where all elements occur only once; we interpret sets in this way whenever we
use them in operations on bags. We use + and − for the sum and difference of
two bags, and =, <, >, ≤, ≥ for the comparison of two bags, which are defined
in a standard way. The projection of a bag m ∈ NS on some set U is a bag
defined by m|U (s) = m(s) if s ∈ U and m|U (s) = 0 otherwise.

A sequence over S of length n ∈ N is a function σ : {1, . . . , n} → S. If
n > 0 and σ(i) = ai for i ∈ {1, . . . , n}, we write σ = ⟨a1, . . . , an⟩. The length
of a sequence is denoted by |σ|. The sequence of length 0 is called the empty
sequence, and is denoted by ϵ. The set of all finite sequences over S is denoted
by S∗. We write a ∈ σ if σ(i) = a for some 1 ≤ i ≤ |σ|. Concatenation of
two sequences ν, γ ∈ S∗, denoted by σ = ν; γ, is a sequence defined by σ :
{1, . . . , |ν|+ |γ|} → S, such that σ(i) = ν(i) for 1 ≤ i ≤ |ν|, and σ(i) = γ(i−|ν|)
for |ν| + 1 ≤ i ≤ |ν| + |γ|. We inductively define the projection of σ ∈ S∗ on
some set U by a; σ′

|U = ⟨a⟩; σ′|U if a ∈ U and a; σ′
|U = σ′|U otherwise.

Definition 1 (Petri net [13]). A Petri net N is a tuple (P, T, F ) where (1)
P and T are two disjoint sets of places and transitions respectively, we call an
element of the set (P ∪ T ) a node of N ; and (2) F ⊆ (P × T ) ∪ (T × P ) is the
flow relation. An element of F is called an arc.

Let N = (P, T, F ) be a Petri net. Given a node n ∈ (P ∪ T ), we define its
preset by •

N n = {x | (x, n) ∈ F}, and its postset by n•
N = {x | (n, x) ∈ F}. We

omit the subscript if the context is clear.
Let N = (P, T, F ) be a Petri net. A path from a node n ∈ P ∪ T to a node

m ∈ P ∪ T is a sequence π ∈ (P ∪ T )∗ such that (π(i), π(i + 1)) ∈ F for all
1 ≤ i < n. The set of all paths from n to m is denoted by Π(n,m). A path is
called cyclic if there exists a path π of length n > 0 such that π(1) = π(n). If
N has a cyclic path, the net is called cyclic. If no such cycle exists, it is called
acyclic.

To describe the semantics of a Petri net, we use markings. A marking of N
is a bag m ∈ NP , where m(p) denotes the number of tokens in place p ∈ P . If
m(p) > 0, place p is called marked in marking m. A Petri net N with a marking
m is written as (N, m) and is called a marked Petri net.

Given a marked Petri net (N,m) with N = (P, T, F ), a transition t ∈ T is

enabled, denoted by (N : m
t−→), if •t ≤ m. If a transition is enabled in (N,m),

it can fire. A transition firing, denoted by (N : m
t−→ m′), results in a new

marking m′ = m − •t + t•. We lift the firing to sequences of transitions in the
standard way. A sequence σ ∈ T ∗ of length n is a firing sequence from m0 to

K.M. van Hee et al.: When Can We Trust a Third Party? 49



mn, if there exist markings mi,mi+1 ∈ NP such that (N : mi
σ(i)−→ mi+1) for all

1 ≤ i < |σ|. The set of reachable markings from a given marking m is denoted

as R(N, m) = {m′ | ∃σ ∈ T ∗ : (N : m
σ−→ m′)}. We lift the set of reachable

markings from a single marking to a set of markings in a standard way, i.e.,
given a set M ⊆ NP , R(N, M) =

∪
m∈M R(N,m).

Given a marked Petri net (N,m0) with N = (P, T, F ), a place p ∈ P is called
k-bounded for some k ∈ N if m(p) ≤ k for all markings m ∈ R(N, m0). If all
places are k-bounded, we call (N, m0) k-bounded. A transition t ∈ T is called
live if for all markings m ∈ R(N, m0) there exist a firing sequence σ ∈ T ∗ and

a marking m′ ∈ R(N, m) such that (N : m
σ−→ m′ t−→). If all transitions of

(N, m0) are live, (N, m0) is called live. A transition t ∈ T is called quasi-live if

there exists a marking m ∈ R(N, m0) such that (N : m
t−→). If all transitions

of (N, m0) are quasi-live, the marked Petri net is called quasi-live. A marking
m ∈ R(N,m0) is called a home marking if m ∈ R(N,m′) for all m′ ∈ R(N,m0).
A reachable marking m ∈ R(N,m0) is called a deadlock of (N,m0) if there is

no transition t ∈ T with (N : m
t−→). Given a desired marking f ∈ R(N,m0),

a non-empty subset of markings L ⊆ R(N,m0) is called a live-lock w.r.t f if
f ̸∈ R(N, L) and L = R(N,L), i.e., from L the desired marking is not reachable,
and no other marking then a marking in L can be reached from L.

On Petri nets, we define two classes based on their structure: S-Nets, also
called state machines, and workflow nets. A Petri net N = (P, T, F ) is a S-net
if |•t| ≤ 1 and |t•| ≤ 1 for all transitions t ∈ T .

Definition 2 (Workflow net, closure). Let N = (P, T, F ) be a Petri net. It is
a workflow net (WFN) if there exist two places i ∈ P and f ∈ P , called the initial
place and final place respectively, such that •i = f• = ∅, and all nodes of N are
on a path from i to f . Its closure is the net N∗ = (P, T ∪{t∗}, F ∪{(t∗, i), (f, t∗)},
where t∗ ̸∈ T .

A workflow net is called sound if (1) it is weakly terminating, i.e., it always
has the option to reach the final marking in which only the final place is marked,
(2) it is properly completing, i.e., if in a marking the final place is marked, it
is the only place marked, and (3) all transitions have a function, i.e., for every
transition a reachable marking exists that enables the transition. Note that we
use the classical soundness definition [1, 2].

Definition 3 (Soundness). A workflow net N = (P, T, F ) with initial place i
and final place f is called sound if (1) [f ] is a home marking of (N, [i]), (2) for
any reachable marking m ∈ R(N, [i]), if m ≥ [f ] then m = [f ], and (3) (N, [i])
is quasi live.

A WFN N = (P, T, F ) with initial place i is sound if and only if the marked
Petri net (N∗, [i]) is live and bounded [1].

If we give a tuple a name, we subscript the elements with the name of the
tuple, e.g. for N = (A,B,C) we refer to its elements by AN , BN , and CN . If the
context is clear, we omit the subscript.
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3 Components and their Composition

In this paper, we use asynchronously communicating components [5,7]. We there-
fore model our components using Petri nets with interface places, called open
Petri nets (OPNs) [10,14]. An OPN has two types of places: internal places for
the inner control of the component, and interface places to communicate with
its environment. An interface place is either an output place, i.e., it sends a mes-
sage to the environment, or an input place, i.e., it requires a message from the
environment. Further, a component has an initial and a final marking, defining
the desired begin and end markings of the component.

Definition 4 (Open Petri net, skeleton, open workflow net [3]). An open
Petri net (OPN) is an 6-tuple (P, I, O, T, F, i, f) where

– ((P ∪ I ∪ O, T, F ), i) is a marked Petri net;
– P is a set of internal places;
– I is a set of input places, and •I = ∅;
– O is a set of output places, and O• = ∅;
– P , I and O are pairwise disjoint;
– ∀t ∈ T : |(•t ∪ t•) ∩ (I ∪ O)| ≤ 1; and
– i ∈ NP is the initial marking; and
– f ∈ NP is the final marking.

We call the set I ∪ O the interface places of the OPN. Two OPNs N and M
are called disjoint if (PN ∪ IN ∪ ON ∪ TN ) ∩ (PM ∪ IM ∪ OM ∪ TM ) = ∅. An
OPN N is called closed if IN = ON = ∅. We write R(N,m) for R((PN ∪ IN ∪
ON , TN , FN ),m) for m ∈ NPN ∪IN ∪ON .

The skeleton of N is defined as the Petri net S(N) = (PN , TN , F ) with
F = FN ∩ ((PN × TN ) ∪ (TN × PN )). For nodes n ∈ (PN ∪ TN ), we write ◦

N n
and t◦N as a shorthand for •

S(N)t and t•S(N), respectively.

If S(N) is a workflow net with initial place s and final place o, i = [s] and
f = [o], N is called an open workflow net.

OPNs are composed with each other to build networks of communicating
components. As a network of components can be used as a component again, the
result of the composition is a component too. We say two OPNs are composable
if the only elements shared between the two OPNs are their interface places,
such that input places of the one are output places of the other and vice versa.
Composition is then defined as the union of the two OPNs.

Definition 5 (Composition of OPNs [3]). Two OPNs A and B are compos-
able, denoted by A⊕B, if and only if (PA∪IA∪OA∪TA)∩(PB ∪IB ∪OB ∪TB) =
(OA ∩ IB) ∪ (IA ∩ OB).

If A and B are composable, their composition results in an OPN A ⊕ B =
(PA ∪ PB ∪ H, (IA ∪ IB) \ H, (OA ∪ OB) \ H,TA ∪ TB , FA ∪ FB , iA + iB) with
H = (OA ∩ IB) ∪ (IA ∩ OB).
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Note that two disjoint OPNs are composable by definition. Two important
properties of composition are commutativity and projection, as shown in [14].

Corollary 6 (Commutativity, projection property [14]). Let A and B be

two composable OPNs. Then N = A⊕B = B⊕A, and (S(A) : m|PA

σ|TA−→ m′|PA
)

for all firing sequences σ ∈ T ∗
n and markings m,m′ ∈ NPN such that (S(N) :

m
σ−→ m′).

The composition operator allows to create arbitrary networks of communicat-
ing components. As long as the interface places match, it is allowed to compose
the components. However, it does not guarantee that the components commu-
nicate correctly. Composition is thus a syntactic check whether components are
able to communicate.

Components communicate correctly if all components in the network are able
to reach their desired final marking, and no messages are pending in one of the
interface places. Further, we do not want to have transitions that are unreachable
in the composition. To express this property, we use the notion of soundness for
components: a component is sound if, ignoring the communication with other
components in the network, all components can reach their final marking, no
tokens are left in the network, and for each transition in the network, a marking
should be reachable in which the transition is enabled.

Definition 7 (Soundness). An OPN N is sound if:

1. ∀m ∈ R(S(N), iN ) : fN ∈ R(S(N),m) (weak termination);

2. ∀m ∈ R(S(N), iN ) : m ≥ fN =⇒ m = fN (proper completion); and

3. ∀t ∈ TN : ∃m ∈ R(S(N), iN ) : ◦t ≤ m (quasi liveness).

Note that this soundness definition is stronger than the soundness notion used
in [3], where soundness has been defined as the combination of weak termination
and proper completion.

A direct consequence of the projection property and soundness is that if in
a composition between A, B and C, such that A and C are disjoint, and A and
B are composable, as well as B and C, and B is in its final marking, then the
other two components can reach their final marking as well.

Lemma 8. Let A, B and C be three pairwise composable OPNs such that A
and C are disjoint, and A ⊕ B and B ⊕ C are sound. Define L = A ⊕ B ⊕ C.
Then fL ∈ R(S(L),m) for all markings m ∈ R(S(L), iL) such that fB ≤ m.

Proof. Define K = A ⊕ B. By the projection property, (S(K) : iK
σ|TK−→ m|PK

).
Since fB ≤ m, and K is sound, there exists a firing sequence µ ∈ T ∗

A such that

(S(K) : m|PK

µ−→ fK), and hence (S(L) : m
µ−→ m′) for some m′ ∈ NPL with

fK ≤ m′. Applying the same argument for B ⊕ C, there exists a firing sequence
ν ∈ T ∗

B such that (S(L) : m′ ν−→ fL), which proves the statement. ⊓⊔
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4 Soundness Using Trusted Third Parties

Organizations have to cooperate more and more in order to do their business.
However, they often do not want to share the way they operate, for example
to hide internal business knowledge or intellectual property. An often proposed
solution is a third party that is trusted by all organizations within the network.
This third party, the notary, needs to ensure that it knows how the organizations
within the network want to operate. On the one hand the notary needs to ensure
that it works correctly with each individual organization, and on the other hand,
that the network of all organizations, including the notary, is correct.

As the main purpose of a notary is to ensure correct behavior of the commu-
nication between the two organizations that want to cooperate, we model the
notary by an OWN. The main actions of the notary are the sending and receiv-
ing of messages of the different components. Therefore, each transition that is
communicating is labeled with the sending or receiving of a message, or as silent
if the transition represents an internal step of the notary. We restrict the notary
to state machines, i.e., each notary is sound by its structure [9].

Definition 9 (Notary). Let A and B be two disjoint components. A notary,
between A and B is an OWN N such that (1) A and N , as well as B and N are
composable, (2) S(N) is an S-net, (3) each transition is connected to at most
one interface place, i.e., |(•t ∪ t•) ∩ (I ∪ O)| ≤ 1 for all t ∈ T , and, (4) each
interface place to exactly one transition, i.e., |•x ∪ x•| = 1 for all x ∈ I ∪ O.

As each transition is connected to at most one component, we introduce the
communication function CN : T → {A,B, τ} such that CN (t) = X if •t∩OX ̸= ∅
for X ∈ {A,B} and CN (t) = τ otherwise.

4.1 Acyclic Notaries

We first consider the case of an acyclic notary. If a notary is acyclic, then its
set of possible firing sequences is finite. For acyclic notaries, soundness can be
guaranteed, as shown in this section.

t u

Component A Component B

Notary

p

(a) Incorrect control

Component A Component B

Notary

t

u

p

(b) Correct control

Fig. 2. Conflicts in a notary
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One source of possible erroneous behavior lies in the control of conflicts: if in
a notary two transitions share a place in their presets, then the transitions should
either be both controlled by the same component, or by the notary. Consider the
examples of Fig. 2. Taking the composition A ⊕ N of Fig. 2(a), then transition
u is always enabled if transition t is enabled, whereas in Fig. 2(b), component A
controls the conflict in the composition of A and N . If the composition is sound,
then the example of Fig. 2(a) is not possible, as shown in the next lemma.

Lemma 10 (Conflict control). Let A and B be two components such that A
and C are disjoint, and let N be an acyclic notary between A and B. If A ⊕ N
and N ⊕ B are sound, then for all places p ∈ P and transitions t, u ∈ p• we have
CN (t) = CN (u).

Proof. Let p ∈ P and t, u ∈ p•. Suppose CN (t) ̸= CN (u). This implies that
at least one of the transitions t and u is controlled by a component (otherwise
we would have CN (t) = CN (u) = τ). Without loss of generality, assume this
transition to be t and component to be A, i.e., CN (t) = A. Then there exists a
place q ∈ IN ∩ OA, with q ∈ •t.

Define M = A ⊕ N . Since N is an S-net, ◦
Mu ⊂ ◦

M t. Since M is sound,

there exists a reachable marking m ∈ R(S(M), iM ) with (S(M) : m
t−→), and

thus m(q) > 0. Note that transition u is also enabled in m. Hence, we can

fire transition u and obtain a marking m′ ∈ NPM : (S(M) : m
u−→ m′), where

m′ = m − ◦
Mu + u◦

M and m′(q) = m(q) (since q ̸∈ ◦
Mu).

As N is acyclic and t is the only transition consuming from q, the token from
q will never be consumed by any sequence firing from m′. Thus, M is not sound,
which is a contradiction. Hence, the lemma holds. ⊓⊔

The lemma shows that conflicts (choices) in the notary component are always
controlled correctly, either by a single component or the notary itself. Conse-
quently, if the composition of the components of A and B with N individually
is sound, the composition of the three is sound as well, as proven in the next
theorem.

Theorem 11. Let A and B be two OPNs such that A and B are disjoint. Let
N be an acyclic notary between A and B. If A ⊕ N and N ⊕ B are sound, then
A ⊕ N ⊕ B is sound.

Proof. Define M = A ⊕ N ⊕ B. Suppose M is not sound. Then there exist a
marking m ∈ R(S(M), iM ) and a firing sequence σ ∈ T ∗

M such that (S(M) :

iM
σ−→ m), fM ̸∈ R(S(M),m). Moreover, since N is acyclic, there exists such

an m, and, additionally γ|TN
= ∅ for all firing sequences γ ∈ T ∗

M such that

(S(M) : m
γ−→). Now consider the following two possible cases:

1. Notary N is in its final place in this marking m, i.e. m ≥ fN , but A or B
are not in their final markings;

2. Notary N is not in its final place in marking m, i.e. m ̸≥ fN .
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Fig. 3. An acyclic S-net (a), a single-entry-single-exit loop (b), and the refinement of
place p in (a) with loop (b)

The first case contradicts Lm. 8. Consider the second case. No transitions of N
will be enabled in (S(M),m), and N is not in its final marking. As fN ̸̸= m|PN

and S(N) is an S-net, there exist a place p ∈ PN of the notary such that
m(p) > 0. p• cannot contain any transition t with CN (t) = τ , since this transition
would be enabled in m. Due to Lm. 10, all transitions t from p• have the same
value for CN (t). Without the loss of generality, we suppose it to be A. Since
A ⊕ N is sound, there is a firing sequence σ; t from marking m|A⊕N in A ⊕ N
such that σ ∈ T ∗

A and t ∈ TN . This firing sequence is then also a firing sequence
of M , but this contradicts the statement that no transition from TN can fire
starting from m in M .

Therefore, A ⊕ N ⊕ B is sound. ⊓⊔

4.2 Simple Cyclic Notaries

Acyclic notaries ensure the correctness of the composition of two components if
these components communicate correctly with the notary. Often, cyclic behavior
between components is needed. For example, in order to agree on some quote,
several cycles may be involved. In this section, we extend acyclic nets with single-
entry-single-exit (SESE) loops.

A SESE loop consists of an entry place and an exit place, not being the same,
and all nodes inside the loop are on a path from entry to exit or vice versa, on a
path from exit to entry. Furthermore, we require each place in the loop to have
exactly one transition in its preset and one in its postset, except for the entry
and exit place. An example of a SESE loop is depicted in Fig. 3(b).

An S-net is a Simple Cyclic S-net (SCS-net) if all loops in the net are disjoint,
i.e., each place and transition of the net belongs to at most one loop. In simple
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Fig. 4. Controlling conflicts in a simple-cyclic notary

cyclic nets, each loop can be replaced by a place, which results in an acyclic
S-net (see Fig. 3).

Definition 12 (SESE Loop, simple-cyclic S-net). Let (P, T, F ) be an S-
net. A set L ⊆ P ∪T is a called a single-entry-single-exit loop (SESE loop) with
entry place e ∈ L ∩ P and exit place o ∈ L ∩ P if all nodes n ∈ L are on a path
from e to o or on a path from o to e, •e \L ̸= ∅, e• ⊆ L, o• \L ̸= ∅, and •o ⊆ L,
and for all places p ∈ L ∩ P , if |•p| > 1 then p = e and if |p•| > 1 then p = o.

Let (P, T, F ) be an S-net. It is called a simple-cyclic S-net (SCS-net) if all
loops are SESE loops and pairwise disjoint, i.e., for all loops L1, L2 ⊆ P ∪ T if
L1 ∩ L2 ̸= ∅ then L1 = L2.

Note that in the definition of SCS-nets, we require each node to be in at most
one loop. By the definition of the SESE loop, we have that if a node contains
multiple elements in its preset or postset, it is either the entry or the exit of the
loop. As a consequence, all SESE loops are simple: there is one path from entry
to exit and one path from exit to entry. The basis of an SCS-net is an acyclic
S-net. Consequently, each loops will be entered at most once.

Whereas in an acyclic notary every conflict is controlled by a single compo-
nent, this is not the case in the simple-cycled case, as shown in Fig. 4. Choices
still need to be controlled by a single component, but silent loops, i.e., no tran-
sition in the loop is connected with an interface places, are allowed.

Similarly to the acyclic case, if the skeleton of a notary is a simple-cyclic S-
net, soundness of the three parties is assured if the notary composed with each
of the organizations individually is sound. Whereas in the acyclic case every
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conflict is controlled by a single component, if the notary is cyclic, the moment
of control can be postponed. As a consequence, we need to also consider the
possibility of live-locks in which the notary is involved.

Theorem 13. Let A and B be two disjoint OPNs and let N be an simple-cyclic
notary such that A ⊕ N and N ⊕ B are sound. Then A ⊕ N ⊕ B is sound.

Proof. Define K = A ⊕ N , L = N ⊕ B and M = A ⊕ N ⊕ B. Suppose M
is not sound. Then there exists a marking m ∈ R(S(M), iM ) such that fM ̸∈
R(S(M),m).

1. Notary N is in its final marking, but A or B cannot reach its final marking,
or tokens are left in the interface places;

2. Notary N reaches a deadlock different from the final marking;
3. Notary N reaches a live lock with respect to the final marking;

The first case contradicts with Lm. 8.
Next, consider the second case. Suppose a marking m ∈ R(S(M), iM ) not

being the final marking exists that is a deadlock. Then, a place p ∈ PN exists
with p ̸= fN , m(p) = 1 and •t ̸≤ m for all transitions t ∈ p•. Let t ∈ p•. Then
CN (t) ̸= τ . If CN (t) = CN (u) for all t, u ∈ p•, then either A ⊕ N or N ⊕ B
would not be sound. Hence, transitions t, u ∈ p• exist such that CN (t) ̸= CN (u).
Without loss of generality assume CN (t) = A and CN (u) = B.

Since S(N) is an SCS-net, place p is either an entry or exit point of a loop,
or outside a loop. Suppose place p is not the exit of a loop. Then in K, transition
u is enabled in m|PA⊕N

. Since K is sound, it must be possible to fire transition

t. Thus, a marking m′ ∈ R(S(K), iL) exists such that (S(K) : m′ t−→). As
transition u is also enabled in m′, u has to be in a loop, since otherwise K the
token from the places q ∈ •t∩OA would never be consumed. Similarly, transition
t has to be in a loop, since otherwise the token from the places q ∈ •u ∩ OB

would never be consumed. Hence, a deadlock cannot occur.
Last, consider the case in which N reaches a live-lock, i.e, it entered a loop

L with entry i and exit o such that it cannot leave the loop. Hence, CN (t) ̸= τ
for all transitions t ∈ o• \ L. If CN (t) = CN (u) for all t, u ∈ p•, then either
A⊕ N or N ⊕ B would not be sound. Hence, transitions t, u ∈ p• exist such that
CN (t) ̸= CN (u). Without loss of generality assume CN (t) = A and CN (u) = B.
Again due to liveness of K and L, this is not possible.

As all cases lead to a contradiction, A ⊕ N ⊕ B is sound. ⊓⊔

5 Conclusions

We studied in this paper the problem of ensuring correctness of networks of co-
operating organizations. By introducing a trusted third party, called a notary,
organizations do not need to share their knowledge with the other organizations
within the network. The notary needs to ensure that firstly it works correctly
with each of the organizations individually, and secondly that all organizations
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in the network, including the notary itself, work correctly together. In this paper,
we showed for two organizations and a notary that if the notary is an acyclic
state machine, or it contains only single-entry-single-exit (SESE) loops, then the
notary ensures soundness if it is sound with each of the organizations individu-
ally.

In literature, different approaches exist. For example, in the approach of [4],
the authors use contracts, implemented as public views. Organizations then need
to implement their public views as a private view. If each of the private views
agrees on the public view, the network is guaranteed to be correct. In [8], an
interactive Petri net is designed, modeling the communication between different
organizations.

The disadvantage of these approaches is that each of the organizations need
to implement a private view, whereas often organizations already have existing
components. In these approaches, the organizations have to re-engineer the ex-
isting components, and prove that these re-engineered components adhere to the
views defined in the contract using e.g. accordance [12] or contract theory [6]. In
the approach described in this paper, organizations can reuse existing compo-
nents, as the approach requires an organization to cooperate correctly with the
notary.

The setting in this paper is comparable with the more general setting of
decentralized controllability [15], which is shown to be undecidable [16]. We
limited ourselves to two organizations with a notary which is either acyclic or
only contains SESE loops. Although these requirements are quite strong, they
are needed to ensure soundness. Future work will be to search for more liberal
notaries and to extend the results to service trees [3]. As shown in [14], soundness
is not compositional, and additional requirements are needed.
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Abstract. A Wireless Sensor Network (WSN), made of distributed au-
tonomous nodes, is designed to monitor physical or environmental con-
ditions. WSNs have many application domains such as environment or
health monitoring. Their design must consider energy constraints, con-
currency issues, node heterogeneity, while still meeting the quality re-
quirements of life-critical applications. Formal verification helps to ob-
tain WSN reliability, but usually requires a high expertise, which limits
its adoption in industry.
This paper presents VeriSensor, a domain specific modeling language
(DSML) for WSNs offering support for formal verification. VeriSensor is
designed to be used by WSN experts. It can be automatically translated
into a formal specification for model checking. We present the language,
its translation, show how they work on a simple case study, and illus-
trate how several metrics and properties relevant to the domain can be
evaluated.

Keywords: wireless sensor networks, domain specific modeling languages,
model driven engineering, formal verification

1 Introduction

Context Wireless sensor networks (WSNs) are composed of distributed au-
tonomous nodes, containing programs and sensors to monitor physical or envi-
ronmental conditions. Each node is a small physical device embedding sensors, a
small CPU, a battery, a wireless transceiver and an antenna for communication.
WSNs are useful in many contexts, such as environment or health monitoring,
thus being a hot topic [14, 8].

The design of WSNs is complex and error-prone due to their numerous con-
straints:
– lifetime is a crucial preoccupation (even more important than quality of

service [3]). Overall lifetime of the WSN usually depends on sensor nodes
lifetime because nodes have limited battery power.



– concurrency and asynchrony lead to important issues such as interleaving of
actions and race conditions.

– heterogeneity, because WSNs may contain various types of nodes, each hav-
ing different characteristics (embedded sensors, wireless range, battery ca-
pacity, etc.).

– limited resources, because nodes have limited CPU and memory capacities.

Problem When WSNs are intended to handle critical functions, verification
and validation must be performed to reach a significant confidence in such sys-
tems [12, 7]. Several propositions in that direction have emerged in recent years.

Case studies using Formal Verification. Formal methods have been applied
on case studies to verify some relevant properties for WSNs. For instance, [12]
uses Real-Time Maude, [11] uses the language IF and the model-checker Kronos,
[19] uses UPPAAL.

While these studies show the practical and industrial relevance of performing
formal analysis on WSNs, they use ad-hoc modeling of the system by an expert
in both WSNs and formal verification. This increases the design and verification
costs of WSNs. Moreover, complex verification “tricks” must be elaborated to
achieve the verification goals, creating a gap between the formal specifications
and the real system.

Language-based approaches. Current trends in software engineering show
the emergence of model-driven engineering (MDE): a model of the system is
expressed using a domain specific modeling language (DSML) providing concepts
of the domain. Then, using model transformation technologies, executable code
or simulation models can be automatically produced.

Such DSMLs dedicated to WSNs ease their modeling by domain experts.
However, they currently do not support formal analysis. VisualSense [4] for in-
stance only allows simulation which is useful during the early design stages, but
may not catch rare unexpected events. Baobab [2], Matilda [21], and Medwsa
[20] provide code generators that produce executable artifacts to be deployed on
the physical system.

Unfortunately, these DSMLs often have a very detailed level of specification
(such as wireless signal propagation characteristics), including non-linear parts
that can only be simulated in practice. So, if they are adapted for code generation
or simulation, they generate a high combinatorial explosion and are thus not
suitable for verification.
Contribution This paper presents VeriSensor, a DSML for WSNs and its map-
ping to a formal language for verification and analysis. VeriSensor has the fea-
tures of an architectural description language (ADL [10]) adapted to a modular
description of WSNs.

VeriSensor offers “natural” modeling of a WSN to domain experts by pro-
viding high-level concepts that capture the main use cases of such systems –
periodic data collection, query-based processing, etc. [22, 9]. VeriSensor can be
transformed into a discrete formal model supporting analysis: Instantiable Tran-
sition Systems (ITS) [18]. At this stage, VeriSensor is not intended for code gen-
eration.
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Fig. 1: Structure of a VeriSensor specification

To illustrate its capabilities, we use VeriSensor on a small example. Analysis
is performed using our own tools, based on the ITS library.

Contents Section 2 gives an overview of VeriSensor. Section 3 presents the lan-
guage concepts together with the biomedical area network (BAN) case study [13]
used as a running example. Section 4 explains the mapping of VeriSensor into
ITS. Then, section 5 presents the analysis results we compute on the case study.

2 Overview of VeriSensor

A VeriSensor specification is composed of the definition of the nodes themselves,
a description of the physical environment in which the nodes evolve, and the
deployment of the system (see Fig. 1).

Description of the nodes There can be several classes of nodes in a WSN
(e.g. in a heterogeneous network), each one having its own characteristics such
as:

– its sensors (which physical quantities to be measured and how they are cap-
tured),

– its application operating mode (periodic data collection, query-based pro-
cessing, etc.) and the way it manipulates data,

– its interface with the network (wireless range, routing, etc.),
– the energy consumption model.

These characteristics are described through four orthogonal dimensions: sen-
sor, application, network and energy. Dimensions describe independent aspects
of the system.

Several node classes can share common dimensions and a node class can be
instantiated several times when several nodes have the same characteristics.

Environment Model It defines physical quantities as a function of space
(x, y, z) and time (t). Thus, the designer may describe a particular scenario in
which the WSN evolves. These scenarios are used to test qualitative properties of
models on given problem instances. A given environment represents a particular
situation in which a given behavior of the WSN is expected.
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Fig. 2: The Body Area Network (BAN)

Deployment Model It defines how instances of node classes are spread in the
physical environment and may change position over time3. Engineers use this
model to define the topology of the system (number of instances per class and
their coordinates) as well as the logical routing of messages among the nodes.
Structuration in VeriSensor The various dimensions are defined separately
in VeriSensor to support modularity and reusability of WSNs components. The
deployment model of a system is the entry point of a VeriSensor model. It defines
the Environment model and instantiates all nodes from the definition of their
classes.

3 Modeling with VeriSensor

This section presents VeriSensor through the specification of a case study.

3.1 The Body Area Network (BAN)

Our case study takes place in the context of home medical monitoring of patients
who need constant care but can stay out of hospitals. Home medical monitoring
allows to avoid hospitalization, which is as good for medical staff as for their
patients.

The Body Area Network [13] is part of a wireless health monitoring system.
It is composed of (see Fig. 2): i) a set of sensor nodes capable of sensing, process-
ing and communicating vital signs to a personal server ; ii) a Portable Digital
Assistant (PDA) that forwards patient data to a medical center through internet
(3G or WIFI).

The BAN monitors the vital signs of patients recovering from a heart at-
tack. It checks whether a patient is exercising regularly as recommended by
the doctors. WSNs, due to their small size and wireless nature, reduce system
intrusiveness in patient’s lives.

As shown in Fig. 2, two redundant activity nodes detect periods of physical
exercise (when the body activity level is above 8 Watts.kg−1) while a third one
periodically collects both heartbeat with an electrocardiogram (ECG) sensor and
the tilt (i.e. upper body orientation) in terms of the absolute angle relative to a
vertical position.

The system designer (i.e. the end-user of VeriSensor) wants to assess some
critical aspects of his system. To do so, he needs to evaluate properties such as:
3 We do not yet support mobility in our approach but this is a natural extension that
is semantically possible in VeriSensor.
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System BAN {environment => HumanBody ;
ECGTilt => e c g t i l t 1 (x=0.1 , y=0.4 , nextHop = pda1 ) ;
Ac t i v i ty => ac t i v i t y 1 (x=−0.3, y=0.1 , nextHop = pda1 ) ,

a c t i v i t y 2 (x=−0.3 , y=−0.1, nextHop = pda1 ) ;
PDA => pda1 (x=−0.1, y=0.3 , nextHop = null ) ; }

Fig. 3: Deployment of the BAN system

p1 evaluate which node limits the system lifetime according to a given scenario,
p2 identify scenarios leading to undesirable situations that should be avoided,
p3 check that the system behaves as expected by “replaying” existing situations

identified by doctors,
p4 compare alternative hardware solutions according to their characteristics

(energy consumption of sensors, processing duration, etc.),

3.2 Modeling the BAN in VeriSensor

This section illustrates the VeriSensor syntax and structure through the modeling
of the BAN case study. Here, we follow a “path” going from the more general
aspects of the system (its elements) up to implementation of some nodes and
the description of its environment.
The Deployment Model Fig. 3 shows the deployment parameters of the BAN
system. Each node instance is parameterized by its position (shown on fig. 3)
and next hop. For instance, the only node of class ECGTilt is located at position
〈0.1, 0.4, 0〉 (when a position parameter is unspecified, its value is 0) and routes
messages to the pda1 instance. Distances are expressed in meters.
The Node Class Model A node class specifies the physical characteristics of
a node to be instantiated. It relates the data dispatched in the four dimensions:
sensing, application, network, and energy (Fig. 4, left).

In the case study, we only consider static routing based on the nextHop
parameter defined in the deployment model. The XNetwork dimension reflects
this choice and is used by all nodes of the BAN as specified in Fig. 3.

Fig. 4 (right) describes the sensors of ECGTilt. In our study, this node class
samples the upper body orientation (Tilt) and the heartbeat (Heartbeat). Sen-
sors are described through their main technical characteristics: the measured

NodeClass ECGTilt {
sensing => ECGTsensing ;
application => ECGTApplication ;
network => XNetwork ;
energy => ECGTEnergy ; }

include types . de f ;
sensing ECGTsensing {

sensor ECGSensor (
physical_quantity = Heartbeat ,
startup_time = 1 ,
capture_time = 1) ; }

sensor Ti l tSenso r (
physical_quantity = Ti l t ,
startup_time = 0 ,
capture_time = 1 ) ;

Fig. 4: ECGTilt, the node class (left) and its sensing dimension (right)
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application ( collectNode ) ECGTApplication {
physical_quantity HeartBeat ( sensing_period = 13 ,

processing_period = 13 , sending_period = 13 ) ;
physical_quantity Ti l t ( sensing_period = 4 ,

processing_period = 8 , sending_period = 16) ; }

energy ECGTEnergy {
i n i t i a l = 1000;
reception = 4 ;
emission = 5 ;
processing = 3 ;
sensing = 2 ;}

Fig. 5: ECGTilt, its application (left) and energy dimensions (right)

physical quantity startup time (i.e. the time for the sensor to be operational
after being turned on), and its capture time (i.e. the time for the sensor to sense
the value). For instance, ECGSensor measures the heartbeat and starts-up in 1
time unit. Physical quantities are defined in a dedicated model (see Fig. 6, left)
contained in the file types.def.

Each physical quantity q is connected to the environment which must provide
a function returning the values of q at the coordinates of the node instance and
for the current time (at any time). So, in Fig. 4 (right), when ECGSensor samples
a value, it invokes the corresponding function returning the Heartbeat from the
Environment dimension. There is one such function per physical quantity of the
system.

Fig. 5 (left) shows the application dimension of ECGTilt. In VeriSensor, nodes
have several typical behaviors provided as a parameter of the definition. Here,
ECGTilt behaves in “collect” mode (keyword collectNode in the figure): this pe-
riodic data collection is parameterized by a sensing period (i.e. the time between
two samples), a processing period (i.e. the time between two processing of the
sampled data), and a sending period (i.e. time between two emissions of the pro-
cessed data). For instance, Tilt is sampled every 4 time units, processed every
8 time units, and sent every 16 time units.

Fig. 5 (right) shows the energy dimension that describes the initial power
stored in the battery (initial) and defines the consumption of dedicated actions:
reception (message reception), emission (message sending), processing (process-
ing of sampled data), and sensing (sample acquisition).

The Physical quantities Model This model describes physical quantities as
discrete ranges of values (see Fig. 6 left). The underlying semantics is the one
of discrete event systems, so, continuous values must be mapped to an integer

type HeartBeat i s 0 . . 2 0 0 ;
type Ti l t i s 0 . . 1 8 0 ;
type Act iv i ty i s 0 . . 1 5 ;

include types . de f ;
environment cycl ic HumanBody {context {}

body {
cycle 60 ; // c y c l i c behavior ( in time uni t s )
HeartBeat function HeartBeatFunc (x ,y , z , t ) {

i f (0 <= t and t < 10) then return ( 9 5 ) ;
e l s i f (10 <= t and t < 14) then return ( 4 0 ) ;
else return ( 7 5 ) ; }

T i l t function TiltFunc (x ,y , z , t ) { . . . }
Act i v i ty function ActivityFunc (x ,y , z , t ) { . . . } }

Fig. 6: Physical quantities definition (left) and an example of Environment Model
(right)
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range. This mapping is user-defined; the designer must evaluate the trade-off
between precision of quantities units and the analysis complexity.

The Environment Model It defines the evolution of each physical quantity
in the model (see Fig. 6, right ) in a given scenario. Thus, it provides a function
that is bound to each sensor sampling the corresponding physical quantity (e.g
HeartBeatFunc is bound to the ECGSensor defined in Fig. 4).

In our example of environment model, values of HeartBeat depend on time
only. Since there are two Activity sensors, ActivityFunc can use the node co-
ordinates to provide different values to each sensor in nodes activity1 and
activity2. Here, values in HeartBeatFunc are deduced from the thresholds of
the application: for instance, any value above 95 is considered a situation where
the patient exercises; then, these values are abstracted to the threshold constant.
Our simplified example illustrates a common situation where WSNs designers
generate such a function from observed traces of the system activity. No pars-
ing of traces is provided since these are too “system dependent”. To extend an
existing trace, a cyclic behavior may be specified.

For some properties of interest such as worst case scenarios, instead of using
the user supplied environment we can use a “free” unconstrained environment,
which might return any value at any time. The clear separation between the
input conditions (environment) and the system specification is important in the
analysis phase described below.

4 Formal Analysis of VeriSensor specifications

Formal analysis by model checking of a system is a powerful technique that al-
lows to capture subtle defects as well as to reason about worst case scenarios
and occurrence of rare events by exhaustively analyzing all possible behaviors.
However it is limited in the scale of the systems it can analyze due to the combi-
natorial state space explosion characteristic of concurrent asynchronous systems.
To partly overcome this problem, techniques and tools have emerged such as SAT
solvers [6] or shared decision diagrams [5].

However formal models are usually limited to a low level specification of the
system transition relation, that describes the state space generator.

Since WSNs are highly time driven and complex, we need a tool support-
ing a large amount of concurrency, some notion of time constraints and able to
tackle combinatorial explosion. To achieve this, we rely on our own preexisting
tool: Instantiable Transition Systems (ITS) [18] and their recent extension that
supports discrete time [15]. The ITS model checker is general and efficient: it
relies on a powerful decision diagram library to cope with the complexity of large
systems. ITS also provide a way to define a structured and hierarchical specifi-
cation of a system and a notion of behavior instantiation. They were previously
experimented to analyze UML activity diagrams through a model transformation
approach [17] similar to the one outlined here.
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4.1 The Underlying Formal Model

This section first gives an informal overview of the underlying formal notations
for VeriSensor. There are two formalisms involved: labeled time Petri nets to
describe elementary behavior and ITS to structure the specification. We only
provide here an intuitive definition (see [18, 15] for a formal presentation).
Instantiable Transition Systems ITS allow hierarchical and compositional
modeling, through a notion of type and instance and an application of the com-
posite design pattern at a behavioral level. A type has an interface, defined as
a set of action labels, and some definition of its internal behavior. Similarly to
component oriented models, an ITS composite is a type that contains instances
of ITS types.

Figure 7 shows a simple example of a composite ITS type. The system offers
one interface, begin, that is synchronized with the start interfaces of the nested
components (Client and Server). This system contains a local transition (ε) that
only has a local effect and is built on the synchronization of send and get inter-
faces. Client and Server are elementary components that contain an automaton
where local transitions are labeled by ε too. In practice, we use labeled time
Petri nets to define elementary ITS types.
Labeled Time Petri Nets In a Petri net, places (circles) contain tokens
representing resources that are consumed by transitions (rectangles) when they
fire, producing new tokens. A state of a Petri net assigns to each place of the
net an integer representing the number of tokens it contains. In a given state,
a transition is enabled if all its input places (connected by an arc from place to
transition) contain enough tokens. Each arc may be labeled by an integer that
indicates how many tokens are consumed or produced (the value 1 is assumed if
there is no annotation). When firing, a transition produces tokens in the places
connected by outgoing arcs.

Time Petri nets (TPNs) add a notion of clock to each transition, constrained
by an earliest and latest firing time noted [α, β]. As soon as a transition is
enabled, the associated clock starts. This transition cannot fire before α time
units have elapsed and must occur if the transition’s clock reaches β. Hence a
transition with [0,∞] can occur at any date if it is enabled, like normal Petri
nets. This is assumed to be the default values and is not explicitly shown in the
figures.

The time model is discrete: a special transition elapse represents the evolution
of time by one unit. All clocks evolve simultaneously when elapse is fired.

Client begin
start send

start

send

Server
start

get
start get

�

�
�

�
�
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lie
nt
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Fig. 7: Small example of composite-ITS
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Labels add a notion of interface to Petri nets, where some transitions (rep-
resented with thick borders) are called public and allow communication with
the outside world. These transitions define the ITS interface. Private transitions
can occur locally, independently from any situation outside the net, and typically
represent an autonomous control flow.

4.2 Mapping VeriSensor to a Formal Specification

The mapping of VeriSensor into formal specifications relies on patterns associ-
ated to its syntactic elements. It is also based on a set of automatically com-
puted abstractions that help containing the combinatorial explosion due to large
datatypes.
The Transformation process To automatically transform the specification
into a formal model we define a set of “generic ITS”, modeling behavioral patterns
that correspond to the VeriSensor execution semantics.

Thus, the transformation process takes parameters in a VeriSensor specifi-
cation to customize such patterns. Each dimension has its own generic pattern
that is hierarchically defined, thus taking benefits from the ITS mechanisms. The
final model is obtained by assembling and instantiating these patterns according
to the deployment model.

Figure 8 shows two examples of generic ITS. The first one (Fig. 8a) rep-
resents the environment as seen by a given node. To obtain this behavior, the
environment function q(x, y, z, t) is projected over the coordinates of the node,
yielding a function q(t) of time only that is specific to the considered node sen-
sor. This function is finally discretized, and encoded as a series of plateau values
that have a certain duration di. Each public transition is labeled by a possible
value of the physical quantity. The time bound on local transitions (ε) represents
the evolution of q(t) as time progresses. The last transition εn can be added to
represent a cyclic environment. This ITS is parameterized by n, the number of
values sent in the cycle, and by di for i ∈ [1..n], the duration for sending these
values. Its ITS interface is the set of possible values sendViToSens of the physical
quantity.
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Fig. 9: Structure of the BAN specification according to the deployment of Fig. 3

Fig. 8b represents the behavior of a sensor (as for the BAN system in Fig. 4
right) and is parameterized by n, the number of potential values in the physi-
cal quantity, a, the startup time, and d, the capture time. Its ITS interface is
composed of the control commands (start, stop, recvViFromEnv , sendViToApp).

Although the model size grows with the number of potential values, we con-
trol this combinatorial explosion by reducing the domains of physical quantities
to the minimum set of representative values that impact the system control flow
(see paragraph Abstraction below). Moreover, our ITS tool only encapsulates on
P/T nets.

The transmission of a value Vk from the environment to the sensor is rep-
resented by a synchronization between sendVkToSens and recvVkFromEnv. The
transition sendViToApp transmits sampled values back to the application di-
mension. Because these definitions of the sensor and the environment are clearly
separated we can easily associate the specification to any arbitrary environment
instead of a fixed scenario. This is done in the deployment model.

Similarly, each dimension has its own parameterized pattern. Some dimen-
sion, such as the application dimension of a node class has one pattern per
operating mode (data collection, query processing, etc.).

The Energy dimension is modeled by a one-place Petri net. This place’s initial
marking depends on the initial energy of the node. Transitions (capture, process,
send, receive, etc.) consume the number of tokens corresponding to the energy
cost of the associated operation. Since operations in a node are synchronized
to the energy dimension, the lack of tokens in the energy dimension stops the
corresponding node. When all nodes are out of energy, the system cannot execute
anymore and reaches a deadlock.

The full node is then defined as a composite ITS that assembles the projec-
tion of the environment with the various ITS corresponding to each dimension
(sensors, application, network, energy). This composite ITS has an interface al-
lowing transmission of network messages to other nodes. The nodes are then
finally instantiated and connected according to the logical network topology.

Figure 9 illustrates the overall elaboration of the final formal specification for
the BAN case study based on the VeriSensor architecture. The assembling of a
node class is illustrated for the activity node class. We show how the dimensions
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interfaces are synchronized one to another. For example, the public transition
start is a synchronization between the application, energy and sensor dimensions.
This is similar with recvVi between the sensor and environment dimensions. Let
us remind that transitions like recvVi are instantiated as many times as there
are relevant values in the parameters to be exchanged.

Then, each node class is instantiated according to the deployment model.
In Fig. 9, there are two activity nodes, one ECGTilt and one PDA. Context
variables of each node, describing the node characteristics and its coordinates
are initialized according to the deployment model.
Abstractions The final assembling, as described, generates complex models
since each potential value of a physical quantity q makes the overall model larger.
To avoid this, a structural analysis of the VeriSensor specification allows to au-
tomatically abstract the domains of physical quantities to the minimum set of
representative values that impact the system control flow. Such techniques are
derived from automatic symmetry detection [16] or symbolic trajectory evalua-
tion [1]. The complexity of these techniques is low, since it relies on the size of
the specification instead of the size of the state space.

Deriving such abstractions automatically is important because: i) they are
then correct by construction ii) using abstractions does not imply any end-user
knowledge of the underlying techniques. For instance, activity nodes only detect
whether the patient is exercising (i.e. activity>8, see subsection 3.1) or not,
so the domain of the physical quantity activity (i.e. 0 to 15, see Fig. 6 left)
is automatically reduced to 2 values: 0 for no physical exercise, 1 for physical
exercise.
About the Final Model The resulting model for the BAN case study is
composed of 17 ITS-types of which 13 are elementary. The enclosed Petri nets
contain 100 places and 81 transitions of which 43 are time constrained. Thus,
each state is a vector of 143 variables (places marking + transition clocks).
Explicit storage with no optimization of such a state would need 143 integer
values, and thus 1.12 Kbyte with a 64 bit representation.

5 Analyzing the Case study

This section discusses the analysis we performed on our case study. The ITS rep-
resentation was generated according to the rules defined in the previous section
(a tool is being implemented). From the ITS model this procedure produces,
we evaluated the properties identified in section 3.1. All experimentations were
done with our own tool based on our ITS library [15].

Prior to this, we discuss the efficiency of this translation with regards to the
analysis scalability (based on the parameters values). All experiments were run
on a Xeon 64 bits at 2.6 GHz processor.
Analysis Scalability The model of the BAN case study is associated with
a “free” unconstrained environment providing all possibles situations from the
environment point of view. Thus leading to the analysis of possible situations in
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Fig. 10: Evolution of the state space complexity when the initial energy allocated
for each node increases (activity sensor period=18 time units for node activity1
and 9 time units for activity2, ECG sensor period=10 time units, Tilt sensor
period=29 time units, message emission for every node=5 energy units, message
reception for every node=4 energy units, sensing cost for every sensor = 2 energy
units, processing sampled data = 3 energy units for every nodes)

the system. Figure 10 shows the evolution of the corresponding state space, its
computation time and the memory required to build it, according to the initial
energy allowed to the system. In these scenarios, a time unit lasts 1 minute and
an energy unit is 50 microjoules. Such interpretation is decided by the designer
of the WSN.

As seen in Fig. 10a, the state space grows exponentially, the end of the curve
tending to a line in a logarithmic scale. Its representation in memory, as well
as the computation time, evolves in a much more favorable way, thus validating
the choice of ITS, based on decision diagrams, that already proved its efficiency
for such systems [18].

Figures 10b and 10c show the evolution of memory and time required for
state space construction according to the initial energy allocated to each node. As
shown, we can scale this energy up to 1000 units and still have a reasonable CPU
and memory consumption (5.4 GBytes and 3.7 hours). From an industrial point
of view, it becomes feasible to process larger values on current high-performance
servers.
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Considering the memory required to store a state and the size of the state
space, our translation into ITS, even if it is yet at a prototype stage, shows en-
couraging results (up to 5.3×105 states per byte as shown in Fig. 10d). Moreover,
no particular optimization has been done besides the abstraction automatically
computed during the translation, thus avoiding the need for expertise in the
underlying formal tools.

This experiment on the BAN shows a good scalability potential for the overall
approach. In particular, it shows the verification complexity of reachability prop-
erties (e.g. p2 in section 3.1) that are a reliable way to detect “rare events”, dif-
ficult to track using classical simulation-based techniques. However, if a Yes/No
answer for a reachability property is provided within a reasonable time, we mea-
sured that computation of a counterexample takes significantly more time and
memory.

Information about the System Lifetime (p1) Exhibiting the energy con-
sumption of the WSN in the worst case scenario allows the end-user to evaluate
a lower bound of the system lifetime. Figure 11a shows the worst case lifetime
evolution of the BAN nodes.

To do so, we associate the BAN model with an unconstrained environment
allowing any action. We thus compute a superset of all the possible behaviors
from which we can obtain a worst case scenario. In this model, we search for
Send, the set of states where at least one node cannot communicate anymore (its
energy is below a constantMin, the minimum energy to send a message). Then,
our tool computes the shortest path (i.e. shortest transition sequence) leading
from the initial state to a state in Send. To get the corresponding lifetime, we
count the occurrences of the elapse transition (that let time elapse for 1 time
unit). This is the minimal time from the initial state to a state where an observed
node cannot communicate anymore.

The objective is not to provide quantitative information since the initial
number of energy units allocated to nodes is not sufficient (Fig. 11a shows a
system duration in hours, while, at least, weeks would be needed). However, a
designer can get an idea of the most critical component (i.e. the one that fails
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first) according to various scenarios. This result is complementary of simulation
that can tackle longer duration but not in an exhaustive way.

Let us note that, in Fig. 11a, ECGTilt and Activity1 are the ones to lack energy
first. Typically the difference between the lifetime of Activity1 and Activity2 can
be analyzed and several parameters can be studied to overcome this situation.
Later in this section, we show how two alternative designs for Activity1 can be
explored.

Reachability Properties (p2) A typical and interesting reachability property
deals with unexpected deadlocks in the system (expected ones being those where
nodes have no more energy). This can reveal real deadlocks in the system, or
allow the identification of crucial nodes whose activity is required to keep the
system working. Such a situation can be detected using the following reachability
formula, computed with no additional cost with respect to state space generation:

dead ∧
∧

i∈Nodes

(energy(i) > Mini) (1)

Where Mini corresponds to the minimum energy required by node i to send
a message and dead is the boolean meaning that the current state of the state
space has no successor. On the BAN case study, this property is verified. It
was computed with the unconstrained environment and with a configuration
providing up to 500 energy units (it took 1 hour 38 minutes and 2.8 Gbytes).

Checking Behavior for Existing Situations (p3) Such properties usually
require causal formulas expressed by means of temporal logic.

For the BAN system, a typical property is to ensure that the system generates
neither a false negative (i.e. a heart attack is not detected) nor a false positive
(i.e. a heart attack is detected by mistake in the system). To get this equivalence
relation, we use the CTL formula 2 to detect the presence of a false negative and
the CTL formula 3 to detect the presence of a false positive.

AG(occursheart attack =⇒ AF (detectedheart attack)) (2)

AG(¬occursheart attack =⇒ AF (¬detectedheart attack)) (3)

In this formula the AG and AF operators respectively mean “in all cases”
and “in all futures”. occurse is either true or false for a given environment e.
In the BAN case study, a given environment corresponds to a patient behavior
which is annotated by the doctors as being sick or healthy. detectede is a state
property. In our case (e = heart attack) it involves the PDA and corresponds to
the detection of low activity (gathered from the activity sensors) and bradycardia
detected by ECGTilt.

On the BAN case study, this property is verified (this was computed up to
the system with 500 energy units). This was tested for several environments
representing different patients. Such a computation is less complex in time and
memory than the worst case lifetime analysis since the system is more con-
strained. Formulas were computed for 500 initial energy units. Formula 2 was
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Parameter value in config1 value in config2
sensing frequency 11 TU 20 TU
acquisition time 3 TU 1 TU
acquisition energy 3 EU 4 EU
processing time 1 TU 2 TU
processing energy 4 EU 6 EU
emission time 2 TU 3 TU
emission energy 6 EU 8 EU
reception time 2 TU 3 TU
reception energy 5 EU 7 EU

Fig. 12: Data for the two studied variants in time units (TU) or energy units
(EU)

computed in 1 hour 45 minutes and 2.8 Gbyte memory. Formula 3 was computed
in 1 hour 28 minutes and 2.7 Gbyte memory.

Comparing Alternative Solutions (p4) The choice of a given component
may have an impact on a WSN lifetime or on some important characteristics of
the system. VeriSensor can be useful to compare two possible solutions. To do so,
the designer may either change the characteristics of the nodes to be replaced
(if only those change) or replace the node by an instance of another node class.

For the BAN case study, we want to evaluate the impact of two configura-
tions on the system lifetime (e.g. when at least one node cannot communicate
anymore). These configurations differ with the characteristics of the activity
nodes. The first configuration (config1) embeds a node that samples often but
performs light computation. The second one (config2) uses a node that performs
less samples but more computations.

To evaluate these configurations, we provide two variations of the activity
node specification, following the information displayed in Fig. 12. Then, the
obtained specification is linked to the “free” unconstrained environment used to
evaluate the worst case lifetime of the system. This work leads to the results
displayed in Fig. 11b.

6 Conclusion

This paper presented VeriSensor, a domain specific modeling language for wire-
less sensor networks (WSNs), designed to be used by WSNs experts and offering
support for modeling and formal verification. The objective is to evaluate both
quantitative results (e.g. estimation of the system’s lifetime or average consump-
tion per time unit) as well as qualitative results (e.g. detection of unexpected
situations to be avoided).

VeriSensor enables the modeling of a WSN by providing high-level concepts
that support the main use cases of WSNs. Thus, specifying WSNs consists in
defining the node characteristics, how nodes are deployed and the physical en-
vironment in which the system evolves. The physical environment may model
all possible situations (the “free” unconstrained environment), thus leading to

74 PNSE’12 – Petri Nets and Software Engineering



the evaluation of the WSN in the worst possible condition. It may also model a
dedicated scenario for which the WSN behavior has to be verified.

Instantiable Transition Systems (ITS) and time Petri nets are the underly-
ing formal techniques used for verification. They show encouraging scalability
capabilities, thus enabling the analysis of reasonable systems with significant
parameters.

The main advantage of the overall approach is to make formal specification
and verification more accessible to the end-users (i.e. the designers of WSNs).

Even if we focus on the verification aspects, our approach does not exclude
simulation. In fact, since VeriSensor has a formal semantic, it is executable and
thus, can be simulated. Then, the environment dimension still allows to select
one situation where the system has to be plugged in.
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Abstract We present and evaluate a straightforward method of repre-
senting finite runs of a parametric timed automaton (PTA) by means of
formulae accepted by satisfiability modulo theories (SMT)-solvers. Our
method is applied to the problem of parametric reachability, i.e., the
synthesis of a set of the parameter substitutions under which a state sat-
isfying a given property is reachable. While the problem of parametric
reachability is not decidable in general, we provide algorithms for under-
approximation of the solution to this problem for a certain class of PTA,
namely for the lower/upper bound automata.

1 Introduction

Model checking of real-time systems (RTS), performed by the analysis of their
models is a very important subject of research. This is highly motivated by an
increasing demand to verify safety critical systems, i.e., time-dependent systems,
failure of which could cause dramatic consequences for both people and hard-
ware. These systems include robotic surgery machines, nuclear reactor control
systems, railway signalling, breaking systems, air traffic control systems, flight
planning systems, rocket range launch safety systems, and many others. Humans
already benefit a lot from a variety of real-time systems, being often unaware of
this. Parametric model checking [2,10] aims at extending the successful develop-
ments of model checking of RTS. In this case, the model contains free variables,
called parameters. Such a situation typically arises at the initial stages of a
system design, when some of the details might be unknown.

Timed automata (TA) [1] constitute the most popular and applied class of
RTS. The introduction of free variables into timed automata leads to parametric
timed automata [2]. It was proven in [12] that the emptiness problem: “Is there
a parameter valuation for which an automaton has an accepting run” for PTA is

W. Penczek is partly supported by the Polish National Science Centre under grant
No. DEC-2011/01/B/ ST6/01477.



undecidable. Several tools have been implemented ([3,5,9,12,14,16]), which allow
to verify certain properties of PTA (or related phase automata in [9]). All these
tools except for [9] have one thing in common: they aim at fully describing the
set of parameter substitutions under which the given property holds. Unfortu-
nately, this means that the process of parametric model checking does not need to
stop, consuming time and memory resources. These approaches usually employ
extensions of classical (non-parametric) model checking methods such as: para-
metric difference bound matrices [5,12], partition refinement [16], compositional
model-checking [9], and CEGAR and CEGAR-inspired methods [3,4,11].

In [17] a theoretical basis for bounded model checking for PTA was intro-
duced. We have presented the counterpart of the region graph, which allows for
a synthesis of a part of the set of constraints under which the given existential
CTL property holds. The proposed method ensures that the process of verifica-
tion stops with correct (but usually not complete) results. In the current paper
we continue this work in order to ensure its feasibility. To this aim we consider
lower bound/upper bound (L/U) automata [12] in which each parameter occurs
either as a lower- or as an upper bound in the timing constraints. Despite this
limitation, L/U automata are still interesting in practice, as for example they
can be used to model the Fischer’s Mutual Exclusion Algorithm, the Root Con-
tention Protocol [12] and other well known systems1. Hune et al. [12] showed that
the emptiness problem for L/U automata with respect to finite runs is decid-
able, whereas Bozelli and Torre [8] proved that it is also decidable w.r.t. infinite
accepting runs. Similarly, the universality problem: “Does an automaton have
an accepting run for each parameter valuation” is decidable for L/U automata.
The above decidability results do not solve the problem of finding the valuations
of the parameters in case the answer to the emptiness problem is positive and
the answer to the universality problem is negative. This means that in case an
automaton does have an accepting run only for some parameter valuations, it
is not known how to compute them. The above observation is the main moti-
vation of our work, which aims at offering a symbolic method for the synthesis
of parameter valuations for which an L/U automaton satisfies some reachability
property, i.e., it has a finite accepting run.

From the practical point of view the synthesis of all the parameter valuations
is usually not needed: an analyst would typically be satisfied with a possibility
of obtaining just a part of them. The direct analysis of parametric region graph
is not feasible due to its typically large size, therefore the new methods of un-
winding of the state space are needed. To this end, in this paper we offer a direct
translation from an unwinding of the the concrete model of an L/U automa-
ton to an SMT instance. This allows for synthesizing a subset of the parameter
valuations for which an automaton satisfies some reachability property.

The rest of the paper is organized as follows. In the next section we briefly
present the theory of parametric timed automata and formulate the task of para-
metric synthesis. In Section 3 we present how to encode all the finite runs of a

1 IEEE Computer Society. IEEE Standard for a High Performance Serial Bus. Std
1394-1995, 1996.
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given length as an SMT formula, and in Section 4 the algorithm for a state space
exploration and a parameter synthesis for L/U automata is presented. Section
5 contains the preliminary evaluation of our method, as applied to two bench-
marks: Fischer’s Mutual Exclusion Protocol and a version of Generic Timed
Pipeline Paradigm. We conclude with a brief discussion in Section 5.

2 Theory of parametric timed automata

In this section we introduce all the main notions and define timed automata,
parametric timed automata, and L/U automata.

Parametric timed automata, to be defined later, employ two sets of variables:
the set X = {x1, . . . , xn} of real time variables, called clocks, and the set P =
{p1, . . . , pm} of integer variables, called parameters. Both types of the variables
are used in the clock constraints of parametric timed automata.

The clock constraints are built using linear expressions, i.e., expressions of the
form

∑m
i=1 ti ·pi+t0, where ti ∈ Z. Clocks or differences of clocks compared with

linear expressions, formally, the expressions of the form xi ≺ e or xi − xj ≺ e,
where i 6= j, ≺∈ {≤, <} and e is a linear expression, are called simple guards.
The conjunctions of simple guards are called guards. By G we denote the set of
all guards. By G′ we mean the subset of G consisting of the guards built only of
the simple guards of type xi ≺ e, where xi ∈ X and ≺∈ {≤, <}.

The clocks range over the nonnegative reals (R≥0) while the parameters range
over the naturals (N, including 0). The function υ : P → N is called a parameter
valuation and ω : X → R≥0 is called a clock valuation. Sometimes it is convenient
to perceive υ and ω as points in, respectively, Nm and Rn≥0.

The value obtained by substituting the parameters in a linear expression e
according to the parameter valuation υ is denoted by e[υ]. If ω(xi)−ω(xj) ≺ e[v]
(ω(xi) ≺ e[v]) holds, then we write ω |=υ xi − xj ≺ e (resp., ω |=υ xi ≺ e). This
notion is naturally extended to the guards.

Two operations can be executed on the clocks: incrementation and reset. Let
ω be a clock valuation and δ ∈ R, then by ω+δ we denote such a clock valuation
that (ω+δ)(xi) = ω(xi)+δ for all 1 ≤ i ≤ n. A set of the expressions of the form
xi := bi, where bi ∈ N, and 1 ≤ i ≤ n is called a reset, and the set of all resets is
denoted by R. Let ω be a clock valuation and r be a reset, then by ω[r] we denote
such a clock valuation that ω[r](xi) = bi if xi := bi ∈ r, and ω[r](xi) = ω(xi)
otherwise. Intuitively, resetting a clock valuation amounts to setting the selected
clocks to some fixed values, while leaving the remaining clocks intact. The initial
clock valuation ω0 satisfies ω0(xi) = 0 for all xi ∈ X.

2.1 Parametric timed automata

Timed automata [1] are an established formalism for modelling the behavior of
real-time systems. The clock constraints are expressed as the restrictions imposed
on clocks or differences of clocks. Parametric timed automata [2] are an extension
of timed automata, where linear expressions containing parameters are allowed
in the clock constraints.
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Definition 1. A parametric timed automaton is a seven-tuple
A = 〈Q, l0, A,X, P,→, I〉, where:

– Q is a finite set of locations,
– l0 ∈ Q is the initial location,
– A is a finite set of actions,
– X and P are, respectively, finite sets of clocks and parameters,
– I : Q→ G′ is an invariant function,
– →⊆ Q×A×G×R×Q is a transition relation.

A transition (q, a, g, r, q′) ∈→ is typicaly denoted by q
a,g,r→ q′.

Notice that the co-domain of the invariant function is the conjunction of upper
bounds on clocks. This assumption is taken from [12] in order to ensure that
the set of time delays under which the automaton can stay in a given location
is connected and contains 0 (if nonempty) for each parameter valuation.

The concrete semantics of a parametric timed automaton under a parameter
valuation υ is defined in the form of a labelled transition system.

Definition 2 (Concrete semantics). Let A = 〈Q, l0, A,X, P,→, I〉 be a para-
metric timed automaton and υ be a parameter valuation. The labelled transition

system for A under υ is defined as the tuple JAKυ = 〈S, s0,R≥0 ∪A, d→〉, where:

– S = {(l, ω) | l ∈ Q, and ω is a clock valuation such that ω |=υ I(l)},
– s0 = (l0, ω0) (we assume that ω0 |=υ I(l0)),

– Let (l, ω), (l′, ω′) ∈ S. The transition relation
d→⊆ S×S is defined as follows:

• if d ∈ R≥0, then (l, ω)
d→ (l′, ω′) iff (l = l′ and ω′ = ω + d),

• if d ∈ A, then (l, ω)
d→ (l′, ω′) iff l

d,g,r→ l′, for some g ∈ G, r ∈ R, where
ω |=υ g, and ω′ = ω[r].

The elements of S are called the concrete states of JAKυ.

After substituting the parameters in A according to a parameter valuation υ
we obtain the timed automaton, denoted by Aυ. The concrete semantics of
Aυ is usually denoted by JAυK and it is straightforward [12] to observe that
JAυK = JAKυ.

For k ∈ N by a k-run ρk in JAKυ we mean a sequence of states and transitions:

ρk = s0
d0→ s′0

act1→ s1
d1→ s′1

act2→ . . .
dk−1→ s′k−1

actk→ sk
dk→ s′k, where di ∈ R≥0 and

acti ∈ A for all 0 ≤ i ≤ k. By a run we mean any k-run for k ∈ N. We say that
k is the length of ρk and s′k is k–reachable in JAKυ.

2.2 Parametric reachability and synthesis

The original definition of parametric timed automata [2] contains a distinguished
subset of the locations, called final locations. A run is accepted under a given
valuation of the parameters if it ends with a final state. The question of the
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emptiness of a set of the parameter valuations under which there exists an ac-
cepting run was shown in [2] to be undecidable.

Following [12,17] we present the results in the setting typical for model check-
ing, where we distinguish the model and the property to be verified.

Definition 3. Let A = 〈Q, l0, A,X, P,→, I〉 be a parametric timed automaton.
The state formulae are defined by the following grammar:

φ = l | xi ≺ b | xi − xj ≺ b | φ ∧ φ | ¬φ,

where l ∈ Q, xi, xj ∈ X, ≺∈ {≤, <} and b ∈ N.
We also refer to a state formula as to a property. Let υ be a parameter valuation,
(l, ω) ∈ JAKυ, and let φ, ψ be state formulae. We define the validity of a state
formula in a global states, denoted (l, ω) |= φ, inductively as follows:

– (l, ω) |= l′ iff l = l′,
– (l, ω) |= xi ≺ b iff ω |=υ xi ≺ b, and (l, ω) |= xi−xj ≺ b iff ω |=υ xi−xj ≺ b,
– (l, ω) |= φ ∧ ψ iff (l, ω) |= φ and (l, ω) |= ψ,
– (l, ω) |= ¬φ iff not (l, ω) |= φ.

Let υ be a parameter valuation and φ be a state formula. Let k ∈ N, dj ∈ R≥0 and

actj ∈ A for all 1 ≤ j ≤ k. Let ρk = s0
d0→ s′0

act1→ s1
d1→ s′1

act2→ . . .
dk−1→ s′k−1

actk→
sk

dk→ s′k be a k-run in JAKυ. If for some k ∈ N there exists a run ρk in JAKυ
such that s′k |= φ, then we say that a state satisfying φ is reachable in A under
υ and write JAKυ |= EFφ. The EF modality originates from Computation Tree
Logic (CTL), where EFφ stands for “there exists a path such that eventually φ
holds”.

The task of parametric reachability, otherwise called the parameter synthesis
problem, is formulated as follows.

Let A be parametric timed automaton and let φ be a state formula.
Automatically describe the set Γ (A, φ) = {υ | JAKυ |= EFφ}.

As mentioned earlier, there is no decision procedure for checking whether Γ (A, φ)
is empty or contains all the parameter valuations, therefore we can not expect
to be able to fully solve the parameter synthesis problem, at least in the general
case.

2.3 L/U automata

Hune et al. have identified in [12] an important class of parametric timed au-
tomata for which the problem of the emptiness of Γ (A, φ) is decidable. These are
the lower/upper bound automata (L/U automata, for short), where additional
constraints on the parameters are used.

In what follows if f is a function and B a subset of its domain, then f|B
stands for the restriction of f to B.

M. Knapik, W. Penczek: SMT-based parameter synthesis for L/U automata 81



Definition 4. A lower/upper bound automaton is a parametric timed automa-
ton A = 〈Q, l0, A,X, P,→, I〉 satisfying the following conditions

– P = L ∪ U , where L = {λ1, . . . , λl}, U = {µ1, . . . , µu}, and L ∩ U = ∅.
– Each linear expression in the guards or the invariants of A can be written in

form
∑l
i=1 li · λi +

∑u
j=1 uj · µj + t0, where li, uj , t0 ∈ Z and li ≤ 0, uj ≥ 0

for all 1 ≤ i ≤ l and 1 ≤ j ≤ u.

The elements of L are called the lower parameters while the elements of U are
called the upper parameters.

Intuitively, in an L/U automaton the clock constraints can be uniformly relaxed
by decreasing the values assigned to the lower parameters and increasing the
values assigned to the upper parameters.

Let A be an L/U automaton and υ be a parameter valuation. Define λ = υ|L
and µ = υ|U . If υ′ is also a valuation of the parameters, λ′ = υ′|L, µ′ = υ′|U ,
and ∀λi∈Lλ

′(λi) ≤ λ(λi) and ∀µj∈Uµ(µj) ≤ µ′(µj), then we write υ ≤ υ′.
When it is convenient to define υ in terms of of λ and µ, we write υ = (λ, µ).

Proposition 1 ([12]). Let A be an L/U automaton, φ a state formula, and
υ, υ′ be parameter valuations such that υ ≤ υ′. Then, JAKυ |= EFφ implies
JAKυ′ |= EFφ.

Assume that A is an L/U automaton. From the above lemma it follows that the
problem of the emptiness of Γ (A, φ) can be reduced to the problem of reacha-
bility of a state satisfying φ in the automaton obtained from A by substituting
lower parameters with 0 and removing each guard or invariant containing at least
one upper parameter. The latter, in terms of [12], is equivalent to substituting
∞ for each upper parameter.

3 Translation to SMT

The idea of encoding of system’s behavior using the translation to propositional
formulae originates from [7]. The techniques for SAT-based verification of various
extensions of timed automata have evolved in parallel with these based on dif-
ference bound matrices. Usually, it is possible to translate only a part of a model
to a logical formula, hence this method is applied for bounded model checking:
a technique especially suited for seeking for bugs and unwanted behaviors.

SMT-solvers extend the capabilities of SAT-solvers by allowing for formulae
of the first order over several built-in theories as an input. In our considerations,
we use SMT-solvers to obtain the satisfiability and example models (valuations
of the parameters) for formulae expressed using boolean variables and operators
together with real-valued variables, linear arithmetic operators and relations. As
we have decided to make the translation as straightforward as possible, in this
experimental phase we have chosen to use SMT-lib ver. 2.0 [6] compliant solvers
and rich logics allowing for linear arithmetic over real sort (e.g. QF LRA).
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Let A = 〈Q, l0, A,X, P,→, I〉 be a parametric timed automaton. In this sec-
tion we show how to encode, for a given k ∈ N, all the k-runs of Aυ for all
the parameter valuations υ, as the formula acceptable by SMT solvers such as
CVC3. We start with the description of the sorts (types), the variables, and the
additional predicates used.

3.1 Sorts and Predicates

We encode the locations of A by means of enumerating them using proposi-
tional expressions. For each i ∈ N let BVi = {bvi1, bvi2, . . . , bvidlog|Q|e} be a set

of propositional variables. Let BE i denote the set of all the propositional for-
mulae over BVi. It is straightforward to notice for each i ∈ N we can define
the function loc enci : Q → BE i assigning to each of the locations from Q
the conjunction of the literals (variables or their negations) from BVi such that
loc enci(l) ∧ loc encj(l′) is false iff i 6= j or l 6= l′. Intuitively, for l ∈ Q and
i ∈ N, the formula loc enci(l) can be interpreted as an encoding of the location
l at the i–th step (i ≤ k) of the k-runs, using variables from BVi.

Recall that X = {x1, x2, . . . , xn} is a set of the clocks. For each i ∈ N let
Xi = {xi1, xi2, . . . , xin} be a set of real variables, where Xi ∩ Xj = ∅ for i 6= j,
and similarly, let T = {t0, t1, . . .} be a set of real variables. As previously, the
variables from Xi are used to encode the clock valuations in the i–th steps of
the k-runs with the help of the variables from T , which record the time delays
between the consecutive actions.

Recall that P = {p1, p2, . . . , pm} is a set of the parameters ranging over N.
With a slight notational abuse we treat P as a set of the variables of real sort.
In the current version, SMT-lib standard does not allow for typecasts between
reals and integers, therefore we need to use the predicate is int to ensure that
the variables from P hold integer values only (e.g., is int(7.0) evaluates to true,
while is int(4.3) is false).

Summarizing, when considering the k-runs, we declare V arsk =
⋃k
i=1X

i ∪
T ∪ P to be real variables and Bvarsk =

⋃k
i=1 BVi to be boolean variables.

Additionally, we define the formula

TypeCutk =
∧

v∈V arsk
v ≥ 0 ∧

∧

p∈P
is int(p)

which ensures that all used variables range over the appropriate sets.

3.2 Encoding the Transitions

In what follows, if η is a formula containing the free variables a1, a2, . . . , an,
then by η[a1 ← a′1, a2 ← a′2, . . . an ← a′n] we denote the formula obtained by
substituting a′1 for a1, a′2 for a2, etc. in η. Additionally, we assume that there are
no two transitions having the same label in A. This assumption is not essential
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for the translation2, and it is used only to simplify the presentation of the results
and the associated proofs.

Let tr = l
act,g,r→ l′ be a transition, where l, l′ are respectively the source and

the target location, act is the action label, g is the guard, and r is the reset.
It is convenient to use the following notations: source(tr) = l, target(tr) = l′,
guard(tr) = g, and reset(tr) = r. Now, let i ∈ N. We define guardi(tr) =
guard(tr)[x1 ← xi1, . . . , xn ← xin], i.e., the encoding of guard(tr) using the
variables introduced earlier. Define reseti(tr) as the smallest set such that xij :=

a + ti ∈ reseti(tr) if xj := a ∈ reset(tr) and xij := xi−1j + ti ∈ reseti(tr)

otherwise, for each 1 ≤ j ≤ n. Intuitively, reseti(tr) models the new value of
each clock after the consecutive reset and delay. Let s ∈ Q be a location, we
define invi(s) = I(s)[x1 ← xi1, . . . , xn ← xin], i.e., the encoding of the invariant
of s. The above notions are combined to define the encoding of the transition tr
as follows:

tr enci(tr) = loc enci(source(tr)) ∧ guardi(tr) ∧ reseti+1(tr)

∧ invi+1(target(tr)) ∧ loc enci+1(target(tr)).

The correctness of the above construction is stated in the following lemma.

Lemma 1. Let tr = l
act,g,r→ l′ be a transition in A, υ be a parameter valuation,

(l, ω) be a concrete state in JAKυ and i ∈ N. Then, (l, ω)
act−→ (l′, ω[r])

d−→
(l′, ω[r] + d) in JAKυ iff for some valuation V of all the variables in V arsk

satisfying V |= tr enci(tr) ∧ TypeCuti+1 we have that:

– υ = V|P ,
– ω = V|Xi [xi1 ← x1, . . . , x

i
n ← xn],

– d = V (ti+1),
– ω[r] + d = V|Xi+1 [xi+1

1 ← x1, . . . , x
i+1
n ← xn].

Proof. Observe that the locations are uniquely represented by their encodings,
thus we can focus on nonboolean variables only.

(⇐) Let V be a valuation of the variables such that V |= tr enci(tr) ∧
TypeCuti+1. Let ω = V|Xi [xi1 ← x1, . . . , x

i
n ← xn] and υ = V|P . Denote ωi =

V|Xi , then from V |= guardi(tr) we obtain ωi |=υ guardi(tr), which in turn
yields that ω |=υ guard(tr). Let d = V (ti+1), denote ωi+1 = V|Xi+1 and notice

that from V |= reseti+1(tr) it follows that ωi+1(xi+1
j ) = ωi[r](xij) + d for all

1 ≤ j ≤ n. Thus, if we denote ω′ = V|Xi+1 [xi+1
1 ← x1, . . . , x

i+1
n ← xn], then

ω′ = ω[r] + d. Now, observe that from V |= invi+1(target(tr)) we can infer that
ωi+1 |=υ inv

i+1(target(tr)), from which ω′ |=υ I(target(tr)), i.e., ω[r] + d |=υ

I(target(tr)). As d ≥ 0 and in the view of the assumption that the invariants
admit only upper bounds on clocks, we have also that ω[r] |=υ I(target(tr)).
This, together with the fact that V |= TypeCuti+1 assures that the used variables
range over the correct sets, concludes this part of the proof.

(⇒) The implication in the other direction follows easily from the basic def-
initions of the transitions in JAυK.
2 We can always relabel the labels.
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3.3 Encoding k-runs and reachability testing

Our aim is to encode all the k-runs of Aυ for each parameter valuation υ. Recall
that n is the number of the clocks. To this end we define the following formula:

model enck(A) = TypeCutk ∧
(∧n

i=1(x0i = t0) ∧ loc enc0(l0) ∧ inv0(l0)
)

∧∧k−1i=0

∨
tr∈ → tr enci(tr).

The first component ensures that all variables range over the proper values. The
second component sets all the initial clocks to some arbitrary common value
(the assumption that the invariants represent the upper bounds on the clocks is
significant here), encodes the initial state, and makes sure that its invariant is
satisfied. The last component encodes all the possible transitions in the k–runs.

Let φ be a state formula and i ∈ N. Let {l1, . . . , lm} be a set of all the
locations present in φ. We define the encoding of φ as follows:

pr enci(φ) = φ[x1 ← xi1, . . . , xn ← xin, l1 ← loc enci(l1), . . . , lm ← loc enci(lm)],

i.e., we simply substitute in φ each clock with its i–th variable counterpart, and
each location with its encoding using boolean variables from BVi.

We obtain the formula to be used for testing and parameter synthesis by
combining the encodings of the k-runs and the property, as presented in the
following lemma.

Lemma 2. Let A be a parametric timed automaton, φ be a state formula, υ be
a valuation of the parameters, and k ∈ N. A state satisfying φ is k–reachable
in JAKυ iff there exists a valuation V of all the variables in V arsk such that
V |= model enck(A) ∧ pr enck(φ) and V|P = υ.

Proof. Due to the presence of TypeCutk in model enck(A) we know that all the
variables range over the proper sets.

Let l be the (unique) location such that V|BVk |= loc enck(l) and ωk =

V|Xk [xk1 ← x1, . . . , x
k
n ← xn], First, we prove that V |= model enck(A) iff the

state (l, ωk) is k–reachable in JAυK for υ = V|P .

If k = 0, then
∧n
i=1(x0i = t0) ∧ loc enc0(l0) ∧ inv0(l0) is satisfied by the

valuation V iff V is such that if we denote ω0 = V|X0 [x01 ← x1, . . . , x
0
n ← xn]

and V|P = υ, then for some t0 = V (t0) we have that ω0 = ω0+t0 and ω0 |=υ I(l0).
This corresponds to the set of states to which JAυK can progress by the time
transitions

For the inductive step observe that model enck(A) = model enck−1(A) ∧∨
tr∈ → tr enck−1(tr)∧TypeCutk =

∨
tr∈ →

(
model enck−1(A)∧tr enck−1(tr)

)
∧

TypeCutk and apply Lemma 1 and the inductive assumption.

To conclude, notice that pr enck(φ) simply encodes all the concrete states
for which φ holds, using the variables from BVk ∪Xk.
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4 Parameter set approximations

We already know how to write, for a given parametric timed automaton and a
property, the formula encoding k–reachable states for which the property holds
together with the associated valuations of the parameters. It might be beneficial
to verify this formula as it is, if we wish to obtain the answer to the question
whether the property is satisfied by k–reachable states. We can also rely on
the SMT-solver to obtain an exemplary witness, i.e., a correct valuation of the
parameters. Our task is, however, to systematically explore the space of the
admissible parameters, with a hope for painting a part of the picture from which
an analyst can make further generalizations.

Let A = 〈Q, l0, A,X, P,→, I〉 be an L/U automaton and P = L ∪ U , where
L and U are disjoint sets of the upper and the lower parameters, respectively.
Assume that L = {λ1, . . . , λl} and U = {µ1, . . . , µu}.

Let φ be a property and υ be such a valuation of the parameters that there
exists a reachable state in JAKυ satisfying φ. Recall (Proposition 1) that in the
class of the L/U automata this means that a state satisfying φ is also reachable
in JAKυ′ for each υ′ such that υ ≤ υ′.

Define the complementing clause with respect to υ as follows

ComplClause(υ) =
l∨

i=1

(λi > υ(λi)) ∨
u∨

i=1

(µi < υ(µi)),

and observe that υ′ |= ComplClause(υ) iff υ ≤ υ′ is not true.

We employ ComplClause(υ) to block the SMT-solver from seeking for pa-
rameter valuations which can be inferred from the L/U automata properties and
the set of the parameters that has been already synthesized.

The following algorithm attemps to synthesise parameter valuations for which
there exists a k–reachable state satisfying the property φ. If the search is suc-
cessful, the user is presented with a newly synthesised parameter valuation υ
and asked whether the procedure should be continued. If so, a new blocking
ComplClause(υ) is added to the main formula and the loop takes another turn.

Algorithm 1 ReachSynth(A, φ, k)

Input: an L/U automaton A, a property φ, a depth value k ∈ N
Output: a set Res of valuations of the parameters

1: Res := ∅
2: reachFormula := model enck(A) ∧ pr enck(φ)
3: while user requests to expand Res and reachFormula is satisfiable do
4: let V be such that V |= reachFormula and υ := V|P
5: let Res := Res ∪ {υ}
6: let reachFormula := reachFormula ∧ ComplClause(υ)
7: end while
8: return Res
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Note that in the above algorithm the testing for satisfiability (line 3), and
extraction of the witness valuation υ of the parameters (line 4) is performed by
means of a call to an external SMT-solver.

Lemma 3. Let A be an L/U automaton, φ be a property, and k ∈ N. For each
valuation of the parameters υ′ such that there exists υ ∈ ReachSynth(A, φ, k)
satisfying υ ≤ υ′ we have that JAKυ′ |= EFφ.

Proof. It follows immediately from Lemma 2 combined with the properties of
ComplClause(υ).

The ReachSynth algorithm can be used as the main building block of a bounded
parametric model checking process. The input consists of an L/U automaton A
and a property φ. Initially, we can employ the results from [12] to solve the
emptiness problem for φ and A, i.e., to check whether there exists a parameter
valuation υ such that JAKυ |= EFφ. If the existence of such a valuation is
confirmed, then the universality problem, i.e., the question whether JAKυ |= EFφ
for all parameter valuations υ, can be checked as a dual to the emptiness. If the
answer to the universality problem is false, then ReachSynth(A, φ, k) is called,
starting from k = 0 and incrementing the value of k whenever the previous call
returned empty set or the loop was stopped by the user.

5 Evaluation

In this section we present some preliminary results on parametric analysis of
two selected models, namely Fischer’s Mutual Exclusion Protocol and a version
of Generic Timed Pipeline Paradigm [15]. Both of them are well established
and scalable benchmarks specified in a form of networks of parametric timed
automata.

Definition 5. Let U = {Ai = 〈Qi, l0i, Ai, Xi, P i,→i, Ii〉 | 1 ≤ i ≤ m} be a
set (a network) of parametric timed automata such that Xi ∩Xj = ∅ for each
1 ≤ i, j ≤ m and i 6= j. Let L(a) = {1 ≤ i ≤ m | a ∈ Ai} be a function associ-
ating with each action a ∈ ⋃1≤i≤mA

i the indices of the automata recognizing a.
We define the product automaton A = 〈Q, l0, A,X, P,→, I〉 of the network U ,
where:

– Q =
∏m
i=1Q

i,
– l0 = (l10, . . . , l

m
0 ),

– A =
⋃m
i=1A

i,
– X =

⋃m
i=1X

i,
– P =

⋃m
i=1 P

i,
– I((l1, . . . , lm)) =

∧m
i=1 I

i(li) for each (l1, . . . , lm) ∈ Q,

and the transition relation → is such that:

– (l1, . . . , lm)
a,g,r→ (l′1, . . . , l

′
m) iff for each i ∈ L(a) we have li

a,gi,ri→i l′i, and
g =

∧
i∈L(a) gi, r =

⋃
i∈L(a) ri, and li = l′i for all i ∈ {1, . . . ,m} \ L(a).
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In addition to a network, the user is expected to supply an experiment’s plan
file. Such a plan consists of a sequence of pairs (k, No) of natural numbers, where
k is the length of the runs to be considered, and No is a maximal number of
parameter valuations to be synthesised should the verified property be found
satisfiable. Our tool goes through the pairs in accordance with increasing k,
incrementally building the formulae to be tested as it was presented in earlier
sections.

All the experiments have been performed on Intel P6200 2.13GHz dual core
machine with 3GB memory, running Linux operating system.

5.1 Fischer’s Mutual Exclusion Protocol

The timed automata network presented in Figure 1 models one of the possible
solutions to the classical problem of mutual exclusion, i.e., ensuring that only
one of the competing processes is able to gain an access to the critical section.

The system in question consists of n independent processes synchronised via
the shared variable X. The model contains two parameters, i.e., the lower bound
parameter δ and the upper bound parameter ∆. It is well known that no two
processes are able to simultaneously get to their critical sections iff ∆ ≤ δ, thus
we have chosen to verify the reachability of φ1 = critical1∧critical2. Intuitively,
this means that we aim to synthesise values of the parameters δ and ∆ under
which the system behaves incorrectly, allowing two competing processes to jointly
enter their critical sections.

Start 2

waiting1

Start 1
Start 2

SetX 2 SetX 1

SetX 01SetX 02

SetX 2

SetX 1

SetX 1
Enter 1

0

2 1

SetX 02

critical1

Process 1

Enter 1

x1 > δ

SetX 01

idle1

Start 1

x1 := 0

trying1

SetX 1
x1 < ∆
x1 := 0

idle2

x2 := 0

trying2

SetX 2
x2 < ∆
x2 := 0

waiting2

x2 > δ

Enter 2

critical2

Process 2

Enter 2
SetX 2

Shared variable X

Figure 1: Fischer’s Mutual Exclusion Protocol, 2 processes

As it turns out, for each test with the positive outcome, the set of the returned
valuations consists of the pairs (δ = i, ∆ = i + 1) for i from 0 to the limit No
= 10 given in the experiment’s plan. Clearly, from the point of view of an analyst
and in light of Lemma 3 this result indeed justifies an educated guess that the
mutual exclusion property is violated if ∆ > δ.
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n k SAT? param vals max. form. form. bdg. total CVC3 peak CVC3
(Y/N) found size (MB) time (sec.) time (sec.) mem. (MB)

7 1–5 N – 1.54 1.7 1.8 20

7 6 Y 10 3.51 2.25 37.2 41

8 1–5 N – 2.95 3.95 3.6 30

8 6 Y 10 7.13 5.45 75.3 70

9 1–5 N – 5.48 7.1 6.5 48

9 6 Y 10 13.71 11.86 187.8 119

10 1–5 N – 9.43 13.1 11.33 69

10 6 Y 10 24.62 24.06 245.75 198

11 1–5 N – 15.25 23.29 20.71 108

11 6 Y 10 41.84 46.23 504.35 331

12 1–5 N – 24.94 40.13 25.11 170

12 6 Y 10 71.17 85.07 726.51 560

13 1–5 N – 38.89 66.1 40.78 256

13 6 Y 10 115.8 149.24 1315.87 1000

14 1–5 N – 57.76 105.98 67.50 384

14 6 Y 10 180.71 253.99 3192.47 1600

Table 1: Fischer’s Mutual Exclusion parametric verification results

Legend: n: a number of competing processes, k: runs’ lengths, SAT? : satisfia-
bility, 4–th column: the number of the synthesised parameter valuations, 5–th
column: the maximal (if k is an interval) size of the generated SMT-lib v2 for-
mula, 6–th column: the time spent on incrementally building the formulae, 7–th
column: the total time spent on verifying the formulae, 8–th column: the maximal
memory used by CVC3 solver.
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ProdReset
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intermediate 3 intermediate 3

Figure 2: Generic Timed Pipeline Paradigm, 2 processing nodes of length 3

5.2 Generic Timed Pipeline Paradigm

The network presented in Figure 2 models the system consisting of the Producer
feeding the Consumer with data sent through a sequence of nodes with additional
processing capabilities.
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The model is scalable with respect to the number n of the processing nodes
and the length m of each processing node and it contains three lower (a, c, e)
and three upper (b, d, f) parameters.

We have decided to add one dummy clock, called xtotal, to the above system.
It is straightforward to see that such an alteration does not change the behaviour
of the model, and that xtotal can be used to measure the total time passed along
a given run. With the help of the new clock we have analysed the reachability
of φ2 = ConsWaiting ∧ ProdReady ∧ xtotal ≥ 5. Again, the limit No is set to
10 for all k.

n m k SAT? param vals max. form. form. bdg. total CVC3 peak CVC3
(Y/N) found size (MB) time (sec.) time (sec.) mem. (MB)

2 10 1–12 N — 0.01 0.01 1.27 7

2 10 13 Y 10 0.02 0.003 9.25 17

2 15 1–17 N — 0.02 0.015 3.04 12

2 15 18 Y 10 0.02 0.004 22.29 29

2 20 1–22 N — 0.03 0.02 6.40 18

2 20 23 Y 10 0.03 0.004 57.73 60

3 1 1–5 N — 0.01 0.008 0.26 4

3 1 6 Y 10 0.02 0.004 16.91 26

3 2 1–7 N — 0.02 0.014 0.51 5

3 2 8 Y 10 0.03 0.006 86.55 85

3 3 1–9 N — 0.04 0.023 0.89 10

3 3 10 Y 10 0.05 0.008 13.68 17

3 4 1–11 N — 0.06 0.034 1.48 10

3 4 12 Y 10 0.08 0.01 39.87 32

3 5 1–13 N — 0.08 0.049 2.55 8

3 5 14 Y 10 0.11 0.014 2472.87 458

Table 2: Generic Timed Pipeline Paradigm parametric verification results

Legend: see Table 1, m: a number of processing nodes

Note that the generated SMT formulae are rather small in this case. This
probably reflects the power of a concise representation by means of SMT in-
stances rather than the size of model’s state space [13].

Table 3 contains some exemplary parameter valuations, synthesised for sev-
eral instances of the model. This illustrates the power of approximation-based
approach, where the collected data may be used in search for general pattern.

n m k a b c d e f

2 15 18

0 0 0 0 0 0
0 0 1 2 0 0
1 1 0 1 0 1
0 0 1 17 1 1
0 0 2 16 0 0
1 1 1 2 0 1
0 0 2 19 1 1
0 0 3 17 0 0
1 1 0 15 1 1
0 0 3 6 0 0

2 20 23

0 0 0 0 0 0
0 0 1 2 0 0
1 1 0 1 0 1
0 0 1 22 1 1
0 0 2 21 0 0
1 1 0 20 1 1
0 0 2 4 0 0
1 1 1 2 0 1
0 0 2 24 1 1
0 0 3 22 0 0

n m k a b c d e f

3 1 6

0 0 0 1 0 0
0 1 1 4 0 0
1 1 0 1 0 0
0 2 1 6 1 1
1 1 1 4 0 0
2 2 0 3 1 1
0 1 0 2 1 1
2 2 0 1 0 0
1 1 0 3 1 1
2 2 0 2 0 0

3 2 8

0 0 0 0 0 0
0 1 1 3 0 0
1 1 0 1 0 0
0 3 1 7 1 1
1 2 2 6 0 0
2 2 0 1 0 1
1 1 1 4 0 0
1 1 1 3 0 0
3 3 0 2 0 1
0 2 0 4 1 1

n m k a b c d e f

3 3 10

0 0 0 0 0 0
1 1 0 1 0 1
2 2 0 2 0 2
3 3 0 3 0 3
4 4 0 4 0 4
5 5 0 5 0 5
6 6 0 6 0 6
7 7 0 7 0 7
8 8 0 8 0 8
9 9 0 9 0 9

3 4 12

0 0 0 0 0 0
1 1 0 1 0 1
2 2 0 2 0 2
3 3 0 3 0 3
4 4 0 4 0 4
5 5 0 5 0 5
6 6 0 6 0 6
7 7 0 7 0 7
8 8 0 8 0 8
9 9 0 9 0 9

Table 3: Generic Timed Pipeline Paradigm: exemplary parameter valuations
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6 Conclusions

We have proposed a simple translation for a direct representation of finite runs
of a parametric timed automaton in form of SMT instances. This translation
coupled with blocking clauses allowed us for an underapproximation of the set
of the parameter valuations under which the given reachability property holds
in L/U automata. To the best of our knowledge this is the first such application
of SMT solvers, and this is at the same time a proof-of-concept as well as a
practical tool for exploring the spaces of parameter valuations.

In the future we plan to extend our work to the parametric verification
of properties more complex than reachability, e.g., the existential fragment of
CTL*. Additionally, we plan to investigate the possibilites of an automated in-
ference of more general (or even complete) constraints under which the given
property holds using partial knowledge on the space of the parameter valuations
obtained using the methods presented in this paper.
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4. E. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse method for
parametric timed automata. International Journal of Foundations of Computer
Science, 20(5):819–836, Oct 2009.

5. A. Annichini, A. Bouajjani, and M. Sighireanu. TREX: A tool for reachability
analysis of complex systems. In Proc. of the 13th International Conference on
Computer Aided Verification, CAV ’01, pages 368–372, 2001.

6. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. Techni-
cal report, Department of Computer Science, The University of Iowa, 2010. Avail-
able at www.SMT-LIB.org.

7. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. of the 5th Int. Conf. on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’99), volume 1579 of LNCS, pages 193–207.
Springer-Verlag, 1999.

8. L. Bozzelli and S. La Torre. Decision problems for lower/upper bound parametric
timed automata. Formal Methods in System Design, 35(2):121–151, 2009.

9. H. Dierks and J. Tapken. Moby/DC – A tool for model-checking parametric real-
time specifications. In H. Garavel and J. Hatcliff, editors, Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2003), volume 2619 of LNCS,
pages 271–277. Springer, 2003.

10. L. Doyen. Robust parametric reachability for timed automata. Inf. Process. Lett.,
102:208–213, May 2007.

M. Knapik, W. Penczek: SMT-based parameter synthesis for L/U automata 91



11. G. Frehse, S. K. Jha, and B. H. Krogh. A counterexample-guided approach to
parameter synthesis for linear hybrid automata. In Proc. of the 11th international
workshop on Hybrid Systems: Computation and Control, HSCC ’08, pages 187–200,
Berlin, Heidelberg, 2008. Springer-Verlag.

12. T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager. Linear parametric model
checking of timed automata. J. Log. Algebr. Program., 52-53:183–220, 2002.

13. M. Knapik, W. Penczek, M. Szreter, and A. Pólrola. Bounded parametric verifica-
tion for distributed time Petri nets with discrete-time semantics. Fundam. Inform.,
101(1-2):9–27, 2010.

14. D. Lime, O. H. Roux, C. Seidner, and L. M. Traonouez. Romeo: A parametric
model-checker for Petri nets with stopwatches. In S. Kowalewski and A. Philippou,
editors, TACAS, volume 5505 of Lecture Notes in Computer Science, pages 54–57.
Springer, 2009.

15. D. Peled. All from one, one for all: On model checking using representatives. In
Proc. of the 5th Int. Conf. on Computer Aided Verification (CAV’93), volume 697
of LNCS, pages 409–423. Springer-Verlag, 1993.

16. R. F. Lutje Spelberg and W. J. Toetenel. Splitting trees and partition refinement
in real-time model checking. In HICSS, page 278, 2002.

17. W. Penczek and M. Knapik. Bounded Model Checking for Parametric Timed
Automata. T. Petri Nets and Other Models of Concurrency, 5, to appear, 2012.

92 PNSE’12 – Petri Nets and Software Engineering



Model-Driven Middleware Support
for Team-Oriented Process Management

Matthias Wester-Ebbinghaus and Michael Köhler-Bußmeier

University of Hamburg, Department of Informatics
Theoretical Foundations of Informatics

{wester,koehler}@informatik.uni-hamburg.de
http://www.informatik.uni-hamburg.de/TGI

Abstract. Management of collaborative processes involving multiple
parties is one of the dominant topics in contemporary information sys-
tem research. While the process perspective is quite well understood and
supported by a wide range of modeling approaches, it is necessary to
go beyond the process perspective alone. We specifically address the fol-
lowing question: If we consider the involved parties of a collaborative
process as a team, then (1) which are the general formation rules for
such a team together with the collaborative process it carries out and
(2) to which concrete underlying organizational structure do these rules
apply? To address this question, we present the organizational modeling
approach Sonar. The accompanying models are rather high-level and il-
lustrative but at the same time they are rich enough in order to generate
executable models and other kinds of code that together form the core
of a middleware implementation for team-oriented process management.

1 Introduction

Management of collaborative processes involving multiple parties is one of the
most dominant topics in contemporary information system research, especially
in the field of business process management (BPM) but also on a smaller scale in
the field of computer-supported cooperative work (CSCW) or community sup-
port. The process perspective itself is quite well understood and there exists
a wide range of more or less similar process modeling approaches (differing in
specific aspects), including workflow nets and their descendants [1,2], the Busi-
ness Process Modeling Notation (BPMN) [16], the Web Service Business Process
Execution Language (BPEL) [4], Event-driven Process Chains (EPCs) [13] and
the Yet Another Workflow Language (YAWL) [3]. However, there remains the
question of organizational structures behind a given set of processes, which is
not addressed in a thorough and systematic way by these approaches. We want
to formulate this question a bit more vividly in the following way: If we consider
the involved parties of a collaborative process as a team, then (1) which are the
general formation rules for such a team together with the collaborative process
it carries out and (2) to which concrete underlying organizational structure do
these rules apply?



To answer this question, a more comprehensive modeling approach is nec-
essary, encompassing both a system’s processes and structure in an integrated
manner. While this is to some extent addressed in the field of enterprise archi-
tecture management (EAM), EAM is a rather high-level discipline and is at least
not necessarily concerned with models whose primary purpose is to be directly
transferred into software artifacts (although this may be true for some parts, es-
pecially for process models). Contrary to that, the field of organization-oriented
multi-agent systems is primarily concerned with rather comprehensive organi-
zational models that exhibit a close gap to software-technical deployment [5,8].
Here we find models that encompass multiple integrated organizational per-
spectives (e.g. structure, function, interactions, norms). But despite this multi-
perspective approach, we typically still find approaches where either a struc-
tural or a process perspective dominates. In approaches like S-MOISE+ [12])
or TEAMCORE/KARMA [17], a structural perspective dominates and a pro-
cess perspective has to be inferred from certain functional specifications or
from normative requirements concerning action execution. In approaches like
ISLANDER [9], a process perspective dominates and a structural perspective
has to be inferred from decompositions of the process models.

In this context of process and overall organizational modeling, we present
the Petri net-based organizational modeling approach Sonar (Self-Organizing
Net ARchitecture).1 It explicitly addresses the question from above concerning
structure and process perspectives in teamwork modeling. We provide a way
to capture the whole context of team-oriented process management: from the
underlying organizational structure over team formation up to process execution
by the team.

We have laid specific emphasis on achieving the following combination: (1)
Sonar models are simple enough to be easily understood and analyzed (by
means of standard Petri net tools). (2) Sonar models are rich enough to cap-
ture the interplay of various organizational concepts in such detail that we can
automatically generate executable models and other kinds of code from them. In
this context, Figure 1 gives an overview of the results we present in this paper.
We concentrate on the modeling approach and in which ways model parts are

Fig. 1: Model-driven support for teamwork, general overview

1 We are not dealing with the “self-organizing” part in this paper, but see the conclu-
sion.
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made executable or other code is generated from them. The figure can be re-
garded as capturing the most fundamental way of applying our Sonar approach.
In the outlook of the paper we address several extensions that build upon it, but
here we just regard the basic case. A manager creates a high-level organizational
model that is void of execution details. The different model parts undergo a pre-
liminary deployment phase where they are pre-processed and then passed on to
a middleware layer for team-oriented processes management. Here, models are
actually deployed and support the different phases/aspects of teamwork. Some
of the pre-processed model parts are persistent and directly used while others
serve an on-demand generation of temporary executables. Users access the mid-
dleware layer and act as organizational members that participate in teamwork
(this users might be social but also artificial/software-technical actors).

In the remainder of the paper, we flesh out this rather abstract description. In
Section 2, we introduce the Sonar modeling approach. In Section 3 we elaborate
on transformations of original Sonar models in order to obtain code from them
and in Section 4 we describe how this code is embedded in an agent-based
middleware for teamwork. We conclude our work in Section 5 and give an outlook
to advanced and future topics of our research.

Note that both the Sonar modeling approach and the middleware imple-
mentation rest on our previous work (cf. especially [14,15]). Several extensions,
simplifications and improvements have been introduced over the years and in
this paper, we present the consolidated current state with original contributions
concerning both the modeling approach and the middleware support.

2 Organizational Models Based on Sonar

For organized activities two fundamental (and opposing) requirements have to
be taken into account, the division of labour into various tasks and the coor-
dination of carrying out these tasks. For Sonar, this can be rephrased more
concretely and with reference to the terminology used in the introduction of
the paper. Coordinated carrying out of tasks corresponds to a team executing a
distributed (multi-party) workflow (DWF). Division of labor corresponds to the
formation of such a team together with a DWF definition. Formation takes place
according to general formation rules and a specific organizational structure to
which these rules are applied. Consequently, Sonar models center around the
duality of DWF (process) and organizational structure models. Both sides have
to be coherently related with one another.

Sonar is based on Petri nets which offer both a graphical representation and
formal semantics. In [14] we present Sonar in a formal way with theorems and
proofs. However, in this paper we present a new version of Sonar, where the
differences concern mainly a more readable and better structured organizational
structure model. We will avoid formal specifications and instead give a rather
illustrative introduction of the Sonar modeling approach. We just assume a
general understanding of Petri nets (cf. [10]).
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We will consider a running example throughout the paper. As Sonar models
are based around the duality of distributed workflow (DWF) and organizational
structure models, we could start with either of them. Here we begin with the
workflow perspective. Figure 2 shows a DWF for collaboratively submitting a pa-
per. The DWF is distributed in the sense that it encompasses multiple roles, here

Fig. 2: Workflow with multiple roles for submitting paper

providePaperFrame and providePaperBody. Each action of the DWF is mapped
onto exactly one role. Actions are modeled as transitions. They are connected
by places. Places connecting actions belonging to the same role form the DWF
life line of that role and we arrange such a life line vertically in our models.2
Places connecting actions of different roles can best be considered as message
transfers between roles and we draw them as horizontal connections. One can
consider the places between the transitions of different roles as the interface be-
tween these roles. Places and transitions of a DWF model are named. Names
of message places are prefixed with a key for the role sending that message (for
example ppf: for the role providePaperFrame). Such message place names have
to be unique across the whole set of DWF models of an overall Sonar model
(see below for the reason). If a DWF model is decomposed into role parts and
there exists an interface between two roles, each role part gets its own copy of
the corresponding interface places.

Figure 3 shows another DWF. More exactly, it shows a DWF fragment. This
fragment consists of two roles supervisePaperSubmission and writeIntroAndCon-
clusion. These two roles can be used to refine the role providePaperFrame from
2 Of course, we do not rely on graphical arrangements in order to determine the
different role parts of a DWF. We are currently working on an action inscription
language for DWF transitions. So far, such an inscription does at least contain
the name of the role that the transition belongs to. This is even more important
when DWF life lines are not just sequences as in the rather simple examples in this
paper. They may include forks, joins and concurrency. However, we have omitted the
transition inscriptions in the DWF figures of this paper as the different role parts
should be easily identified.
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Fig. 3: Refined workflow part for the providePaperFrame role from Figure 2

Fig. 4: Refined workflow part for the providePaperBody role from Figure 2

Figure 2. Note that on the right side of Figure 3, the two roles supervisePaperSub-
mission and writeIntroAndConclusion in combination share the same interface as
the role providePaperFrame in Figure 2 in terms of message places (whose names
have been carried over and uniquely identify them). In fact, it is possible to
substitute the two combined roles supervisePaperSubmission and writeIntroAnd-
Conclusion for the role providePaperFrame and obtain the same input/output
behavior to the outside, i.e. from the viewpoint of the partner role providePaper-
Body.

Likewise, Figure 4 shows a DWF fragment, where the two roles writeRelat-
edWorkSec and writeMainPart can be used to refine/substitute the role provide-
PaperBody from Figure 2 while obtaining the same input/output behavior from
the viewpoint of the partner role providePaperFrame.

Following this line of thought, it is of course also possible to substitute both
roles providePaperFrame and providePaperBody with the combined roles from Fig-
ures 3 and 4 respectively as both refinements respect the original input/output
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Fig. 5: Delegation model for jointly submitting a paper

behavior of the substituted roles and the overall composition thus fits together.
To conclude, we arrive at basically four possible DWFs for jointly submitting
a paper. Further models of role refinements would lead to more possibilities of
DWF composition. It remains to supplement such a set of DWFs and DWF
fragments with a model that determines not only when to compose which DWF
parts but also who takes on which roles in a finally composed DWF. This is
where Sonar organizational structure models come into play.

Organizational structures in Sonar are basically modeled as delegation struc-
tures. Figure 5 shows such a delegation net for the running example of joint paper
submission.3 A Sonar delegation net comprises multiple positions that are ab-
stractions of actors (that occupy these positions when a Sonar organization
is deployed). Positions are modeled as grey boxes that partition an underlying
task structure. In Figure 5, we have as positions a supervisor, a phd student and
two students that distribute tasks among themselves in order to jointly submit a
paper. The underlying task structure is modeled as a Petri net. A place models
a task and a transition models the implementation of a task. For this purpose,
each transition has exactly one place in its preset. Task implementation can take
on multiple forms and transitions are named accordingly:
3 Delegation nets have been over-hauled compared to previous publications, cf. [14,15].
The explicit inscription of transitions with the implementation type that they rep-
resent leads to slightly larger but much more readable models.
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1. Execute: The task is directly executed.
2. Delegate: The task is delegated.
3. Refine: Sub-tasks for a task are determined.
4. Split: A task is split into (already determined) sub-tasks.

The latter two cases are typically combined. All the implementation cases appear
in Figure 5. Delegations are the kind of task implementation that relates two
positions while refines, splits and executions are internal to positions.

The intertwining of a Sonar delegation net with DWF (fragment) models
lays in the nature of the tasks. Each task in a delegation net corresponds to one
or more roles in a DWF. Consequently, the places in Figure 5 are named accord-
ing to the pattern DWFa[role1, ..., rolen], meaning that the task corresponds
to implementing the roles role1, ..., rolen from DWF DWFa. Combining a del-
egation model with a set of DWF models leads to a straightforward notion of
well-formedness of an overall Sonar model: (1) Delegation has to start with an
initial task that corresponds to all roles of a complete DWF model (not a DWF
fragment) and (2) task refinements must map onto associated role refinements in
the set of DWF (fragment) models. Consequently, Figure 5 shows one possible
delegation model for the DWF models from Figures 2 – 4 (likewise, other sets
of DWF models may fit to the delegation model).

This way, the process perspective represented by DWF modeling is supple-
mented with an organizational structure perspective that guides both the forma-
tion of teams (where positions represent the team members) and the associated
team DWFs. For example, the delegation model from Figure 5 allows multiple
teams to be formed. An interesting fact is that team formation actually corre-
sponds to the possible firings of the delegation net, its Petri net processes, cf. [11].
Each Petri net process of a delegation net model corresponds to a possible team.

Using Petri nets as the basis for Sonar modeling allows us to to take ad-
vantage of well-known analysis techniques. As we rely on simple place/transition
(P/T) nets, there exist standard techniques and tools for checking the soundness
of workflow net models or the free-choice nature of delegation models (cf. [1,7]
and the ProM framework4). The interleaving of delegation and DWF models and
especially the notion of role refinement of course goes beyond P/T net analysis.
But especially the tool set from http://www.service-technology.org promotes a
service-oriented perspective on Petri net models where Petri nets with interface
places (open nets) are characterized in terms of their possible partners, cf. [20].
For our purpose, this allows to analyse whether a role and its refinement in
terms of multiple roles really have the same input/output behavior and can be
substituted with one another in DWF models.

3 Model Deployment

The models presented so far have been on a relatively high level. They are
basically P/T nets, where some naming conventions have to be followed. There
4 http://www.promtools.org/
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are no execution details, except for the fact that Petri nets inherently have an
operational semantics. It is not even necessary to model all possible DWFs that
can occur during the execution of a Sonar organization. Instead, it is sufficient
to model some initial DWF models and then just add models for selective role
refinements.

In order to utilize the models in the context of a Sonar-based middleware
layer for teamwork, some deployment steps are necessary. Based on the preceding
section, it is now possible to be more specific on the model-driven support for
teamwork illustrated in Figure 1 from the introduction. Figure 6 shows a Sonar-
based re-interpretation of the figure.

Fig. 6: Model-driven support for teamwork based on Sonar

After checking well-formedness of all aspects of an overall Sonar model (see
the previous section), the first phase of model deployment is pre-processing.
One immediate question is whether to use the Petri net models themselves (en-
riched/extended for deployment)5 or whether to transfer them into other ar-
tifacts. Although we do not deal with run-time re-organization in this paper,
this aspect has a strong impact on answering this question. Changing the Petri
net models and re-deploying them at run-time can get quite cumbersome and
costly. Currently, we have decided to use the DWF models directly in their Petri
net form and to transfer the delegation model into a Java data structure. We
treat DWF models and thus how things are basically done as rather fixed and
the role parts as the basic behavioral building blocks. Fundamentally chang-
ing the DWF models is often better done by starting from scratch (however,
instead of changing DWF models, they can be extended by further role refine-
ments). The delegation model on the other hand and thus the context leading to
the actual behavior is prone to quite frequent and light-weight re-organization
efforts: adding/removing positions, adding/removing delegation relationships,
adding/removing execution etc. Consequently, we prefer a data structure that
handles changes easier. In addition, such a data structure is helpful to share
(communicate about) and process knowledge in the context of team formation
(determining eligibility of task implementations, possible delegation partners or
whole sub-teams etc.). To conclude, the pre-processing phase of model deploy-
ment comprises two parts.

5 This is what we did for our previous versions of a Sonar middleware layer, cf. [15].
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1. All DWF models are decomposed into their singular role parts, which makes
it easy to dynamically compose team DWFs later on.6

2. From the delegation model, a Java data structure is generated. Figure 7
shows the according class diagram in UML style. More specifically, it is a
concept diagram [6] and is supported by the tool suite that we use in the
context of our multi-agent framework Mulan that we briefly address in
the following section.7 The class hierarchy resulting from a concept diagram
comes with the handy feature that all objects of these classes have FIPA8-
conform String representations, which allows to directly include them as
message contents in agent communication. According to the class hierarchy
from Figure 7, each Sonar delegation model is transferred into an organi-
zation object that contains all other information.

Fig. 7: Concept (or class) diagram for Sonar delegation models

In the second phase of model deployment, the pre-processed models are used
by the Mulan4Sonar middleware layer to enable and frame teamwork among
members of a Sonar organization. Members are (social or artificial) actors that
access the middleware layer and occupy positions of a Sonar delegation model.
We will elaborate on the Mulan4Sonar middleware layer and on how to access
it in the next section.

6 It might of course be possible to keep role compositions that always have to appear
together in a team DWF, like supervisePaperSubmission and writeIntroAndConclusion
from the running example. But as we intend to have dynamic re-organizations of
Sonar models at run-time (see the conclusion), further role refinements might be
introduced. Thus it is simpler to keep track of each singular role part in the first
place.

7 see also http://www.paose.net.
8 http://www.fipa.org
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Basically, the Java data structure of the delegation model is used to manage
task delegation and thus the team formation process. As soon as a team is
formed, there is a unique team DWF associated with it: It is the composed
DWF that consists of the role parts that are implemented by execute (instead
of refine, split or delegate) transitions during the delegation process. The well-
formedness of an overall Sonar model ensures that these role parts fit together.
For example, the composed DWF from Figure 8 is the team DWF for a team
where the delegation process has lead to the maximum level of task (and thus
role) refinement for the running example of joint paper submission.

Fig. 8: A multi-role workflow for submitting a paper composed from role frag-
ments

Consequently, team formation leads to an on-thy-fly generation of the corre-
sponding team DWF. However, for such a team DWF to be executable in the
context of the middleware layer, a further refinement and enrichment has to
be carried out. This is also done by automatic generation. Basically, each action
transition of a team DWF has to be enriched with execution inscriptions and has
to be divided into a call and return part. Figure 9 exemplifies the substitution
rule applied to a DWF transition for the addConclusion action of the team DWF
from Figure 8. The transition is split into two transitions for call and return.
The names of places lead to the generation of variable names that are bound to
work-item and result objects of the action. The action call is parametrized with
the role name, action name and a set of incoming work-items. The surrounding
engine for the execution of team DWFs has to take care of forwarding the call
to the position holder that implements this role for this team. In addition, the
engine generates a unique action ID that can be used to associate action call and
return. The action return is parametrized with a result object. We omit details
on handling erroneous or aborted execution of DWF actions here.

Figure 10 shows the class diagram for content objects used in the context
of executable team DWFs. More specifically, it shows the generic part. Con-
crete Sonar models are intended to extend the concept dwf-action-content with
customized concepts. In fact, we are working on a high-level action inscription
language for Sonar DWF models. Such a language can for example be used to
attach pre-conditions, post-conditions and effects for/of DWF actions based on
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Fig. 9: Substitution rule (by example) for generating executable workflow models

Fig. 10: Concept (or class) diagram for executable team DWF contents

the content objects and their attributes that are involved in the action. For this
purpose it is necessary to explicitly define the according custom concepts.

To conclude this section, the illustrative and rather high-level Petri net mod-
els that a modeler has to create for a Sonar organization are rich enough to allow
the generation of different kinds of executable artifacts for computer-supported
teamwork. In the next section, we give an overview of a middleware implemen-
tation that utilizes these artifacts.

4 Mulan4Sonar: Agent-Based Teamwork Engine

We present a middleware implementation for teamwork support that is based on
Sonar models and their deployment. There exist of course multiple possibilities
and here we present our current approach, called Mulan4Sonar. This name
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stems from the fact that it is based on the multi-agent system (MAS) framework
Mulan (cf. [6] and www.paose.net). This framework provides the possibility to
combine Java programming with Petri net modeling and simulation for realizing
MAS and is consequently perfectly suited for our purpose. More concretely,
Mulan relies on the high-level Petri net formalism of Java reference nets that
is supported by the Renew tool (www.renew.de).9

Figure 11 shows our general proposal for multi-agent system deployment of
Sonar models. We have an organization agent that represents the Sonar or-

Fig. 11: Basic concept for Sonar-based multi-agent systems

ganization as a whole. It is responsible for initialization and for keeping a global
perspective. With each position of a Sonar model we associate one dedicated
agent, called an organizational position agent (OPA). From a conceptual point
of view, the resulting OPA network (together with the organization agent) em-
bodies a formal organization as each OPA represents an organizational artifact
and not a member/employee of the organization. From a technical point of view,
the OPA network is an agent-based middleware layer for supporting teamwork
according to Sonar models. Consequently, each OPA represents a connection
point for an organizational member agent (OMA). Each OMA interacts with its
associated OPA to carry out organizational tasks and to make decisions where
required. An OPA both enables and constrains organizational behaviour of its
OMA. The OMA can effect the organization only in a way that is in confor-
mance with the OPA’s specification. In return, the OPA relieves its OMAs of
a considerable amount of organizational overhead by automating coordination
and administration. Conceptually speaking, OMAs implement/occupy the for-
mal positions and thus represent the informal part of the organization. Note
that an OMA can be an artificial as well as a human agent. OMAs might of
course only be partially involved in an organization and have relationships to
multiple other agents than their OPA or even to agents completely external to

9 An example for using Java inscriptions in the context of a Petri net model was already
shown in Figure 9. The other way round is equally possible, namely having Java
objects monitoring, triggering or even controlling parts of the execution (simulation)
of a Petri net model.
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the organization. From the perspective of the organization, all other ties than
the OPA-OPA and OPA-OMA links are considered as informal connections.

Our current implementation of Mulan4Sonar follows this general proposal.
However, it does not (yet) feature OPAs as distinct agents. Instead, our current
implementation features a central organization agent that manages the teamwork
processes of a Sonar organization but also utilizes separate OPA shells for each
position. Consequently, we have already prepared the implementation in way to
be able to single out the shells as OPAs and thus to obtain a more distributed
implementation. Figure 12 shows the three-level architecture of the organization
agent in its current form. This architecture is actually realized based on the

Fig. 12: Three-level architecture of the Sonar teamwork engine agent

high-level Petri net concept of nets-within-nets [18] where Petri nets can have
other Petri nets as tokens and cross-net communication is possible. Nets-within-
nets modeling and simulation is supported by the Renew tool and is one of the
fundamental features of MAS development with Mulan. The figure only shows
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a high-level overview of the organization agent’s architecture but it represents
the actual implementation quite precisely.

On the top level of the organization agent, the organization is initialized and
the pre-processing of the original Sonar models is carried out, just as described
in the previous section. Afterwards, the teamwork engine is initialized with the
pre-processed models as input and represents the second level.

The teamwork engine sets up OPA shells for all positions and makes the
delegation model available to them. We will not go into detail concerning the
manifold responsibilities of the OPA shells. We just assume that basically, they
take care of binding users as members (OMAs) into the organization and manage
the inclusion of the OMAs’ actions and decisions in conformance to the organi-
zational specifications. New teamwork activities can be started and represent the
third level. Teamwork activities and OPA shells stay connected via the teamwork
engine level.

A teamwork activity basically comprises the delegation process for team
(DWF) formation and afterwards the execution of the composed team DWF
by the team members that take on roles in the DWF. All of this is managed by
the teamwork activity level, together with the involved OPA shells that can be
consulted via the joint teamwork engine super-level.

5 Conclusion and Outlook

Starting from the question for an integrated treatment of structure and process
perspectives in modeling collaborative systems, we have presented our Sonar
approach. It provides a way to capture the whole context of team-oriented pro-
cess management: from the underlying organizational structure over team for-
mation up to process execution by the team. The accompanying models are
rather high-level and illustrative but at the same time they are rich enough in
order to generate executable models and other kinds of code that together form
the core of the Mulan4Sonar middleware implementation for team-oriented
process management.

Regarding our future research efforts, there is a range of topics that we and
other people from our research group are working on.

– Collaborative Agent Platform (deployment): Our group has the long-term
goal of developing an agent-based platform for computer-supported collabo-
ration. We envision Sonar-based organizational models to be used for spe-
cific teamwork applications on top of the platform as well as for supporting
the infrastructure of the platform itself, managing the various platform tasks
and processes.

– Self-organization: Instead of the manager from Figure 1 we promote an al-
ternative approach where a Sonar model has multiple management levels
and the team processes on one level lead to the transformation of the speci-
fications of the lower levels, cf. [15].

– Hierarchy/holism: While the idea of self-organization introduces multiple
management levels in the context of one Sonar organization, we also address
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the concept of having multiple levels of nested Sonar organizations. The ba-
sic idea is to have positions being occupied by organizational units that are
Sonar organizations themselves. This allows to model inter-organizational
scenarios and so-called multi-organization systems. The refinement concept
for roles and tasks inherent to Sonar directly supports such an extension.
For a thorough report of our research on modeling organizational units and
multi-organization systems (not limited to Sonar), we refer to [19] (in Ger-
man).

– Simulation: We are also interested in organizational simulation. We intend to
enrich the models with quantitative information and apply routines to evalu-
ate simulation runs with respect to certain criteria. Especially in combination
with hierarchic models we are interested in studying the fit of different (types
of) organizational units to one another (in terms of nesting relationships as
well as in terms of cooperation effectiveness on the same level).
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Abstract. This paper presents a method for designing a coloured Petri
net model of a system starting from its high-level object oriented source
code. The entire process is divided into two parts: grounding and code
analysis. For each part detailed step-by-step guidelines are given. The
approach is illustrated with an industrial application case study, the
NEO protocol.

1 Introduction

The modelling problem has been being under investigation for many years. It
has a lot of particular cases depending on 1) the nature of the description of the
system to be modelled and 2) which formalism is chosen for the final model. Ac-
cording to the first criteria there are three basic groups of modelling approaches:

1. Starting from an informal description of a problem;
2. Starting from a detailed specification of a system;
3. Starting from the source code.

Some recent works tackle the first group of approaches. For example, in [3] the
authors propose a modular design method and illustrate it on a model railway
case study. One of the main points of [3] is using properties of the system at the
modelling stage. In [4] an approach aggregating different views of the system is
given. This method assumes that the system can be observed from several points
of view: pre/post, process and lifeline views expressing respectively pre- and post-
conditions of events, sequences of events, and sequences of states. Thus, steps in
a process view correspond to system events and can be modelled by transitions
in a Petri nets formalism. Similarly, steps of a lifeline view correspond to the
states of the system and can be modelled by places of a Petri net. Then, by
identifying the elements of these different representations of systems, places and
transitions are glued together in order to get a complete Petri net.

The second group of modelling approaches includes various attempts to de-
liver a formal model from UML diagrams [8, 6, 5]. The advantage of these meth-
ods is that most developers are familiar with the UML and an automatic trans-
formation of their diagrams into formal models and model-check them, would



greatly simplify the software quality control. The difficulty is that UML dia-
grams allow for much more freedom for the designer than formal models and the
automatic translation is not trivial.

This paper addresses the third group of modelling approaches, which is not
covered by a wide range of methods in the literature [9]. Such approaches are ded-
icated to systems for which the source code already exists, in order to guarantee
it satisfies some requirements. They often do not support a complete language,
but are restricted to some subset of it. Moreover, to the best of our knowledge,
no work addressed a high level object oriented language, such as python.

Hence, what are the particular difficulties encountered by reverse-engineering
from the source code? If a program is rather small (tens of lines) one can simply
suppose that the operators are the system events and correspond to transitions,
places between them model the intermediate states of the system, and some
additional places model the states of variables used. But this approach is no
more applicable when the system under consideration is as large as 3 MBytes
of object oriented code. Of course it is possible to model all operators as in the
previous case, but then the model becomes so huge that there is no means to
analyse it and it becomes useless. Thus, it is necessary to choose an appropriate
level of abstraction for the system. If it is too low and the model contains too
many details, the same problem as above arises. If the level of abstraction is too
high, there are too many hypotheses and assumptions and it may happen that
nothing is left worth checking. The model is then trivial and its behaviour is
completely correct while the system contains drawbacks that are hidden due to
the modelling assumptions.

The paper is organised as follows. Section 2 gives detailed guidelines on how
to derive step-by-step a coloured Petri net from the source code. Then Section 3
shows how this method was applied in practice to the NEO protocol. Finally,
Section 4 draws some conclusions.

We assume the reader is familiar with coloured Petri nets [7].

2 Modelling Guidelines

This section discusses the guidelines to follow in order to deliver a coloured Petri
net from high level object oriented source code.

2.1 Grounding

Before the start of the modelling process some preparation work is required. It
mainly concerns the deep understanding of project structure and expected prop-
erties of the system. This helps a lot during the modelling by saving the time
devoted to the consideration of unnecessary elements or restructuring model hi-
erarchy. It is always possible to skip this stage and proceed directly to modelling
the most interesting piece of code, but then the risk of choosing an inadequate
abstraction level is very high. The main steps of grounding are listed below. They
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1. Understand structure

start

2. Choose key elements

3. Find interactions

4. Secondary elements

5. Divide into modules

stop

Scenarios

Properties

Interaction
mechanisms

Classes,
objects

System
architecture

Fig. 1. Schema of the grounding process

are depicted in Figure 1 together with the elements that are to be considered or
impacted.

1. Understand the structure. First of all, we should pay attention to the
architecture of the project. The key elements (classes) should be found as
well as their roles in the whole system. It can be very useful to find the
most common scenarios of the system use (or maybe scenarios that should
be verified later). We can look for the parts (classes or objects) of the sys-
tem that are impacted by these scenarios. We also need to understand the
class structure of the project (with particular attention to inheritance and
polymorphism). During this step the most important result is to understand
globally how the system works from the inside.

2. Choose key elements. The second step focusses on the system properties
to be checked. Properties can be proposed by developers, clients or anyone
else. Then, they must be considered one by one in order to choose those
that are the most crucial for the system. Selecting them before starting the
modelling process is very important since this choice can influence a lot the
model structure that will not be so easy to change later on.
Once the properties are selected, we look for the scenarios they concern.
Moreover the classes and methods used within these scenarios are selected,
according to the project structure from the previous step. Thus, the main
pieces of code that are going to be modelled are defined.

3. Find interactions. We should keep in mind that objects of chosen classes
can be verified separately from one another. But the ultimate goal is usually
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to model-check the whole system altogether. Separate parts can be subjected
to traditional testing techniques while the complexity and the size of the
system makes their application to the entire project impossible.
So, when modelling something larger than an isolated object, the interac-
tions between them must be identified. They can be of very different natures:
message passing; shared or global variables (e.g. between different methods
inside a class); sometimes a class is composed of other auxiliary classes; a
method of an external class can be called. All interactions should be inves-
tigated and the corresponding elements added to our modelling selection.

4. Secondary elements. Here we need to look at auxiliary classes that are
used by the selected key classes. They can be classes of data structures, or
classes providing message exchange capabilities. On the one hand, operations
and/or interconnections of key elements are impossible without them. On
the other hand, if we model them in detail, the model will be too bulky to
perform any analysis. Such elements usually describe the work of the system
on a low level of abstraction and can be verified separately. So, the idea is
to model them as simple as possible, but without loss of essence.
In the end of this step we should know which abstractions are going to be
used: some algorithms could be modelled as a single transition, some complex
data structures encoded with natural numbers, etc.

5. Divide into modules. All the scenarios and methods that have been chosen
for modelling are used to design a modular structure for the future model.
Of course, it can be changed later during the modelling process.
It is rather natural to associate a submodule with a class or a method. It
is also important to pay attention to auxiliary elements and decide whether
they are worth a separate module or not.

2.2 Code analysis

During this stage, two processes are carried out in parallel: the analysis of the
source code and the construction of the model. In order to streamline these
processes it is proposed to divide them into five main activities, according to
the scheme on Figure 2. Each activity requires to look for some elements in the
source code as well as interpreting them in terms of the modelling formalism
(in our case coloured Petri nets). At each step, the source code is looked at
from different points of view in order to extract the different components of the
model. In practice, it is usually needed to go trough the cycle several times but
at the start it is hard to tell how many times it should be done. It is also possible
that some activities are skipped on later rounds, since a new element cannot be
extracted from the source code. From one round to another the understanding
of the chosen abstraction level is more and more accurate and the model is more
and more complete.

Since the module hierarchy of the CPN can be different from the initial
structure of classes and methods, the work within the five activities can be
organised in different ways.
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Types ⇒ Colours
start

States ⇒ Places

Events ⇒ Transitions

next round

Transforms ⇒ Arcs
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Conditions ⇒ Guards
stop

next transition

Fig. 2. Schema of the modelling process

– Consider the modules of the future model (found at the fifth step of ground-
ing) one by one. For each module examine scenarios, classes and methods it
concerns and analyse them via all activities.

– Consider scenarios or methods (found at the second step of grounding) one
by one. For each scenario/method perform each activity that will give re-
finement for different modules of the model.

– Consider activities one by one and look at the system as a whole, analysing
different parts of code and changing different models, but from the chosen
point of view.

In practice third approach is difficult to apply unless the model is almost ready
and it can be grasped at a glance. The first approach is the most effective one,
but sometimes the second one may also prove useful by focusing on a partic-
ular behaviour. In this case, the behaviour is either described by an execution
scenario, or the details of a method are tracked step-by-step.

Data structures It is important to start from this activity because it forms
the basis of the future model. It is natural to start with colour domains in order
to use them (and may be supplemented later with new details) during further
activities.

In general, data structures of the source code should be expressed in terms
of colour domains. However, it is often not that simple. In object oriented code,
data structures are usually integrated together with their storing, loading and
treatment methods. Colour domains syntax does not allow to do this, so, it may
be needed to model a “simple” object with a separate CPN. Such cases can be
left to further activities nevertheless providing basic types for future CPNs.
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This phase provides as a result a preliminary list of colour domains and
variables needed in the model.

States and conditions on objects This is the first activity that assumes the
modeller thinks in terms of parts of CPN that have no strict correspondence
in the source code, namely the places. It may be difficult to deliver them in
the situation of “blank sheet”, but the model with places make other activities
become much simpler or even possible (e.g. construction of arcs).

Hence, this phase aims at creating the set of places of the CPN which usually
represent the states of the system or its parts (objects, variables, etc.). To begin
with, the system flow of operations can be represented as a finite state automa-
ton. The set of states of this automaton can be a first approximation of the set
of places of the CPN. Then conditions required to proceed from one state to an-
other are considered. These conditions often concern the states of some objects
or variables. They should also be added to the set of places. Finally, a colour
domain (defined during the previous activity) is associated with each place.

Events and actions This activity is in general simpler than the previous one.
Each operator or method call in the source code can be considered as an action
and thus be modelled as a transition. The main hindrance here is a tendency to
model every operator with a transition. To avoid this we can apply information
obtained during grounding (2nd and 4th steps).

The purpose is to select actions, essential for the processes to be verified.
To start with, consider the changes of variables and data structures that are
implicitly mentioned in the properties. If the properties are not formalised yet,
main constructions of the system can serve as a basis. As for previous phases, on
the first round only a preliminary view of transitions in the model can be given.
After going through other activities it will be completed and refined.

Transformation of data During this phase, the modeller considers for each
transition the three following questions, and performs the corresponding net
construction:

1. What is taken as input? (Connect corresponding places with input arcs);
2. What is produced as output? (Connect corresponding places with output

arcs);
3. How are the tokens transformed? (Provide input and output arc expressions).

If there is a special input format, it can be reflected in the input arc inscription. If
the output is somehow calculated from input variables, the corresponding output
arc must be assigned with a formula, representing these calculations in terms of
CPN. Often, the formulae from the source code cannot be applied directly and
need to be adapted w.r.t. the chosen level of abstraction.
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Conditions on events Here, as in the previous phase, we consider the set
of transitions. The focus this time is on the special conditions under which
a transition can be fired. In practice the conditions for most transitions are
modelled by the tokens in input places. In this case the transition has a guard
true that can be omitted in the model. But sometimes for better readability of
the model, and also to prevent having too large sets of places and transitions, it
can prove better to formulate such a condition as a guard of the transition.

The goal of this activity is to find such cases and to figure out the guards. It
can happen that some condition is not possible to express on the selected level
of data abstraction. If so, the colour domains created in the first activity must
be revised, as well as their occurrences in parts of the CPN that have already
been built. Thus, a next round of activities is started.

3 Application of the Guidelines to the NEO Protocol

This section illustrates modelling guidelines with examples from modelling pro-
cess of the NEO protocol. The protocol, designed to handle a large distributed
database over a cluster of machines, was described in [1, 2]. Its main charac-
teristics are shortly summarised in Section 3.1. This specification was part of
an industrial project which aimed at validating the protocol and its prototype
implementation both designed and developed by the NEXEDI company. It was
implemented in Python, but our approach is not specific to this language.

3.1 Brief Description of the NEO Protocol

A more extensive description and analysis of the NEO protocol can be found
in [1] and [2].

Different kinds of nodes play dedicated roles in the protocol, as depicted by
the architecture in Figure 3(a):

storage nodes handle the database itself. Since the database is distributed,
each storage node cares for a part of the database, according to a partition
table. To avoid data loss in case of a node failure, data is duplicated, and is
thus handled by at least two storage nodes.

master nodes handle the transactions requested by the client nodes and for-
ward them to the appropriate storage nodes. A distinguished master node,
called primary master, handles the operations. Secondary masters (i.e. the
other master nodes) are ready to become primary master in case of a failure
of this node. They also inform other nodes of the identity of the primary
master.

the administration node is used for manual setup if needed.
client nodes correspond to the machines running applications concerned with

the database objects. Thus, they request either read or write operations.
They first ask the primary master which storage nodes are concerned with
their data, and can then contact them directly.
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The lifecycle of the NEO rotocol is depicted in Figure 3(b).
At the system startup, the primary master is elected among all master nodes.

The primary master maintains the key information for the protocol to operate.
After the election of a primary master, the system goes through various stages

with the purpose of checking that all transactions were completely processed, and
thus that the database is consistent across the different storage nodes (bootstrap
protocol).

Finally, the system enters its operational state. Clients can then access the
database through the elected primary master.

Secondary Masters

Primary Master

Administration Node

Client Nodes Storage Nodes

(a) Protocol architecture

time
recover verification service

elected

verification initializationservice
conn_to_pm

The primary master

A storage node

(b) Phases of bootstrap process

Fig. 3. Architecture and lifecycle of the NEO Protocol

3.2 Grounding

Each step described in Section 2 is now applied.

Understand structure This step is difficult to illustrate on a real example since
it implies working on extensive code. The conclusions cannot be confirmed by
a small piece of code. Nevertheless, for the NEO protocol, at this stage we can
state the following, and confirm the brief description from Section 3.1.

The main entities are nodes of the cluster, of four types: master, storage,
client and admin nodes. For each of these types there is a corresponding function
in the source code.

The life cycle of nodes leads them through different phases implemented by an
auxiliary class (RecoveryManager, VerificationManager) or a method of the cor-
responding node class (ElectPrimay, VerifyData, Initialize, DoOperation). Also,
depending on the phase of the protocol, a node changes its message handlers.

Choose key elements Based on the conclusions of the previous step and on the
verification issues, we decided to focus on master and storage nodes. This paper
does not get into the details of the numerous properties to check, a good part of
which can be found in [1] and [2]. Many properties were provided as an informal
statement by the code developers. For example, only a single node is elected as
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a primary master ; all shared information (partition tables, identifiers) has been
made consistent for the service phase to take place.

Most attention is payed to the election of the primary master and to the
bootstrap process (everything between election and operational state). Later on
in this paper we focus on bootstrap phase.

Therefore, we chose the following fragments of code for detailed analysis:

1. master node application
1 def __init__( s e l f , c o n f i g )
2 def run ( s e l f )
3 def p l a yP r ima r yRo l e ( s e l f )
4 def runManager ( s e l f , manager_klass )
5 def c h ang eC l u s t e r S t a t e ( s e l f , s t a t e )

2. recovery manager class
1 def __init__( s e l f , c o n f i g )
2 def run ( s e l f )
3 def bu i l dF romSc ra t ch ( s e l f )

3. verification manager class
1 def __init__( s e l f , app )
2 def _askStorageNodesAndWait ( s e l f , packet , n od e_ l i s t )
3 def run ( s e l f )
4 def v e r i f yD a t a ( s e l f )
5 def v e r i f y T r a n s a c t i o n ( s e l f , t i d )

4. storage node application
1 def __init__( s e l f , c o n f i g )
2 def run ( s e l f )
3 def connectToPr imary ( s e l f )
4 def v e r i f yD a t a ( s e l f )
5 def i n i t i a l i z e ( s e l f )

Find interactions The nodes in the cluster need to communicate with one an-
other. For this purpose they use a class EventManager. It describes the mecha-
nism for sending and receiving messages. To treat them, each node has its own
handlers, different for different phases of the protocol. Thus, they should be
added to our list of pieces of code.

Another means for nodes collaboration in the cluster is a partition table. It
is implemented as a class that keeps the distribution of data between storage
nodes. This class is another key element and should also be added to the analysis
list.

The master and storage applications also use some global variables to allow
their methods to know the state of the application (primary, operational, has_pt
— partition table). This information should be kept aside to be used during
modelling.

Secondary elements When this stage occurs, all significant parts of the project
and their communications are identified. It is then time to make rather crude
abstractions on objects that could not be eliminated from the model, but must
be simplified because of the abstraction level.

For example, for the NEO protocol we made following abstractions:
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1. The complex message structure, defined in a class package is modelled as an
integer number;

2. Connection, described as a group of classes, is modelled as a pair of nodes,
that are considered to be connected;

3. Transaction and object, that have a lot of fields, such as serial number,
history, data, etc., are modelled by their identification numbers.

Storage Global

Poll Verification

Handle Mes-
sage: DelT, ComT,
AskUT, AskTI, AskOP,
AskLID, AskPT, NotPCh,
StartOp, StopOp

Poll Identification

Handle Message:
AnsPT, AnsLID, AnsNI,
NotNI

Master Global

Run Primary

Recover

Poll Recover

Verify Data

Demand Poll Verification

Handle Message:
AnsUT, AnsTI, AnsOP,
TNF, ONF

Partition Table

Fig. 4. Hierarchy of models

Divide into modules Figure 4 presents the sub-module structure of the bootstrap
model. First of all, there are two main global level models: “Storage Global” and
“Master Global”. Aside, a “Partition Table” model is referenced by the both
storage and master nodes.

Then, in “Storage Global” there are two substitution transitions, correspond-
ing, respectively, to “Poll Verification” and “Poll Identification” sub-modules, and
presented by two instances of “Poll Storage”. Each of them contains a “Handle
Message” sub)model, but with different messages inside.

In the model “Master Global” there is only one sub-module “Run Primary”. It
itself has two sub-nets: “Recover” and “Verify Data”, that correspond to recovery
and verification managers run methods. The “Recover” module contains one
sub-module, “Poll Rec” together with the handlers of two messages. The “Verify
Data” module contains two sub-models occurring several times in the model :
“Demand” (twice) and “Poll Verification” (four times). “Poll Verification” includes
a “Handle Message” with different message handlers.

3.3 Code Analysis

In this subsection we will give some detailed examples of application the guide-
lines to the source code of the NEO protocol.

Data structures In order to show how the colour domains can be constructed
from data structures, let us take the piece of code in Figure 5. It is a fragment of
the partition table class definition where the internal fields are declared. First,
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1 class C e l l ( o b j e c t ) :
2 def __init__( s e l f , node , s t a t e = C e l l S t a t e s .UP_TO_DATE) :
3 s e l f . node = node
4 s e l f . s t a t e = s t a t e
5 . . .
6
7 class Pa r t i t i o nTa b l e ( o b j e c t ) :
8 def __init__( s e l f , num_part i t ions , num_rep l i cas ) :
9 s e l f . _id = None
10 s e l f . np = num_par t i t i ons
11 s e l f . n r = num_rep l i cas
12 s e l f . num_fi l l ed_rows = 0
13 s e l f . p a r t i t i o n _ l i s t = [ [ ] for _ in x range ( num_par t i t i ons ) ]
14 . . .

Fig. 5. Fragment of the source code declaration of partition table class

the class for a cell of the partition table is declared. It has two attributes: a
storage node and a state. Knowing that a partition cell has two possible states,
we can declare a colour domain PSTATE as a set of these two values and a colour
domain PT_CELL as a product of storage node type and cell state.

c o l s e t PSTATE = with UTD | OOD; (∗ the s e t o f s t a t e s o f p a r t i t i o n ∗)
c o l s e t PT_CELL = product SN∗PSTATE; (∗ a c e l l o f p a r t i t i o n t a b l e ∗)

Now let us consider the beginning of the partition table class constructor. It
starts with assigning the values of variables for number of replicas and number
of partitions. Then it creates a two-dimension list. In one dimension its size
is equal to the number of partitions, in the other dimension the size is not
specified. So, we declare three auxiliary colour domains: a set of partitions, a
list of partition cells and a partition row, that is a product of a partition and a
list of cells. Finally, a partition table colour domain consists of a list of partition
rows.
c o l s e t PART = index np wi th 0 . .NP (∗ the s e t o f p a r t i t i o n s ∗)
c o l s e t PT_CELLlist = l i s t PT_CELL wi th 0 . .NR+1); (∗ a c e l l l i s t ∗)
c o l s e t PT_ROW = produc t PART∗PT_CELLlist ; (∗ a p a r t i t i o n t a b l e row ∗)
c o l s e t PT = l i s t PT_ROW with 0 . .NP; (∗ the p a r t i t i o n t a b l e type ∗)

The following colour domain definitions will be used later on:
c o l s e t SN = index sn wi th 0 . .N; (∗ the s e t o f s t o r a g e nodes ∗)
c o l s e t MN = index mn wi th 0 . .M; (∗ the s e t o f s t o r a g e nodes ∗)
c o l s e t NODE = union s1 : SN + m1:MN; (∗ the s e t o f a l l nodes ∗)
c o l s e t CSTATE = with VER | REC | RUN | STP ; (∗ the s e t o f c l u s t e r s t a t e s ∗)
c o l s e t MTYPE = with StopOp | StartOp | AskUT | AskPT | AskNI | AskLID |

AskTI | AskOP | AnsUT | AnsNI | AnsPT | AnsLID |
AnsTI | AnsOP | NotNI | NotPCh | DelT | ComT;
(∗ the s e t o f message t yp e s ∗)

c o l s e t MESS = product MTYPE∗NODE∗NODE∗INT ; (∗ the s e t o f messages ∗)
c o l s e t SN l i s t l i s t SN wi th 0 . .N; (∗ a l i s t o f s t o r a g e nodes ∗)
c o l s e t MESSl i s t = l i s t MESS 0 . . 1 0 0 0 ; (∗ a l i s t o f messages ∗)

States and conditions on objects As an illustration of the next four steps, let us
consider the beginning of the verification phase from the primary master point
of view. The corresponding source code is listed in Figure 6.
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1 def run ( s e l f ) :
2 s e l f . app . c h ang eC l u s t e r S t a t e ( C l u s t e r S t a t e s . VERIFYING)
3 s e l f . v e r i f yD a t a ( )
4 . . .
5
6 def v e r i f yD a t a ( s e l f ) :
7 em , nm = s e l f . app . em , s e l f . app .nm
8 neo . l i b . l o g g i n g . debug ( ’ wa i t i n g ␣ f o r ␣ the ␣ c l u s t e r ␣ to ␣be␣ o p e r a t i o n a l ’ )
9 while not s e l f . app . pt . o p e r a t i o n a l ( ) : em . p o l l ( 1 )
10 neo . l i b . l o g g i n g . i n f o ( ’ s t a r t ␣ to ␣ v e r i f y ␣ data ’ )
11 s e l f . _askStorageNodesAndWait ( Packet s . A s kUn f i n i s h e dT r an s a c t i o n s ( ) ,
12 [ x for x in s e l f . app .nm. g e t I d e n t i f i e d L i s t ( ) i f x . i s S t o r a g e ( ) ] )
13 . . .
14
15 def _askStorageNodesAndWait ( s e l f , packet , n od e_ l i s t ) :
16 p o l l = s e l f . app . em . p o l l
17 o p e r a t i o n a l = s e l f . app . pt . o p e r a t i o n a l
18 uu id_set = s e l f . _uuid_set
19 uu id_set . c l e a r ( )
20 for node in node_ l i s t :
21 uu id_set . add ( node . getUUID ( ) )
22 node . ask ( packe t )
23 while True :
24 p o l l ( 1 )
25 i f not uu id_set :
26 break

Fig. 6. Fragment of the source code of verification phase

First three lines come from the run method of the verification manager class.
We can see that the primary master changes cluster state to VERIFYING and
calls verifyData method. So, we can start by defining two places:

– start_verif with colour domain MN (the state of the primary master at
the start of the verification manager);

– c_state with colour domain CSTATE (the current state of the cluster).

Then, the primary master waits until the partition table becomes operational
(line 9). We define a new place, corresponding to this state of the primary master.

– wait_pt with colour domain MN.

After that, it calls a method _askStorageNodesAndWait, where it sends requests
about unfinished transactions to storage nodes, and waits until the list uuid_set
becomes empty. This waiting period can be modelled as a new place. In order to
send messages to other nodes we need a channel place. According to the protocol,
it must be a FIFO list. Hence, two places are added:

– network with colour domain MESSlist;
– wait_ut with colour domain MN.

Finally, the primary master starts the verification of transactions one by one.
This code is out of scope of our example, but we can at least give the next state
of the primary master by adding a new place:

– verifying_trans with colour domain MN.
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Events and actions Now, we need to extract the important actions from the
same piece of code. The first method call changeClusterState can be considered
as one of them. So, we add the first transition:

– change_c_state.

When getting to the next lines, we see that line 7 contains nothing but shortcuts
and line 8 writes the current state to the log. The next important action is
em.poll(1) that is executed while the primary master waits for the partition table
to be operational. Here, it is supposed to treat different messages. For the sake
of readability of the model, we decide to organise message handlers in separate
sub-nets. A new transition is added, coloured in black to symbolise there is a
net behind.

– poll_pm_verif .

Line 10 is not important since it writes a log. Then the _askStorageNodesAnd-
Wait method is called with a list of all identified storage nodes as an argument.
Inside this method some shortcuts occur (lines16–18) and the list is cleared
uuid_set. Then, considering the storage nodes from the input list one by one,
they are added to uuid_set and sent a request of unfinished transaction (which is
also given as input parameter, defined in line 11). An additional place is needed
to store the identified storage nodes. So, we go to the previous step, add this
place, and return to add a new transition:

– s_iden with colour domain SN.
– ask_ut .

Then the primary master is waiting once again, executing poll (line 24). So, we
duplicate the corresponding transition. Finally, we add a transition that models
the exit of this process.

– got_ut .

Transformations of data Let us consider the transitions we have up to now one
by one in order to build arcs and provide their expressions. To do so, some
variables should first be declared. Let pm: MN; cst: CSTATE. The whole net can
be seen in Figure 7. Transition change_c_state moves the primary master token
from place start_verif to wait_pt and replaces current cluster state token with
a VERIF one.

Transition got_ut moves the primary master from place wait_ut to verifying_trans.
But it can fire only when all the answers of storage nodes are received. Here an
additional place, similar to the variable uuid_set (line 25), is created, that will
contain all storage nodes, answers from which the primary master is waiting.
Transition got_ut must fire if and only if this place is empty. However, it is
not possible to check if the multiset is empty without inhibitor arc. One of the
solutions is to change the colour domain to SNlist, since a list can be checked for
emptiness.
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Fig. 7. Model of verification manager - part 1

– wait_ans with colour domain SNlist.

A new variable sl: SNlist is also declared.
Transition poll_pm_verif is replaced by a sub-net. Here it simply takes the

primary master token and puts it back. Handlers of messages, that are hidden
behind them, can change the state of some variables, e.g. uuid_set, and, respec-
tively, the content of place wait_ans.

Transition ask_ut moves the primary master token from place wait_pt to
wait_ut . It also sends messages to all storage nodes from place s_iden. Here we
see that it could be convenient to change the colour domain of s_iden to SNlist.
In this case we can directly put this list into place wait_ans. Also we can write
an SML function broadcast, that sends the same message to each node from the
list.
fun b roadca s t (msgType , l ) =

L i s t . f o l d r ( fn ( sNode , tokens ) =>
1 ‘ (msgType , s1 ( sNode ) , pm, 0) ++ tokens ) [ ] l

A new variable declaration is needed: ml: MESSlist.

Conditions on events In this example, there is only a single transition that
requires an auxiliary condition to fire. It is ask_ut, since it can fire only if the
partition table is operational (see lines 9, 11, 22 of figure 6). To make this check,
first of all, we need to add an additional place:
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– partition_table with colour domain PT,

together with a new variable ptbl: PT. A guard must also be added. The partition
table is operational if and only if there is at least one up-to-date cell for each
partition. So, we can write the following SML function.

1 fun o p e r a t i o n a l pt = L i s t . a l l ( fn (_, row ) =>
2 L i s t . e x i s t s ( fn (_, s t ) => s t = UP) row ) pt

3.4 Analysis and feedback

The properties the protocol should satisfy were model-checked. The outcome of
this analysis was suspicious scenarios. The design approach allowed for tracing
back the execution sequence in the source code, and thus the engineers could
check their validity.

Some scenarios were due to a too coarse abstraction level, but the assump-
tions made during modelling did hold and guarantee the appropriate behaviour
of the code. An interesting erroneous scenario pointed out the possibility of a
livelock in the primary master election process. However, this never happened in
practice, as the developers found out it was prevented by a side-effect of a Python
function. Nevertheless, they could fix it, such a side effect being undesirable, in
case it doesn’t happen in a future version of Python.

4 Conclusion

In this paper we gave detailed directions on how to construct a coloured Petri
net model from a high level object oriented source code and illustrated it with a
real case example. The modelling process is divided into 2 main parts: grounding
and code analysis.

Now the following questions could be raised. Can this process be automated?
The most complicated part of the modelling process is to choose objects and ac-
tions that are important for the goals of verification and separate them from
those that are not as useful. If a programming language could provide some kind
of priorities to data structures and methods, it may simplify the automation
process. During the industrial project in which the NEO protocol was analysed,
a code-tagging approach to facilitate both the modelling and the interpretation
of the verification results was envisioned for future work. Moreover, part of our
group works on a tool-supported Petri net model design method from a nat-
ural language description. Further work could include the integration of both
approaches.

Another interesting question is could these modelling guidelines be applied
elsewhere? Even if not directly, but with some refinements, they could be applied
to any reverse-engineering process providing a coloured Petri net or a similar
model of concurrency.
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Abstract. The notion of persistency, based on the rule "no action can
disable another one" is one of the classical notions in concurrency theory.
We recall two ways of generalization of this notion: the first is "no action
can kill another one" and the second "no action can kill another en-
abled one". Afterwards we present an infinite hierarchy of computations
in which one action disables another one for no longer than a speci-
fied number of steps (e/l-k-persistency). We prove that if an action is
disabled, and not killed, by another one, it can not be postponed indef-
initely. Finally we deal with decision problems about e/l-k persistency.
We show that this kind of persistency is decidable with respect to steps,
markings and nets.

Keywords: Petri nets, concurrency, persistency, decision problems

1 Introduction

The notion of persistency is one of the most frequently discussed issues in the
Petri net theory - [4,7,8,11,12] and many others. It is being studied not only in
terms of theoretical properties, and also as a useful tool for designing and analyz-
ing software environments [3]. In software engineering, persistency is a desirable
property and many systems may not work properly without it.

We say that an action of a processing system is persistent if, whenever it
becomes enabled, it remains enabled until executed. A system is said to be
persistent if all its actions are persistent. This classical notion is introduced by
Karp/Miller [10]. Also interesting, with practical applications, is the notion of
weak persistency introduced and investigated in [16,15,9]. In section 3, we bring
to mind two generalizations of the classical notion (defined in [2]): l/l persistency
and e/l-persistency. An action is said to be l/l-persistent if it remains live until
executed, and is e/l-persistent if, whenever it is enabled, it cannot be killed by

? The study is cofounded by the European Union from resources of the European Social
Fund.Project PO KL "Information technologies: Research and their interdisciplinary
applications", Agreement UDA-POKL.04.01.01-00-051/10-00.



another action. For uniformity, we name the traditional persistency notion e/e-
persistency. Next, we recall that those kinds of persistency are decidable in the
class place/transition nets.

In section 4, we extend the hierarchy mentioned above with an infinite hi-
erarchy of e/l-persistent steps. A step MaM ′ is said to be e/l-k-persistent for
some k ∈ N if the execution of an action a pushes the execution of any other
enabled action away for at most k steps. We prove that if an action is disabled
by another one, it can not be postponed indefinitely. We show that if a p/t-net
is e/l-persistent, then it is e/l-k-persistent for some k ∈ N (Theorem 3) and such
a k can be effectively found (Theorem 9). We also point, that the above-cited
result does not hold for nets which do not have the monotonicity property (for
example for inhibitor nets).

Afterwards, we investigate the set of markings in which two actions are en-
abled simultaneously, and also the set of reachable markings with that feature.
We show that the minimum of the latter is finite and effectively determined.
We also prove that if some action pushes the enabledness of another one away
for more than k steps, then it also needs to happen in some minimal reachable
marking enabling these two actions.

Finally, we show that e/l-k-persistency is decidable with respect to steps
(Theorem 1), markings (Theorem 2) and nets (Theorem 7).

The concluding section contains some questions and plans for further inves-
tigations.

2 Basic Notions

2.1 Denotations

The set of non-negative integers is denoted by N. Given a set X, the cardinality
(number of elements) of X is denoted by |X|, the powerset (set of all subsets)
by 2X , the cardinality of the powerset is 2|X|. Multisets over X are members of
NX , i.e. functions from X into N.

2.2 Petri Nets and Their Computations

The definitions concerning Petri nets are mostly based on [5].

Definition 1 (Nets). Net is a triple N = (P, T, F ), where:

– P and T are finite disjoint sets, of places and transitions, respectively;
– F ⊆ P × T ∪ T × P is a relation, called the flow relation.

For all a ∈ T we denote:
•a = {p ∈ P | (p, a) ∈ F} - the set of entries to a
a• = {p ∈ P | (a, p) ∈ F} - the set of exits from a
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Petri nets admit a natural graphical representation. Nodes represent places
and transitions, arcs represent the flow relation. Places are indicated by circles,
and transitions by boxes.

The set of all finite strings of transitions is denoted by T ∗, the length of
w ∈ T ∗ is denoted by |w|, number of occurrences of a transition a in a string w
is denoted by |w|a, two strings u, v ∈ T ∗ such that (∀a ∈ T ) |u|a = |v|a are said
to be Parikh equivalent.

Definition 2 (Place/Transition Nets). Place/transition net (shortly, p/t-
net) is a quadruple S = (P, T, F,M0), where:

– N = (P, T, F ) is a net, as defined above;
– M0 ∈ NP is a multiset of places, named the initial marking; it is marked by

tokens inside the circles, capacity of places in unlimited.

Multisets of places are named markings. In the context of p/t-nets, they are
mostly represented by nonnegative integer vectors of dimension |P |, assuming
that P is strictly ordered. The natural generalizations, for vectors, of arithmetic
operations + and −, as well as the partial oder 6, all defined componentwise,
are well known and their formal definitions are omitted.

In this context, by •a(a•) we understand a vector of dimension |P | which has
1 in every coordinate corresponding to a place that is an entry to (an exit from,
respectively) a and 0 in other coordinates.

A transition a ∈ T is enabled in a markingM whenever •a ≤M (all its entries
are marked). If a is enabled in M , then it can be executed, but the execution is
not forced. The execution of a transition a changes the current marking M to
the new marking M ′ = (M −• a) + a• (tokens are removed from entries, then
put to exits). The execution of an action a in a markingM we call a (sequential)
step. We shall denote Ma for the predicate "a is enabled in M" and MaM ′ for
the predicate "a is enabled in M and M ′ is the resulting marking".

This notions and predicates we extend, in a natural way, to strings of tran-
sitions: MεM for any marking M , and MvaM ′′ (v ∈ T ∗, a ∈ T ) iff MvM ′ and
M ′aM ′′ .

If MwM ′, for some w ∈ T ∗, then M ′ is said to be reachable from M ; the
set of all markings reachable from M is denoted by [M〉 . Given a p/t-net S =
(P, T, F,M0), the set [M0〉 of markings reachable from the initial marking M0 is
called the reachability set of S, and markings in [M0〉 are said to be reachable in
S.

A transition a ∈ T is said to be live in a markingM if there is a string u ∈ T ∗
such that ua is enabled inM . A transition a ∈ T that is not live in a markingM
is said to be dead in a marking M . If MaM ′ and a transition b 6= a is enabled
(live) in M and not enabled (not live) in M ′, then we say that (the execution
of) a disables (kills) b.
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Definition 3 (Inhibitor nets ). Inhibitor net is a quintuple S = (P, T, F, I,M0),
where:

– (P, T, F,M0) is a p/t-net, as defined above;
– I ⊆ P × T is the set of inhibitor arcs (depicted by edges ended with a small

empty circle). Sets of entries and exits are denoted by •a and a•, as in p/t-
nets; the set of inhibitor entries to a is denoted by ◦a = {p ∈ P | (p, a) ∈ I}.

A transition a ∈ T (of an inhibitor net) is enabled in a marking M when-
ever •a ≤ M (all its entries are marked) and (∀p ∈ ◦a) M(p) = 0 - all in-
hibitor entries to a are empty. The execution of a leads to the resulting marking
M ′ = (M −• a) + a•.

The following well-known fact follows easily from Definitions 1 and 2.

Fact 1 (Diamond and big diamond properties) Any place/transition net
possesses the following property:

Big Diamond Property:
If MuM ′ & MvM ′′ & u ≈ v (Parikh equivalence), then M ′ = M ′′.
Its special case with |u| = |v| = 2 is called the Diamond Property:
If MabM ′ & MbaM ′′, then M ′ = M ′′.

Definition 4 (ω-extension). Let Ω = N ∪ {ω}, where ω is a new symbol (de-
noted infinity). We extend, in a natural way, arithmetic operations: ω + n = ω,
ω−n = ω, and the order: (∀n ∈ N) n < ω. The set of k-dimensional vectors over
Ω we shall denote by Ωk, and its elements we shall call ω-vectors. Operations
+,− and the order ≤ in Ωk are componentwise.

For X ⊆ Ωk, we denote by Min(X) the set of all minimal (wrt ≤) members of
X, and by Max(X) the set of all maximal (wrt ≤) members of X. Let v, v′ ∈ Ωk

be ω-vectors such that v ≤ v′, then we say that v′ covers v ( v is covered by v′) .

Let us recall the well known important fact known as the Dickson’s Lemma.

Lemma 1 ([6]). Any subset of incomparable elements of Ωk is finite.

Definition 5. We say that a Petri net S = (P, T, F,M0) has the monotonicity
property if and only if (∀w ∈ T ∗)(∀M,M ′ ∈ N|P |) Mw ∧M ≤M ′ ⇒M ′w.

Fact 2 P/t-nets have the monotonicity property.

Proof. Obvious, since in p/t-nets the tokens ofM ′−M can be regarded as frozen
(disactive) tokens.

Fact 3 Inhibitor nets do not have the monotonicity property.

Proof. Let us look at the example of Fig. 1. It can be easily seen that M1 < M ′1.
M1a holds but M ′1a doesn’t hold.

Remark: In the paper we will use the notions of reachability graph (tree) and
coverability graph (tree). We assume that the notions are known to the reader.
Their definitions can be found in any monograph or survey about Petri nets (see
[5,13] or arbitrary else).
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Fig. 1. Non-monotonic inhibitor net

3 Three Kinds of Persistency

The notion of persistency is one of the classical notions in concurrency theory.
The notion is recalled in [2] (named in the sequel e/e-persistency). Some of its
generalizations: l/l-persistency and e/l-persistency are also introduced there.

Let us sketch the notions informally. The classical e/e-persistency means "no
action can disable another one", the l/l-persistency means "no action can kill
another one" and the e/l-persistency means "no action can kill another enabled
one". Let us go on to formal definitions.

Definition 6 (Three kinds of persistency). Let S = (P, T, F,M0) be a
place/transition net.
If (∀M ∈ [M0〉) (∀a, b ∈ T )

– Ma ∧Mb ∧ a 6= b⇒Mab, then S is said to be e/e-persistent;
– Ma ∧ (∃u)Mub ∧ a 6= b⇒ (∃v)Mavb, then S is said to be l/l-persistent;
– Ma ∧Mb ∧ a 6= b⇒ (∃v)Mavb, then S is said to be e/l-persistent.

The classes of e/e-persistent (l/l-persistent, e/l-persistent) p/t-nets will be de-
noted by Pe/e, Pl/l and Pe/l, respectively.

It is shown in [2] that the following decision problems are decidable:

Instance: A p/t net (N,M0)
Questions:

EE Net Persistency Problem: Is the net S e/e-persistent?
LL Net Persistency Problem: Is the net S l/l-persistent?
EL Net Persistency Problem: Is the net S e/l-persistent?

4 Hierarchy of e/l-persistency

In the previous section we defined three kinds of persistency. Now, we extend
the hierarchy mentioned above with an infinite hierarchy of e/l-persistent steps.

K. A. Barylska, E. Ochmański: Hierarchy of persistency 129



Definition 7 (E/l-persistent steps - an infinite hierarchy).
Let S = (P, T, F,M0) be a p/t-net, let M be a marking. W call a step MaM ′:

– e/l-0-persistent iff it is e/e-persistent (the execution of an action a does not
disable any other action);

– e/l-1-persistent iff (∀b ∈ T, b 6= a) Mb ⇒ [Mab ∨ (∃c ∈ T )Macb] (the
execution of an action a pushes the execution of any other enabled action
away for at most 1 step);

– e/l-2-persistent iff (∀b ∈ T, b 6= a) Mb ⇒ (∃w ∈ T ∗)[|w| ≤ 2 ∧Mawb] (the
execution of an action a pushes the execution of any other enabled action
away for at most 2 steps);
. . .

– e/l-k-persistent for some k ∈ N iff (∀b ∈ T, b 6= a) Mb⇒ (∃w ∈ T ∗)[|w| ≤ k∧
Mawb] (the execution of an action a pushes the execution of any other en-
abled action away for at most k steps);
. . .

– e/l-∞-persistent iff (∀b ∈ T, b 6= a) Mb ⇒ (∃w ∈ T ∗) Mawb (the execution
of an action a pushes the execution of any other enabled action away).

Remark: Note that e/l-∞-persistent steps are exactly e/l-persistent steps.

Directly from Definition 7 we get the

Fact 4 Let S = (P, T, F,M0) be a p/t-net, letM be a marking. If the stepMaM ′

is e/l-k-persistent for some k ∈ N, then it is also e/l-i-persistent for every i ≥ k.

Definition 8. Let S = (P, T, F,M0) be a p/t-net, M be a marking and k ∈ N.
Marking M is e/l-k-persistent iff for every action a ∈ T that is enabled in M
the step Ma is e/l-k-persistent. P/t-net S = (N,M0) is e/l-k-persistent iff every
marking reachable in S is e/l-k-persistent. We denote the class of e/l-k-persistent
p/t-nets by Pe/l−k.

The direct conclusion from Fact 4 and Definition 8 is as follows:

Fact 5 Let S = (P, T, F,M0) be a p/t-net, M be a marking, and k ∈ N. If the
marking M is e/l-k-persistent, then it is also e/l-i-persistent for every i ≥ k. If
the net S is e/l-k-persistent, then it is also e/l-i-persistent for every i ≥ k.

Now we can formulate the problem:

EL-k Step Persistency Problem
Instance: P/t-net S, marking M , action a ∈ T enabled in M .
Question:Is the step Ma e/l-k-persistent?

Theorem 1. The EL-k Step Persistency Problem is decidable (for any k ∈ N).
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Proof. An algorithm of checking if a stepMa is e/l-k-persistent (for some k ∈ N)
for a given net S = (N,M0):
Let us build the part of the depth of k+1 (we call it the (k+1)-component) of
the reachability tree of (N,M ′), where M ′ is a marking obtained from M by
execution of a. The step Ma is e/l-k-persistent if for every action b ∈ T , such
that a 6= b and b is enabled in M , there is a path in the (k+1)-component of the
reachability tree of (N,M ′) containing an arc labeled by b.

Let us introduce another problem:

EL-k Marking Persistency Problem
Instance:P/t-net S = (N,M0), marking M .
Question:Is the marking M e/l-k-persistent?

Theorem 2. The EL-k Marking Persistency Problem is decidable (for any k ∈
N).

Proof. For every action a ∈ T that is enabled in a marking M , we check if a
step Ma is e/l-k-persistent (for some k ∈ N) for a given net S = (N,M0), using
the algorithm of Theorem 1.

Let us recall the well-known fact, that follows from the Dickson’s Lemma 1.

Fact 6 Every infinite sequence of markings contains an infinite increasing (not
necessarily strictly) subsequence of markings.

Recall also that p/t-nets have the monotonicity property - Fact 2.

Let us define the notion of k-enabledness.

Definition 9 (k-enabledness). Let S = (P, T, F,M0) be a p/t-net, let M be a
marking. For k ∈ N we say that the action a ∈ T is k-enabled in the marking
M if and only if ∃w ∈ T ∗, such that |w| ≤ k ∧Mwa.

Now, we can show:

Lemma 2. Let S be a p/t-net. For an arbitrary a ∈ T there exists a natural
number ka ∈ N, such that in every marking M the transition a is ka-enabled or
it is dead.

Proof. Suppose that the lemma does not hold for some action a ∈ T . It means
that for each k ∈ N there is a marking M such that M is not k-enabled but
not dead. This means that M is k′-enabled for some k′ > k. Thus, there exists
an infinite sets of markings M1,M2, . . . and integers k1 < k2 < . . ., such that
the action a is live in each marking Mi and it is not ki-enabled in Mi for all
i = 1, 2, . . .. Let us choose (by Fact 6) an infinite increasing sequence of markings
Mi1 ≤ Mi2 ≤ . . .. Since the action a is live in Mi1, it is k-enabled in Mi1, for
some k ∈ N. As the strictly increasing sequence k1 < k2 < . . . is infinite, k < kij

for some j. By the monotonicity property (Fact 2), the action a is k-enabled,
hence kij-enabled in the marking Mij. Contradiction.
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Remark: Note that the proof of Lemma 2 is purely existential, it does not
present any algorithm for finding k.

Now, we are ready to formulate the main theorem of the chapter:

Theorem 3. If a p/t-net is e/l-persistent, then it is e/l-k-persistent for some
k ∈ N.
In words: Whenever an action is disabled by another one, it is pushed away for
not more than k-steps.

Proof. If the net is e/l-persistent, then no action kills another enabled one. From
the Lemma 2 we know, that if an action a ∈ T is not dead then it is ka-enabled.
Let us take K = max{ka|a ∈ T}, for the numbers ka from the Lemma 2. One
can see that every action in the net that is not dead, is K-enabled. Thus, the
execution of any action may postpone the execution of an action a for at most
K steps. So we have the implication: if a p/t-net is e/l-persistent, then it is
e/l-K-persistent, for K defined above.

Fig. 2. A p/t-net that is e/l-3 persistent but not e/l-2 persistent

Example 1. Let us look at the example of Fig. 2. The only possible situation
for temporary disabling an action by another one is the execution of a that
disables b. And then b could be enabled again after the execution of the sequence
cde, so after 3 steps. Hence, the net is e/l-3-persistent, and obviously not e/l-2-
persistent.

The following example shows that Theorem 3 does not hold for nets without the
monotonicity property.

Example 2. Let us look at the example of Fig. 3. We can see an inhibitor net
and its computation such that for every k ∈ N one can push an action away for
a distance greater than k steps.
This net is life, hence it is e/l-persistent, but it is not e/l-k-persistent for any
k ∈ N.
In the infinite computation acbcdaecbcddaeecbcdddaeeecb . . . the first a pushes b
away for 1 step, the second - for 2 steps and every k-th a - for k steps.
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Fig. 3. An inhibitor net and its infinite computation

4.1 EL-k Net Persistency Problem

In the previous section, we established that an action can not postpone another
action indefinitely (Theorem 3). We proved, that if a p/t-net is e/l-persistent,
then it is e/l-k-persistent for some k ∈ N. We showed that such a k exists but
we did not present any algorithm for finding this k.

In view of the statements above, let us consider the following problem:

EL-k Net Persistency Problem
Instance:P/t-net S = (N,M0), k ∈ N.
Question:Is the net S e/l-k-persistent?

To solve this problem we must prove a set of auxiliary facts.

From this moment, let S = (N,M0) be an arbitrary p/t-net.

Let us define the following set of markings:
Ea,b = {M ∈ N|P | | Ma ∧Mb}- the set of markings enabling actions a and b
simultaneously.
Let us define minEa,b ∈ N|P |, the minimum marking enabling actions a and b
simultaneously: if (•a[i] = 1∨ •b[i] = 1) then minEa,b[i] := 1 else minEa,b[i] := 0
(for i = {1, . . . , |P |}).
Note that minEa,b = minEa,b + N|P |.

Let us formulate an auxiliary problem:

Mutual Enabledness Reachability Problem
Instance:P/t-net S = (N,M0), actions a, b ∈ T .
Question:Is there a marking M such that M ∈ Ea,b and M ∈ [M0〉 ?
(Is there a reachable marking M such that actions a and b are both enabled

in M?)

Theorem 4. The Mutual Enabledness Reachability Problem is decidable.
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Proof. Let M = minEa,b. We build a coverability graph for the p/t-net S. We
check whether in the graph exists a vertex corresponding to an ω-marking M ′
such that M ′ covers M . If so, then actions a and b are simultaneously enabled
in some reachable marking of the net S. Otherwise, those transitions are never
enabled at the same time.

Let Min[M0〉 be a set of minimal (wrt ≤) reachable markings of the net S. As
members of Min[M0〉 are incomparable, the set Min[M0〉 is finite, by Lemma 1.

Le us denote by REa,b the set of all reachable markings of the net S enabling
actions a and b simultaneously: REa,b = {M ∈ [M0〉 | Ma∧Mb} = Ea,b ∩ [M0〉.

Let Min(REa,b) be a set of all minimal reachable markings of the net S en-
abling action a and b simultaneously.

Let us recall the Set Reachability Problem.

Set Reachability Problem
Instance:P/t-net S = (N,M0) and a set X ⊆ N|P |.
Question:Is there a marking M ∈ X, reachable in S?

Theorem 5. If X ⊆ Nk is a rational convex set, then the X-Reachability Prob-
lem is decidable in the class of p/t-nets.

Proof. In [2].

Proposition 1. The set Min(REa,b) can be effectively constructed.

Proof. Sketch of the proof: We put into work the theory of residue sets of
Valk/Jantzen [14]. By Valk’s/Jantzen’s Theory, to show that the set of minimal
elements of the set REa,b is effectively computable, it is enough to demonstrate
that the set REa,b ↑ has the property RES (where REa,b ↑=

⋃{x ↑| x ∈ REa,b}
and x ↑= {z ∈ N|P | | x ≤ z}). We show it using decidability Theorem 5).

Example 3. The set of all minimal reachable markings of the net depicted in
Fig.4 enabling action a and b simultaneously, is Min(REa,b) = {[1, 1, 1], [2, 0, 1]}.

Proposition 2. If there exists a marking M ∈ REa,b such that the execution of
an action a in M pushes the execution of an action b away for more than k steps
(for some k ∈ N), then there exists some minimal marking M ′ ∈ Min(REa,b)
such that the execution of an action a in M ′ pushes the execution of an action
b away for more than k steps, too.

134 PNSE’12 – Petri Nets and Software Engineering



Fig. 4. A p/t-net.

Proof. Let M be a marking, such that the execution of an action a in M pushes
the execution of an action b away for more than k steps (for some k ∈ N). Let
M ′ ∈ Min(REa,b) such thatM ′ ≤M . Such a marking has to exist. Suppose that
there is a string w ∈ T ∗, |w| ≤ k such that M ′awb. Then obviously also Mawb
(from the monotonicity property - Fact 2). We obtain a contradiction. Hence,
the execution of an action a in M ′ postpones the execution of b for more than k
steps.

Now, we are ready to introduce the following problem:

EL-k Transition Persistency Problem
Instance:P/t-net S = (N,M0), ordered pair (a, b) ∈ T × T, b 6= a, k ∈ N.
Question:Is there a reachable marking M ∈ [M0〉 such that

Ma ∧Mb ∧ ¬[(∃w ∈ T ∗)|w| ≤ k ∧Mawb]?
(Does a postpone b for more than k steps?)

Theorem 6. The EL-k Transition Persistency Problem is decidable.

Proof. We introduce an algorithm of deciding if an action a pushes the execution
of an action b away for more than k steps in some reachable marking M .

1. We check whether any markings from the set Ea,b is reachable.
(a) If not, we answer NO.
(b) Otherwise:

i. We build the set Min(REa,b).
ii. For all markings M1 ∈ Min(REa,b):

M2 := M1a.
We build a part of the depth of k+1 (the (k+1)-component) of the
reachability tree of (N,M2). If the piece has an edge labeled by b, we
answer NO. Otherwise we answer YES.

And now the proof of decidability of the EL-k Net Persistency Problem is ready.
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Theorem 7. The EL-k Net Persistency Problem is decidable (for any k ∈ N).

Proof. S is e/l-k-persistent iff the algorithm solving EL-k Transition Persistency
Problem answers NO for all ordered pairs (a, b) ∈ T × T , a 6= b.

Finally, let us bring to mind decision another problems defined in [2]:

Transitions Persistency Problems
Instance:P/t-net S = (N,M0), and transitions a, b ∈ T, a 6= b.
Questions (informally):

EE-Persistency Problem: Does a disable an enabled b?
LL-Persistency Problem: Does a kill a live b?
EL-Persistency Problem: Does a kill an enabled b?

From [2] we know that the problems are decidable.

Theorem 8. For a given p/t net S = (N,M0) and a pair of transitions a, b ∈ T
one can calculate a minimum number ka,b ∈ N such that a postpones an enabled
b for at most ka,b steps (if such a number exists).

Proof. We ask whether a kills an enabled b (EL-Persistency Problem).
If YES then ka,b does not exist (a kills b)
else:
We compute a set Min(REa,b).
We build the reachability tree as long as from every M ∈ Min(REa,b) a path
leads to a vertex M ′ (it can be an empty path) such M ′b. The maximum length
of such paths is the desired number ka,b.

Theorem 9. If a p/t-net S = (N,M0) is e/l-persistent, then it is e/l-k-persistent
for some k ∈ N and such a k can be effectively computed.

Proof. For every pair (a, b) of transitions we find ka,b defined above. The number
we are looking for is k = max(ka,b : a, b ∈ T ).

5 Questions for Further Work

It is shown in [1] that if we change the firing rule in the following way: only
e/e-persistent computations are permitted, then we get a new class of nets (we
call them nonviolence nets) which are computationally equivalent to Turing ma-
chines. We plan to investigate net classes, with firing rules changed (only e/l-k-
persistent computations are allowed) and answer the question:

Question 1:
What is the computational power of nets created this way?

We investigated p/t-nets because they are easy to examine (mainly due to their
convenient properties such as the monotonicity property). We would like to study
the hierarchy of e/l-k-persistency in more difficult extensions of p/t-nets.
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Abstract. In the design of concurrent and distributed systems, mod-
ularity and refinement are basic conceptual tools. We propose a notion
of refinement/abstraction of local states for a basic class of Petri Nets,
associated with a new kind of morphisms. The morphisms, from a re-
fined system to an abstract one, associate suitable subnets to abstract
local states. The main results concern behavioural properties preserved
and reflected by the morphisms. In particular, we focus on the condi-
tions under which reachable markings are preserved or reflected, and the
conditions under which a morphism induces a bisimulation between net
systems.

Keywords: Elementary Net Systems, morphisms, local state refinement

1 Introduction

Refinement and composition of modules are among the basic conceptual tools
of a system designer. Several formal approaches are available. One of the main
challenges consists in developing languages and methods allowing to derive prop-
erties of the refined system from properties of the abstract one.

We propose an approach based on Petri nets, where the refinement of a model
is supported by so-called α-morphisms on the class of Elementary Net Systems.
We focus on the refinement of local states. Given a net N2, interpreted as an
abstract description of a system, the local states of N2 are replaced by subnets,
giving a new net, say N1, so that there is an α-morphism from N1 to N2.

Using morphisms to formalize the relation between a refined net and a more
abstract one is not new. Most approaches, in Petri net theory, are based on
transition refinement and, less frequently, on place refinement; for a survey, see
[5]. Another survey paper, [9], describes a set of techniques which allow to refine
transitions in Place/transition nets, so that the relation between the abstract net
and its refinement is given by a morphism. There, the emphasis is on refinement
rules that preserve specific behavioural properties, within the wider context of
general transformation rules on nets.



A very general class of morphisms, interpreted as abstraction of system re-
quirements, with less focus on strict preservation of behavioural properties, is
defined in [6].

The approach we present in this paper is similar in spirit to the refinement
operation proposed in [8]. In that approach, refinement is defined on transition
systems, but is strictly related to refinement of local states in nets, through the
notion of region.

α-morphisms can be seen as a special case of the morphisms introduced by
Winskel in [13], as it will be formally shown in Section 5. Other morphisms
introduced in the literature on the same line of Winskel morphisms, are the ones
given in [12] and [1].

Our approach is motivated by the attempt to define a refinement opera-
tion preserving behavioural properties on the basis of structural and only local
behavioural constraints. The additional restrictions, with respect to general mor-
phisms, aim, on one hand, to capture typical features of refinements, and on the
other hand to ensure that some behavioural properties of the abstract model
still hold in the refined model.

Moreover, in [2], we use α-morphisms as a means supporting a composition
operator defined through an interface, following the same approach proposed in
[4].

In the rest of this section, the main ideas of refinement and related morphisms
are explained by means of a simple example. In Section 2 we collect preliminary
definitions related to Petri nets which are used in the rest of the paper. Section
3 contains the definition of α-morphisms and the main results of the paper: in
particular, we show that reachable markings are preserved, we characterize the
local conditions under which reachable markings are reflected, i.e.: under which
the counterimage of reachable markings are reachable markings, and such that
morphisms induce a bisimulation between the related net systems. In Section 5
we compare α-morphisms with Winskel’s morphisms. Finally, in Section 6 we
discuss some critical issues in our approach and suggest possible developments.

Most proofs are given in an extended version of the present paper [3].

1.1 An example

The example presented in this section aims at explaining, informally, how α-
morphisms support refinement of local states in Elementary Net Systems. The
morphism maps nodes of a refined system, N1, on a more abstact one, N2.

The Elementary Net System shown in Fig. 1 represents an abstract view of
the interaction between a student and an University secretariat office. A student
may ask the office either to emit an English proficiency certificate or to admit
her to the final exam. Note that, at this level of abstraction, the model does not
distinguish a positive answer from a negative one. Suppose that the local state
inspect_request corresponds to the actual inspection of the request by a Faculty
board, which delivers the decision to the secretariat.

We might want to refine formal_check, in order to distinguish two cases:
positive answer and negative answer.
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Fig. 1: Abstract view (N2)

The actual decision has been taken in state inspect_request, so the refinement
of formal_check requires splitting the event Faculty_decision, thus reflecting the
choice between the two answers. The result of the refinement is shown in Fig. 2,

Fig. 2: Refined model (N1)

where the subnet refining formal_check is enclosed in a shaded oval. Note that
the operation has required also splitting the outgoing transitions, in order to
reflect the alternative outcomes.

2 Preliminary definitions

In this section, we recall the basic definitions of net theory, in particular Ele-
mentary Net Systems [11], and bisimulation [7].

We will use the symbol ↓ to denote the restriction of a function on a subset
of its domain.

2.1 Petri Nets

In net theory, models of distributed systems are based on objects called nets
which specify local states, local transitions and the relations among them. A net
is a triple N = (B,E, F ), where B is a set of conditions or local states, E is a

L. Bernardinello et al.: Local state refinement 143



set of events or transitions such that B ∩ E = ∅ and F ⊆ (B × E) ∪ (E ×B) is
the flow relation.

We adopt the usual graphical notation: conditions are represented by circles,
events by boxes and the flow relation by arcs. The set of elements of a net will
be denoted by X = B ∪ E; we allow nets with isolated elements.

The preset of an element x ∈ X is •x = {y ∈ X|(y, x) ∈ F}; the postset of x
is x• = {y ∈ X|(x, y) ∈ F}; the neighbourhood of x is given by •x• = •x ∪ x•.
These notations are extended to subsets of elements in the usual way.

For any net N we denote the in-elements of N by ©N = {x ∈ XN : •x = ∅}
and the out-elements of N by N© = {x ∈ XN : x• = ∅}.

A net is simple if for all x, y ∈ X, if •x = •y and x• = y•, then x = y.
A net N ′ = (B′, E′, F ′) is a subnet of N = (B,E, F ) if B′ ⊆ B,E′ ⊆ E, and

F ′ = F ∩ ((B′×E′)∪ (E′×B′)). Given a subset of elements A ⊆ X, we say that
N(A) is the subnet of N identified by A if N(A) = (B ∩A,E ∩A,F ∩ (A×A)).

A State Machine is a connected net such that each event e has exactly one
input condition and exactly one output condition: ∀e ∈ E, |•e| = |e•| = 1.

Elementary Net (EN) Systems are a basic system model in net theory. An
Elementary Net System is a quadruple N = (B,E, F,m0), where (B,E, F ) is a
net such that B and E are finite sets, self-loops are not allowed, isolated elements
are not allowed, and the initial marking is m0 ⊆ B.

The elements in the initial marking are interpreted as the conditions which
are true in the initial state.

A subnet of an EN System N identified by a subset of conditions A and all its
pre and post events, N(A∪ •A•), is a Sequential Component of N if N(A∪ •A•)
is a State Machine and if it has only one token in the initial marking.

An EN System is covered by Sequential Components if every condition of
the net belongs to at least a Sequential Component. In this case we say that the
system is State Machine Decomposable (SMD).

The behaviour of EN Systems is defined through the firing rule, which spec-
ifies when an event can occur, and how event occurrences modify the holding of
conditions, i.e. the state of the system.

Let N = (B,E, F,m0) be an EN System, e ∈ E and m ⊆ B. The event e is
enabled at m, denoted m [e〉, if •e ⊆ m and e• ∩m = ∅; the occurrence of e at
m leads from m to m′, denoted m [e〉m′, iff m′ = (m \ •e) ∪ e•.

Let ε denote the empty word in E∗. The firing rule is extended to sequences
of events by setting m [ε〉m and ∀e ∈ E,∀w ∈ E∗,m [ew〉m′ = m [e〉m′′[w〉m′′;
w is called firing sequence.

A subset m ⊆ B is a reachable marking of N if there exists a w ∈ E∗ such
that m0 [w〉m. The set of all reachable markings of N is denoted by [m0〉.

An EN System is contact-free if ∀e ∈ E,∀m ∈ [m0〉: •e ⊆ m implies e•∩m =
∅. An EN System covered by Sequential Components is contact-free. An event
is called dead at a marking m if it is not enabled at any marking reachable
from m. A reachable marking m is called dead if no event is enabled at m. An
Elementary Net System is deadlock-free if no reachable marking is dead.
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2.2 Unfoldings

The semantics of an EN System can be given as its unfolding. The unfolding is
an acyclic net, possibly infinite, which records the occurrences of its elements in
all possible executions.

Definition 1. Let N = (B,E, F ) be a net, and let x, y ∈ X. We say that x and
y are in conflict, denoted by x #N y, if there exist two distinct events ex, ey ∈ E
such that exF ∗x, eyF ∗y, and •ex ∩ •ey 6= ∅.

Definition 2. An occurrence net is a net N = (B,E, F ) satisfying:

1. if e1, e2 ∈ E, e1• ∩ e2• 6= ∅ then e1 = e2;
2. F ∗ is a partial order,
3. for any x ∈ X, {y : yF ∗x} is finite;
4. #N is irreflexive,
5. the minimal elements with respect to F ∗ are conditions.

A branching process of N is an occurrence net whose elements can be mapped
to the elements of N .

Definition 3. Let N = (B,E, F,m0) be an EN System, and Σ = (P, T,G) be
an occurrence net. Let π : P ∪ T → B ∪ E be a map.

The pair (Σ, π) is a branching process of N if:

– π(P ) ⊆ B, π(T ) ⊆ E;
– π restricted to the minimal elements of Σ is a bijection on m0;
– for each t ∈ T , π restricted to •t is injective and π restricted to t• is injective;
– for each t ∈ T , π(•t) = •(π(t)) and π(t•) = (•π(t)).

The unfolding of an EN System N , denoted by Unf (N), is the maximal
branching process of N , namely the unique branching process such that any
other branching process of N is isomorphic to a subnet of Unf (N). The map
associated to the unfolding will be denoted u and called folding.

2.3 Bisimulations

Bisimulation relations have been introduced as equivalence notions with respect
to event observation [7]. We define the observability of events of a system by
using a labelling function which associates the same label to different events,
when viewed as equal by an observer, and the label τ to unobservable events.

Definition 4. Let N = (B,E, F,m0) be an EN System, l : E → L ∪ {τ} be
a labelling function where L is the alphabet of observable actions and τ 6∈ L
the unobservable action. Let ε denote the empty word both of E∗ and L∗. The
function l is extended to a homomorphism l : E∗ → L∗ in the following way:

l(ε) = ε
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∀e ∈ E,∀w ∈ E∗, l(ew) =

{
l(e)l(w) if l(e) 6= τ

l(w) if l(e) = τ

The pair (N, l) is called Labelled EN System.
Let m,m′ ∈ [m0〉 and a ∈ L ∪ {ε} then:

– a is enabled at m, denoted m (a〉, iff ∃w ∈ E∗ : l(w) = a and m [w〉;
– if a is enabled at m, then the occurrence of a can lead from m to m′, denoted
m (a〉m′, iff ∃w ∈ E∗ : l(w) = a and m [w〉m′.

We define weak bisimulation as a relation between reachable markings of
Labelled EN Systems [10].

Definition 5. Let Ni = (Bi, Ei, Fi,m
i
0) be an EN System for i = 1, 2, with

the labelling function li : Ei → L ∪ {τ}. Then (N1, l1) and (N2, l2) are weakly
bisimilar, denoted (N1, l1) ≈ (N2, l2), iff ∃r ⊆

[
m1

0

〉
×
[
m2

0

〉
such that:

– (m1
0,m

2
0) ∈ r;

– ∀(m1,m2) ∈ r, ∀a ∈ L ∪ {ε} it holds

∀m′1 : m1 (a〉m′1 ⇒ ∃m′2 : m2 (a〉m′2 ∧ (m′1,m
′
2) ∈ r

and (vice versa)

∀m′2 : m2 (a〉m′2 ⇒ ∃m′1 : m1 (a〉m′1 ∧ (m′1,m
′
2) ∈ r

Such a relation r is called weak bisimulation.

For short in the rest of the paper we will use the term bisimulation instead
of weak bisimulation.

3 A class of morphisms

In this section we present the formal definition of α-morphisms for State Machine
Decomposable Elementary Net Systems (SMD-EN Systems), and discuss some of
their properties, particularly with respect to the preservation of both structural
and behavioural properties.

We start by defining a more general class of morphisms, and then present
the more specific restrictions.

Definition 6. Let Ni = (Bi, Ei, Fi,m
i
0) be a SMD-EN System, for i = 1, 2. An

ω-morphism from N1 to N2 is a total surjective map ϕ : X1 → X2 such that:

1. ϕ(B1) = B2;
2. ϕ(m1

0) = m2
0;

3. ∀e1 ∈ E1, if ϕ(e1) ∈ E2, then ϕ(•e1) = •ϕ(e1) and ϕ(e1
•) = ϕ(e1)•;

4. ∀e1 ∈ E1, if ϕ(e1) ∈ B2, then ϕ(•e1•) = {ϕ(e1)};
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We require that the map is total and surjective because N1 refines the abstract
model N2, and any abstract element must be related to its refinement.

In particular, a subset of nodes can be mapped on a single condition b2 ∈ B2;
in this case, we will call bubble the subnet identified by this subset, and denote
it by N1(ϕ−1(b2)); if more than one element is mapped on b2, we will say that
b2 is refined by ϕ.

Definition 7. Let Ni = (Bi, Ei, Fi,m
i
0) be a SMD-EN System, for i = 1, 2. An

α-morphism from N1 to N2 is an ω-morphism satisfying

5. ∀b2 ∈ B2

(a) N1(ϕ−1(b2)) is an acyclic net;
(b) ∀b1 ∈ ©N1(ϕ−1(b2)), ϕ(•b1) ⊆ •b2 and (•b2 6= ∅ ⇒ •b1 6= ∅);
(c) ∀b1 ∈ N1(ϕ−1(b2))©, ϕ(b1

•) = b2
•;

(d) ∀b1 ∈ ϕ−1(b2) ∩B1,
(b1 6∈ ©N1(ϕ−1(b2)) ⇒ ϕ(•b1) = {b2}) and (b1 6∈ N1(ϕ−1(b2))© ⇒
ϕ(b1

•) = {b2});
(e) ∀b1 ∈ ϕ−1(b2) ∩ B1, there is a sequential component NSC of N1 such

that b1 ∈ BSC and ϕ−1(•b2•) ⊆ ESC .

(a) Pre events of an in-condition (b) Post events of an out-condition

Fig. 3: Pre and post event of a bubble

As we can see in Fig. 3a and 3b, in-conditions and out-conditions have dif-
ferent constraints, 5b and 5c respectively. As required by 5c, we do not allow
that choices, which are internal to a bubble, constrain a final marking of that
bubble: i.e., each out-condition of the bubble must have the same choices of the
condition it refines. Instead, pre-events do not need this strict constraint (5b):
hence it is sufficient only that pre-events of any in-condition are mapped on a
subset of the pre-events of the condition it refines. For example, in this par-
ticular case, we know that the choice between e1 and f1 of Figure 3a is made
before the bubble, and this is implied also by the requirement 5e) on sequential
components. Moreover, the conditions that are internal to a bubble must have
pre-events and post-events which are all mapped to the refined condition b2, as
required by 5d.
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By requirement 5e, events in the neighbourhood of a bubble are not concur-
rent, as their images. Within a bubble, there can be concurrent events; however,
post events are in conflict, and firing one of them will empty the bubble, as
shown in Lemma 1 below.

The α-morphisms are closed by composition, the identity function on X is an
α-morphism, and the composition is associative. Hence, the family of SMD-EN
Systems together with α-morphisms forms a category.

The partition of elements of N1 induced by an α-morphism ϕ : N1 → N2

defines the structure of a net:

Definition 8. Let Ni = (Bi, Ei, Fi,m
i
0) be a SMD-EN System, for i = 1, 2. Let

ϕ be an α-morphism from N1 to N2.
Then ϕ defines an equivalence relation on X1, where the equivalence class of

x ∈ X1 is [x] = {y ∈ X1| ϕ(y) = ϕ(x)}.
The quotient of N1 with respect to α is N1/ϕ = (B1/ϕ,E1/ϕ, F1/ϕ,m

1
0/ϕ),

where

– B1/ϕ = {[x] : x ∈ X1, ϕ(x) ∈ B2};
– E1/ϕ = {[x] : x ∈ X1, ϕ(x) ∈ E2};
– F1/ϕ = {([x], [y]) : x, y ∈ X1, x 6= y,∃(x, y) ∈ F1};
– m1

0/ϕ = {[x] : x ∈ m1
0}.

By a simple verification [3], the quotient of N1, N1/ϕ, is a SMD-EN System
isomorphic to N2.

4 Properties preserved and reflected by α-morphisms

Since we consider SMD-EN Systems, it is natural to ask whether α-morphisms
preserve and reflect sequential components. Let ϕ be an α-morphism from N1

to N2. We know that, if a condition b2 belongs to a sequential component, then
also its pre- and post-events belong to the same sequential component. Hence,
if b2 is refined by a bubble N1(ϕ−1(b2)), by the requirement 5e) of α-morphisms
any condition of the bubble belongs to a sequential component containing any
event in ϕ−1(•b2•). This allows one to say that the sequential components of N2

are reflected by ϕ, in the sense that the inverse image of a sequential component
is covered by sequential components.

Lemma 1. Let ϕ : N1 → N2 be an α-morphism.
Let NSC2 be a sequential component of N2. Then ϕ−1(NSC2) is covered by

sequential components, each one containing all the inverse image of the neigh-
bourhood of each condition of NSC2.

Sequential components are not preserved, as we can see in Fig. 4. The se-
quential component of N1 generated by {ϕ−1(b1), b5−1, b6−1} is such that its
image {b1, b5, b6} is not a sequential component of N2.

The idea driving our interpretation of bubble is that the subnet corresponding
to a condition “behaves” in the same way as the condition it refines. In a SMD-
EN System, each condition at any time can be true or false. It is not possible that
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Fig. 4: Two SMD-EN Systems related by an α-morphism

this condition is partially true or partially false; hence, also the bubble should
behave like this. The next lemma states that firing an output event of a bubble
empties the bubble, and that no input event of a bubble is enabled whenever a
token is inside the bubble.

Lemma 2. Let ϕ : N1 → N2 be an α-morphism. Then:

1. Let e1 ∈ E1, b2 ∈ B2: e1 ∈ ϕ−1(b2
•); m1,m

′
1 ∈

[
m1

0

〉
: m1 [e1〉m′1, then

m′1 ∩ ϕ−1(b2) = ∅.
2. Let e1 ∈ E1, b2 ∈ B2: e1 ∈ ϕ−1(•b2); m1,m

′
1 ∈

[
m1

0

〉
: m1 [e1〉m′1 then

m1 ∩ ϕ−1(b2) = ∅.

Proof. Take a marking m1 in which a condition b1 ∈ ϕ−1(b2) is marked.
We know by Def. 7, point 5e) that there exists a sequential component SC

of N1 such that b1 ∈ BSC and ϕ−1(•b2•) ⊆ ESC .

1. By contradiction, take e1 ∈ ϕ−1(b2
•) such that b1 6∈ •e1 andm1 [e1〉; hence all

its preconditions are marked. Since SC contains e1, one of its preconditions
belongs to SC as well as b1, this is a contradiction because the sequential
component has only one token.

2. By contradiction, take e1 ∈ ϕ−1(•b2) such that m1 [e1〉; hence all its precon-
ditions are marked. Since SC contains e1, one of its preconditions belongs
to SC as well as b1, and this is a contradiction because the sequential com-
ponent has only one token.

ut

Our morphisms can be seen like a special case of Winskel morphisms [13], as
we shall prove in Section 5. Then, since Winskel morphisms preserve reachable
markings, also α-morphisms do, as stated in the following.
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Proposition 1. Let ϕ : N1 → N2 be an α-morphism.
Then if m1 ∈

[
m1

0

〉
and m1 [e〉m′1 then ϕ(m1) ∈

[
m2

0

〉
and

– if ϕ(e) ∈ E2 then ϕ(m1) [ϕ(e)〉ϕ(m′1) else
– (if ϕ(e) ∈ B2 then) ϕ(m1) = ϕ(m′1).

As for other morphisms in the literature, α-morphisms do not reflect reachable
markings. This happens either when a condition is refined by a subnet leading
to a block before reaching a marking enabling out-events, or whenever the re-
finements of conditions “interfere” with each other so that, even if in each bubble
a “final” local marking is reached, the global marking doesn’t enable any event.
The second case is shown in Fig. 5: any event in each bubble can fire, but N1

has two deadlocks: {p3, p6} and {p4, p5}. The two above cases suggest to require

Fig. 5: An α-morphism.

both that any condition is refined by a subnet such that, when a final marking
is reached, this one enables events which correspond to the post-events of the
refined condition; and also that different refinements do not “interfere” with each
other. The non interference is guaranteed when any event of N2 has at most a
unique condition in its neighbourhood that is properly refined in N1.

In order to reflect the reachable markings we have to introduce local be-
havioural constraints and this by considering the unfolding of subnets related
to the bubbles. Then, we need to define the following auxiliary construction.
Given an α-morphism ϕ : N1 → N2, and a condition b2 ∈ B2 with its refine-
ment N1(ϕ−1(b2)), we define two new SMD-EN Systems. The first one, denoted
S1(b2), contains (a copy of) the subnet N1(ϕ−1(b2)), its pre and post-events in
E1 and two new conditions: bin1 , which is pre of all the pre-events, and bout1 ,
which is post of all the post-events. The initial marking of S1(b2) will be {bin1 }.
The second system, denoted S2(b2) contains b2, its pre- and post-events and two
new conditions: bin2 , which is pre of all the pre-events, and bout2 , which is post of
all the post-events. The initial marking of S2(b2) will be {bin2 }.
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In Fig. 6 and 7 we show the two systems S1(b2) and S2(b2) for the nets showed
in the initial example (Fig. 1 and 2), in Section 1, with b2 = formal_check.

Fig. 6: S1(formal_check) of Fig. 2.

Fig. 7: S2(formal_check) of Fig. 1.

Definition 9. Let ϕ : N1 → N2 be an α-morphism and b2 ∈ B2.
Construct the SMD-EN Systems, S1(b2) = (BS1, ES1, FS1,m

S1
0 ) and S2(b2) =

(BS2, ES2, FS2,m
S2
0 ) in this way:

BS1 =





(ϕ−1(b2) ∩B1) ∪ {bout1 } if •b2 = ∅
(ϕ−1(b2) ∩B1) ∪ {bin1 } if b2• = ∅
(ϕ−1(b2) ∩B1) ∪ {bin1 , bout1 } otherwise

ES1 = (ϕ−1(b2) ∩ E1) ∪ ϕ−1(•b2) ∪ ϕ−1(b2
•);

FS1 = (F1 ∩ ((BS1 ∪ ES1)× (ES1 ∪BS1))) ∪ F in
S1 ∪ F out

S1 , where
F in
S1 = {(bin1 , e) : e ∈ ϕ−1(•b2)} and
F out
S1 = {(e, bout1 ) : e ∈ ϕ−1(b2

•)};

mS1
0 =

{
m1

0 ∩ ϕ−1(b2) if •b2 = ∅
{bin1 } otherwise
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BS2 =





{b2, bout2 } if •b2 = ∅
{b2, bin2 } if b2• = ∅
{b2, bin2 , bout2 } otherwise

ES2 = •b2•;
FS2 = (F2 ∩ ((BS2 ∪ ES2)× (ES2 ∪BS2))) ∪ F in

S2 ∪ F out
S2 , where

F in
S2 = {(bin2 , e) : e ∈ •b2} and F out

S2 = {(e, bout2 ) : e ∈ b2•};

mS2
0 =

{
m2

0 ∩ {b2} if •b2 = ∅
{bin2 } otherwise

Define ϕS as a map from S1(b2) to S2(b2), which restricts ϕ to the elements
of S1(b2), and extends it with ϕS(bin1 ) = bin2 and ϕS(bout1 ) = bout2 .

Note that S1(b2) and S2(b2) are SMD-EN Systems and that ϕS is an α-
morphism.

Let ϕ : N1 → N2 be an α-morphism and ϕS : S1(b2) → S2(b2) as in Def. 9.
By using ϕS , consider two labelling functions l1 and l2 such that the events in
ES2 are all observable, i.e.: l2 is the identity function, and the invisible events
of S1(b2) are the ones mapped to conditions, i.e.:

∀e ∈ ES1 : l1(e) =

{
ϕS(e) if ϕS(e) ∈ ES2

τ otherwise

Let Unf (S1(b2)) be the unfolding of S1(b2) with u : Unf (S1(b2)) → S1(b2)
folding function. The following lemma shows that, if the map, ϕS ◦ u, obtained
composing ϕS with u is an α-morphism, then S1(b2) and S2(b2) are bisimilar.

Lemma 3. Let ϕ : N1 → N2 be an α-morphism, and ϕS as in Def. 9. Let
Unf (S1(b2)) be the unfolding of S1(b2) with u folding function. If ϕS ◦u is an α-
morphism from Unf (S1(b2)) to S2(b2), then r = {(m1, ϕ

S(m1)) : m1 ∈
[
mS1

0

〉
}

is a bisimulation, and (S1(b2), l1) and (S1(b2), l2) are bisimilar.

In case the morphism corresponds to the refinement of a marked condition,
we ask all the tokens of the corresponding bubble to be into in-conditions which
are post-conditions of a pre-event, if it exists. System N1 is then called well
marked with respect to ϕ.

Definition 10. Let ϕ : N1 → N2 be an α-morphism. System N1 is well marked
with respect to ϕ if for each b2 ∈ B2 one of the following conditions hold:

– ϕ−1(b2) ∩m1
0 = ∅ or

– if •b2 6= ∅ then there is e1 ∈ ϕ−1(•b2) such that ϕ−1(b2) ∩m1
0 = e1

• or
– if •b2 = ∅ then ϕ−1(b2) ∩m1

0 = ©ϕ−1(b2)

The following proposition states a set of conditions under which reachable mark-
ings are reflected by α-morphisms.

Proposition 2. Let ϕ : N1 → N2 be an α-morphism such that N1 is well
marked w.r.t. ϕ and ϕS ◦ u be an α-morphism from Unf (S1(b2)) to S2(b2) then,
for all m2 ∈

[
m2

0

〉
, there is m1 ∈

[
m1

0

〉
such that ϕ(m1) = m2.
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Proof. We will actually show a slightly stronger property, namely that m1 can
be chosen so that its intersection with the set of conditions in the bubble refining
b2 only contains elements in (N1(ϕ−1(b2)))©. The proof is by induction on the
length of a firing sequence σ from m2

0 to m2.
Suppose |σ| = 0. Then m2 = m2

0. By definition, ϕ(m1
0) = m2

0. If b2 6∈ m2
0,

then m1
0 ∩ ϕ−1(b2) = ∅. If b2 ∈ m2

0, then we use Lemma 3 to reach in N1 a
marking in the bubble of b2 that contains only out-conditions, and we are done.

Suppose now |σ| = n+1. Then we can write σ = σ1e2, withm2
0[σ1〉m2

1[e2〉m2.
By the induction hypothesis, there is m1

1 ∈ [m1
0〉 such that ϕ(m1

1) = m2
1 and

m1
1 ∩ ϕ−1(b2) ⊆ (N1(ϕ−1(b2)))©.
Since ϕ is surjective, there is at least one event in E1 that ϕ maps on e2. If

b2 6∈ •e2, then there exists e1 ∈ ϕ−1(e2) such that m1
1 [e1〉. If b2 ∈ •e2, by Lemma

3 there exists e1 ∈ ϕ−1(e2) such that m1
1 [e1〉. ut

Let Ni = (Bi, Ei, Fi,m
i
0) be a SMD-EN System for i = 1, 2 and let ϕ : N1 →

N2 be an α-morphism. By using ϕ, the labelling functions are defined such that
E2 are all observable, i.e.: l2 is the identity function, and the invisible events of
N1 are the ones mapped to conditions, i.e.:

∀e ∈ E1 : l1(e) =

{
ϕ(e) if ϕ(e) ∈ E2

τ otherwise

From Prop. 1 and Prop. 2, it then follows that N1 and N2 are bisimilar.

Proposition 3. Let ϕ : N1 → N2 be an α-morphism such that N1 is well
marked and ϕS ◦ u is an α-morphism from Unf (S1(b2)) to S2(b2) then, (N1, l1)
and (N2, l2) are bisimilar (N1, l1) ≈ (N2, l2).

Prop. 2 and Prop. 3 are stated in the case in which only one condition is
refined, but they can be generalized to multiple refinements, provided that in
the neighbourhood of each event of N2 there is, at most, one refined condition.
The examples in Fig. 5 show why this constraint is required.

5 Relations with Winskel morphisms

Let us now study the relation between ω-morphisms and Winskel morphisms, as
defined in [13].

A Winskel morphism from N1 to N2 is a pair (η, β) with η : E1 →∗ E2

partial function and β : B1 → B2 finitary multirelation such that β(m1
0) = m2

0

and ∀e ∈ E : •(η(e)) = β(•e) and (η(e))• = β(e•). Note that if η(e) is undefined,
β(•e) and β(e•) should be the empty set.

Given an ω-morphism from N1 to N2 we associate to it a Winskel morphism.
This is possible by adding or deleting conditions to N1, if needed. These condi-
tions are representations of the abstract conditions refined in N1. The obtained
net is canonical with respect to ϕ as in the following definition.
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Definition 11. Let ϕ : X1 → X2 be an ω-morphism from N1 to N2. N1 is
canonical with respect to ϕ if every bubble, ϕ−1(b2) with b2 ∈ B2, contains one
condition, b1 ∈ ϕ−1(b2) ∩B1, that satisfies the following constraints:
– b1 ∈ m1

0 ⇔ b2 ∈ m2
0;

– •b1 = ϕ−1(•b2);
– b1

• = ϕ−1(b2
•).

We call that condition b1 representation of b2, denoted rN1
(b2).

If N1 is not canonical, it is always possible to construct its unique canonical
version, NC1 , by adding the missing representations, and marking them as their
images, or by deleting the multiple ones. The corresponding morphism, ϕC , co-
incides with ϕ, plus the mapping of the new conditions on the corresponding
conditions of N2. It is easy to verify that the canonical version of a system,
with respect to an ω-morphism to another SMD-EN Systems, is unique up to
isomorphisms.
Proposition 4. ϕC is an ω-morphism from NC1 to N2.
Take NC1 , N2 and ϕC . Now, restrict ϕC to all the nodes of NC1 that are not in a
bubble ϕ−1(b2), but for rN1(b2), for some b2 ∈ B2 and call it (ϕC)rep.
Proposition 5. ((ϕC)rep ↓ EC1 , (ϕC)rep ↓ BC1 ) is a Winskel morphism.
Any α-morphism is an ω-morphism. Adding to N1 the representation of each
condition does not modify the behaviour, because of the constraint on sequential
components. Hence, the result stated here hold for α-morphisms. In this sense,
we consider them as a special case of Winskel morphisms.

6 Conclusions

We have presented a notion of morphism for a basic class of Petri nets with the
aim of supporting refinement/abstraction of local states. The morphism, in fact,
formalizes the relation between a refined net system and an abstract one, by
replacing local states of the target net system with subnets. The main idea is
that if one starts with an abstract model with some required behavioural prop-
erties, then, by refining local states with subnets respecting some constraints,
the refined net system will maintain the required behavioural properties. Indeed,
the main results concern behavioural properties preserved and reflected by the
morphisms. In particular, reachable markings are preserved, and we have charac-
terized some conditions under which reachable markings are reflected, and under
which the morphisms induce a bisimulation between net systems. Since bisimu-
lation preserves deadlock freeness, this implies for example that, starting from a
deadlock-free abstract system it is possible to refine it obtaining a system which
is still deadlock-free. The constraints in order to preserve/reflect behavioural
properties are structural and behavioural, where the behavioural ones are only
local. On this morphism in [2], we have defined a notion of composition based
on interface in the line of [4]. For what concerns future work, we plan to study
the constraints under which this morphism can be defined for P/T nets and
Coloured nets.
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Abstract. Ensuring the consistent composition of context-dependent
behavior is a major challenge in context-aware systems. Developers have
to manually identify and validate existing interactions between behav-
ioral adaptations, which is far from trivial. This paper presents a run-time
model for the consistency management of context-dependent behavior,
called context Petri nets. Context Petri nets provide a concrete represen-
tation of the execution context of a system, in which it is possible to rep-
resent the interactions due to dynamic and concurrent context changes.
In addition, our model allows the definition of dependency relations be-
tween contexts, which are internally managed to avoid inconsistencies.
We have successfully integrated context Petri nets with Subjective-C, a
context-oriented programming language. We show how our model can
be cleanly combined with the abstractions of the language to define and
manage context-dependent behavior.

1 Introduction

Current sensing technology allows computing devices to be highly aware of their
execution environment. To leverage the full potential of these sensing capacities,
software systems should properly represent the sensed context and dynamically
adapt their behavior accordingly. To develop such systems, the Context-Oriented
Programming (COP) paradigm has emerged [4], which enables the definition
and composition of context-dependent behavioral adaptations. However, con-
sistently composing behavioral adaptations is still challenging. Developers need
to manually ensure that insertion and withdrawal of adaptations preserve the
expected behavior of the system. Different approaches have been proposed to
prevent inconsistencies by defining dependency relations between contexts and
? This work has been supported by the ICT Impulse Programme of the Brussels
Institute for Research and Innovation.



their associated behavioral adaptations [6,8]. These dependencies constrain con-
text interaction by conditioning the deployment of behavioral adaptations at a
high abstraction level, which is well-suited to developers. Nevertheless, devel-
opers still have to manually check consistency of such interactions, which is far
from trivial.

We claim that inconsistencies in the composition of context-dependent be-
havioral adaptations arise mainly by the multiple and dynamic nature of the
system’s context (an heterogenous collection of data which can vary dynami-
cally over time, and from one location to another). Without the appropriate
support to represent such context and to deal with their dependencies and dy-
namic changes, it is often difficult to ensure that the behavioral adaptations
associated to them do not interfere with each other. We then propose a Petri net-
based execution model for context-oriented programming, called context Petri
nets (CoPN), which enable a consistent representation and management of the
context of a system. In our model, context changes are modeled as dynamic con-
text activations and deactivations. Dependency relations between contexts are
expressed by connecting activation/deactivation actions of different contexts. In
addition, context Petri nets provide a concrete view of the system’s state at
every point in time, easing consistency management. Every activation/deactiva-
tion that generates an inconsistent state is immediately retracted to the state
before its execution.

The reminder of the paper is organized as follows. Section 2 gives a brief
background on COP, putting forward the requirements to provide consistent
composition of behavioral adaptations. Section 3 presents the foundations of
our context Petri nets model, and Section 4 explains how this model fulfills the
composition requirements. Section 5 and 6 assess the approach, its relation to
existing work, and possibilities for future work. Section 7 concludes the paper.

2 Requirements for Consistent Composition of
Context-Dependent Behavior

Context-Oriented Programming (COP) allows software systems to adapt their
behavior dynamically according to changes detected in their execution envi-
ronment [4]. The core characterization of COP systems from which we start
comprises the following concepts:

– Contexts represent particular situations detected during the execution of an
application, with respect to which application behavior can be adapted as
deemed appropriate.

– Context activation takes place whenever the situation for which the context
stands is detected in the execution environment; correspondingly, context
deactivation takes place when the given situation no longer occurs in the
execution environment.

COP allows systems to define behavioral adaptations which are associated
to particular contexts. Therefore, the adaptations are dynamically composed
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with the system’s basic functionality whenever the contexts become active. As
illustration of contexts and context activations, consider the case of a context-
aware mobile phone with Internet connectivity. The phone can gain access to
the Internet by means of three different technologies: WiFi, 3G and Edge. These
contexts are active whenever the respective protocol is available, and inactive
otherwise. The fact that the phone has any connectivity at all is signaled by
the activation of a Connection context. Such activation follows the activation of
WiFi, 3G or Edge. Besides Internet connectivity, the phone also supports video
calls. When Connection is active, video calls become possible, a situation that
is signaled by activating the VideoCall context. Video calls require that there is
enough battery power left —that is, for the HighBattery context to be active.

Although simple, this scenario already shows two peculiarities of contexts
and context activation:
Dynamicity The activation state of contexts changes unannounced over time
as different situations are detected in the execution environment.
Multiplicity Multiple contexts can be active at the same time, including the
case that a same context can be activated more than once.
As an example of dynamicity, the WiFi context can be active intermittently
as the user roams around in the city and wireless networks are found and left
behind. As for multiplicity, the Connection context can be activated as much
as three times, depending on whether WiFi, 3G or Edge are available.3

The dynamicity and multiplicity of context activation can compromise the
behavioral consistency of COP systems. For instance, inconsistencies can arise
if adapted behavior is withdrawn from the system while it is executing [10] —a
consequence of dynamicity. Inconsistencies can also arise when the adaptations
of an active context contradict the adaptations of another active context —a con-
sequence of multiplicity. Hence, to ensure consistent composition of behavioral
adaptations, a COP system should provide support to cope with dynamicity and
multiplicity. This means that the following requirements should be fulfilled:
R.1 Dynamic Context Activation and Deactivation Provide a consistent
representation of the system’s context. This implies that dynamic context changes
should be clearly reflected in the system as they are detected in the system’s ex-
ecution environment.
R.2 Consistent Interaction Between Multiple Contexts Ensure that pro-
grams are always in a consistent state, even after a context activation or deac-
tivation. In case of multiple activations of different contexts, the model should
prevent contexts that interfere with each other to be active at the same time.
R.3 Multiple Activations of the Same Context Allow that a context is ac-
tivated as many times as different instances of the situation represented by the
context actually occur in the execution environment.

At present, we observe that no single COP approach appropriately sup-
port these three requirements. Most COP languages [4,8,9,14] define dedicated
constructs for context activation and deactivation. However, only few of them

3 The concept of multiple context activation is analogous to that of multisets in math-
ematics, in which an element can appear more than once in the multiset.
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provide means to specify constraints between contexts. Subjective-C [8] de-
fines language abstractions to specify dependency relations which are inter-
nally represented and managed using a dependency graph. ContextL [6] and
EventCJ [14] allow defining context interactions programmatically by means
of transition functions. The main problem with these approaches is that they
require that developers manually verify the consistency of the context depen-
dencies. This means that they need to check every possible interaction between
context (de)activations. Furthermore, these approaches do not provide a struc-
tured way to compose context dependencies. As a result of this, developers have
to manually encode the composition which is cumbersome, error-prone and typ-
ically leads to programs that are difficult to understand and maintain.

Concerning the multiple context activations, ContextL, EventCJ, and other
COP languages that follow similar design decisions allow contexts to be activated
only once. Subjective-C and Ambience [9], on the other hand, allow contexts to
be activated as many times as necessary.

We now proceed to explain our proposal to address these requirements using
a formal tool from the realm of concurrent systems modeling.

3 Context Petri Nets

To ensure the consistent composition of behavioral adaptations, we introduce
a run-time model for COP called context Petri nets (CoPN).4 CoPN (read co-
pen) is a Petri net-based formalism based on three variants of Petri nets: reactive
Petri nets [7], static priorities [1], and inhibitor arcs [2]. Petri nets have been used
extensively to describe the information control flow of non-deterministic, concur-
rent systems. This makes such a formalism suitable to cope with the dynamicity
and multiplicity of context in software systems. In this section, we explain how
to use CoPN to model contexts, dependencies between contexts, and the compo-
sition between such dependencies. We then discuss how the execution semantics
of our model ensures that contexts can be always consistently activated.

3.1 Structure of CoPNs

The CoPN model follows the definition of reactive Petri nets with inhibitor arcs
and static priorities shown in Table 1. The components of a CoPN are defined
by the tuple P =< P, T, f, f◦, ρ,m0 > (1), where P is a finite set of places, T
is a finite set of transitions, f is the flow function defining regular arcs between
places and transitions, f◦ is the flow function defining inhibitor arcs between
places and transitions, ρ is a function defining priorities of transitions, and m0

is the initial marking function assigning tokens to places. This description of
CoPNs follows from their formal definition [3].

4 CoPNs are fully implemented as a run-time model for the Subjective-C [8] language.
The implementation is available for download at http://released.info.ucl.ac.
be/Tools/Context-PetriNets.
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(1) P =< P, T, f, f◦, ρ,m0 > (5) f : (P × T ) ∪ (T × P ) −→ Z+

(2) P ∩ T = φ (6) f◦ : P × T −→ {0, 1}
(3) P = Pc ∪ Pt (7) ρ : T −→ Z+

(4) T = Te ∪ Ti ∪ Tc (8) m0 : P −→ Z+

Table 1: Context Petri nets components definition.

Places and transitions are disjoint sets (2). The set of places is divided into
two disjoint sets: Pc of context places, and Pt of temporary places (3). The set
of transitions is divided into three disjoints sets: Te of external transitions, Ti of
internal transitions and Tc of internal cleaning transitions (4). There cannot be
arcs between two places or two transitions. Each arc defines how many tokens
flow from, or to places (5). There can be maximum one inhibitor arc between a
place and a transition (6). Transitions are given a firing order priority. Higher
priority transitions fire before lower priority ones (7). Enabled transitions of the
same priority fire randomly. Finally, tokens are assigned to places by means of
the (initial) marking function (8).

An explanation of the mapping between Petri nets and COP concepts follows.
As illustration, Fig. 1 shows how the VideoCall context from the example in
Section 2 can be defined as a CoPN.

Pr.V

req(V)

0

act(V)

2
V

req(¬V)

0
Pr.¬V

deac(V)

2 ¬V

cl(¬V)

1

Fig. 1: CoPN representation of the VideoCall (V) context.

Places in CoPNs are used to capture the state of contexts. A context is defined
in terms of four places defining the context’s life cycle. A context place, Pc, (solid-
line circle labeled VideoCall in Fig. 1) is used to represent the actual context
and its activation state. The other three temporary places, Pt, (dashed circles
in Fig. 1) are used to represent intermediate states of the context: preparing
for activation (Pr.VideoCall), preparing for deactivation (Pr.¬VideoCall), and
flagged as already deactivated (¬VideoCall).
Temporary places help to maintain consistency constraints when manipulating
the activation state of contexts. Activation and deactivation of a context does
not occur immediately, but needs to be requested first and processed carefully,
since the request may be denied if it violates constraints imposed by other con-
texts. The flag temporary place (¬VideoCall in Fig. 1) is used to ensure that a
context is effectively deactivated once for every deactivation request (otherwise,
the context would be emptied of all its tokens after just a single deactivation).
Transitions in CoPNs represent changes in the activation state of contexts.
Transitions are divided in two categories: external and internal. External transi-
tions (white squares in Fig. 1) are used to request a context activation or deac-
tivation in response to a change detected in the execution environment. Internal
transitions (black squares in Fig. 1) forward the requests to other dependent
contexts, and trigger the actual activation or deactivation of contexts. Finally, a
particular kind of internal transition internal cleaning transitions (gray square
in Fig. 1) is used to clean the deactivation flag place.
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Transition priorities are shown as small numbers under each transition in Fig. 1.
External transitions are white transitions of priority 0. Internal transitions are
black transitions of priority 2. Internal cleaning transitions are gray transitions
of priority 1. Transition priorities are unequivocally identified by the transition
color, hence priorities will be omitted in future.
Tokens represent the activation state of a context, depending on the place they
occupy. In Fig. 1 the VideoCall context is active if its context place (labeled
VideoCall) is marked, preparing for activation if place Pr.VideoCall is marked,
preparing for deactivation if place Pr.¬VideoCall is marked, and already deac-
tivated if place ¬VideoCall is marked.
Arcs encode the possible ways in which tokens can flow from one place to
another, mediated by transitions. Hence, arcs help encoding the way context
activations and deactivations depend on each other. Regular arcs, noted as arrow-
headed edges ( ), permit to verify the presence of tokens in a place, thanks to
the f flow function. Inhibitor arcs, depicted as circle-ended edges ((), permit
to verify the absence of tokens in a place, by means of the f◦ flow function.
Inhibitors are used for example to express that a context cannot be activated if
another context is active.

3.2 Dynamics of CoPNs

CoPNs make it possible to represent and track the changes that occur in the
system’s execution environment. CoPNs can thereby be used as run-time repre-
sentation of context. The following descriptions define the way context state is
encoded in a CoPN, and how it evolves according to the constraints encoded in
the structure of such CoPN.

– A transition t is enabled if its input places pi from regular arcs contain at
least f(pi, t) tokens, its input places p◦ from inhibitor arcs are empty, and
no other transition t′ with higher priority, ρ(t′) > ρ(t), is enabled.

– Transition firing modifies the state of the Petri net by removing as many
as f(pi, t) tokens from its input places pi, and adding as many as f(t, pout)
tokens to its output places pout.

– External transitions are fired with the regular may fire semantics of Petri
nets. That is, if a transition is enabled it may fire. In our model external
transitions are fired as consequence of a change in the execution environment.

– Internal transitions are fired with a must fire semantics. That is, if an in-
ternal transition is enabled it must fire. Internal transitions are used to
coordinate activation and deactivation among different contexts, according
to the dependency relations established between them. Section 3.3 describes
such dependencies.

CoPN model is used to ensure consistency of context activations, we define
a CoPN to be in a consistent state if no temporary place is marked after all
enabled internal transitions have fired.
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3.3 Dependency Relations Between CoPNs

CoPN allows multiple activations of different contexts. To avoid conflicts in the
adaptations of the different active contexts, our model enables the definition of
dependency relations between contexts. We have taken as starting point the four
dependency relations defined in Subjective-C [8], and modeled them in CoPN:
exclusion, weak inclusion, strong inclusion and requirement. Each dependency
relation defines how the activation state of a context influences that of another
context. In CoPNs, this is achieved by connecting internal transitions of one
context to the (temporary) places of another one, via an arc. Each arc expresses
a rule describing the interaction between contexts. New dependency relations
could be defined by describing such rules.

Exclusion. An exclusion dependency prevents two contexts from being active
at the same time. However, both contexts may be simultaneously inactive. For
example, the interaction between the LowBattery (L) and HighBattery (H) con-
texts of the mobile phone is defined by the CoPN shown in Fig. 2. These contexts
clearly should not be active at the same time. If one of the contexts is active,
the activation of the other is prevented by the corresponding inhibitor arc.

Pr.L

req(L) act(L)

act(H)

L

req(¬L)

Pr.¬L

deac(L)

¬L

cl(¬L)

Pr.H

req(H)

H

req(¬H)

Pr.¬H

deac(H)

¬H

cl(¬H)
Fig. 2: Exclusion between Low Battery (L) and HighBattery (H).

Firing a request for activating the L context, req(L), under the initial marking
m0(H)=1 yields the markingm1, wherem1(H) =1 andm1(Pr.L)=1. At this point,
none of the internal transitions is enabled. In particular, act(L) is not enabled
because of the inhibitor arc (H, act(L)). An inconsistent state has been reached
since one of the temporary places, Pr.L, is marked. In this case, all of the the
actions are reverted to the initial marking state. The request for the activation is
denied, and the user is informed about the reason for the refusing the activation.

Weak Inclusion A weak inclusion represents a situation in which the activation
(deactivation) of a context should automatically trigger the activation (deacti-
vation) of another context. Note that the latter context can be activated or
deactivated independently of (without effect on) the former. This interaction is
shown in Fig. 3, using as example the case of the Connectivity and VideoCall
contexts: activation of Connectivity automatically triggers the activation of
VideoCall, meaning that video calls are normally available whenever the phone
is connected to the Internet). The double arc in Fig. 3 is a visual shortcut that
stands for two different arcs going in opposite directions.
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Pr.C

req(C) act(C)

deac(C)

C

req(¬C)

Pr.¬C

deac(C)

¬C

cl(¬C)

Pr.Vreq(V) act(V) V req(¬V) Pr.¬V deac(V) ¬V cl(¬V)
Fig. 3: Weak inclusion from Connectivity (C) to VideoCall (V).

Strong Inclusion A strong inclusion represents a dependency in which, simi-
larly to a weak inclusion, activation or deactivation of a context triggers that of
the related context. Additionally, deactivation of the latter context triggers back
the deactivation of the former. These interactions are encoded by the CoPN
shown in Fig. 4; as in weak inclusion, the double arc stands for two different
arcs going in opposite directions. The CoPN encodes an interaction such that
activation of WiFi results in the activation of Connectivity; reciprocally, if for
some reason Connectivity is deactivated, then WiFi will also be deactivated.

Pr.W

req(W) act(W)

deac(C)

W

req(¬W)

Pr.¬W

deac(W)

¬W

cl(¬W)

deac(W)

Pr.Creq(C) act(C) C req(¬C) Pr.¬C deac(C)

¬C

cl(¬C)

deac(C)

Fig. 4: Strong inclusion from WiFi (W) to Connectivity (C).

Requirement A requirement represents the situation in which activation of
a context is possible only if another context is already active. This restriction
implies that when the latter context is no longer active the former context must
be deactivated. The CoPN corresponding to this interaction is shown in Fig. 5:
VideoCall can be activated only if HighBattery is already active.

Thus far, contexts and dependency relations have been discussed as isolated
CoPNs in the system. We now explain how different CoPNs can be composed to
form a unified CoPN that the system can use as run-time model of the execution
environment as a whole.
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Pr.H

req(H) act(H)

deac(V)

H req(¬H) Pr.¬H

deac(H) ¬H cl(¬H)

deac(H)

Pr.V

req(V) act(V) V req(¬V) Pr.¬V

deac(V)

¬V cl(¬V)

Fig. 5: Requirement of HighBattery (H) by VideoCall (V).

3.4 Composing Context Dependency Relations

This section provides an intuitive description of the steps needed to compose
CoPNs.5 A context only interacts with other contexts directly related to it. This
provides modularity to the composition mechanism, because when composing,
Petri net elements (arcs) are added only between the contexts being composed.

To preserve the semantics of dependency relations, CoPN composition ex-
tends the place combination technique of Petri nets [19]. As mentioned in the
previous section, each dependency relation is comprised of a set of rules. Such
rules must be verified to hold in the composed CoPN, after combining corre-
sponding places and transitions. The verification process may add additional
arcs when needed, to satisfy the rules.

Snippet 1 shows pseudo-code describing the composition of CoPNs. We ex-
plain the composition by means of an example of two dependency relations
R1(C1, C) and R2(C2, C) between contexts C1, C2 and C. For simplicity, we as-
sume that the two relations are to be composed into an empty CoPN P. The first
step in the composition is to combine the C context common to both relations.
This is done by taking the union of all corresponding elements associated to each
context –that is, elements with the same label; inputs and outputs are collapsed
into one (lines 3–6). Second, for all existing dependency relations in the CoPN
each rule is checked to ensure that it is satisfied. Additional arcs might be added
for transitions that match a rule but do not satisfy it (lines 7–10).

1 add C1 to P
2 add C2 to P
3 loop for e1 such that e1 ∈ PC ∪ TC in R1

4 e2 such that e2 ∈ PC ∪ TC in R2

5 add e1 to P
6 i f e1 6= e2 then add e2 to P
7 loop for R dependency r e l a t i o n in P
8 c con s t r a i n ru l e in R
9 t t r a n s i t i o n in P

10 i f t does not s a t i s f y c then add new arc(t, c) to P

Snippet 1: CoPN composition algorithm.

5 A full formal description of composition in CoPNs falls outside the scope of this
paper, but it is available as technical report [3].
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3.5 Programming Support for Context Petri Nets

The CoPN model can become complex as the system grows. However, developers
interact with it through a language abstraction layer that hides such complexity.
This section presents the context-oriented constructs of Subjective-C, and how
these map to the underlying CoPN model.

Context declaration ::= @context( context-name [,bound ] )
Context activation ::= @activate( context-name )
Context deactivation ::= @deactivate( context-name )
Dependency relations declaration ::=

[ addExclusionBetween: context-name and: context-name ]
[ addWeakInclusionFrom: context-name to: context-name ]
[ addStrongInclusionFrom: context-name to: context-name ]
[ addRequirementTo: context-name of: context-name ]

Fig. 6: Subjective-C method syntax to interact with CoPNs.
Fig. 6 shows the language constructs available in Subjective-C for the creation

and manipulation of contexts, and hence CoPNs. A context declaration automat-
ically generates a context structure as that of Fig. 1. The maximum number of
times a context can be activated can be bounded by a positive integer. Context
activation and deactivation fire the corresponding external transitions in the
underlying CoPN, for example req(VideoCall) and req(¬VideoCall) in Fig. 1.
Finally, a dependency relation declaration specifies the different dependency re-
lations between two contexts, as described in Section 3.3.

For illustration, Snippet 2 shows definitions for LowBattery and HighBattery
contexts. Lines 1 and 2 generate a CoPN as that of Fig. 1 for each context.
The exclusion dependency defined between the two contexts in line 3 yields the
CoPN shown in Fig. 2. Line 4 is the activation of the LowBattery context which
(when successful) installs the behavior adaptations associated to it. Due to the
LowBattery context being active, activation of the HighBattery context in Line
5 is denied and the cause of the denial is given to the user.

1 SCContext *lb = @context(LowBattery);
2 SCContext *hb = @context(HighBattery);
3 [addExclusionBetween: lb and: hb];
4 @activate(LowBattery);
5 @activate(HighBattery);

Snippet 2: Example of exclusion dependency declaration.

4 Consistent Composition of Context-Dependent
Behavior in CoPN

Having explained the core of the CoPN model in Section 3, we now turn to the
question of how the model satisfies the requirements for consistent composition
of context-dependent behavior put forward in Section 2.
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4.1 Dynamic Context Activation and Deactivation (R.1)

CoPN provides a concrete representation of the system’s context. The dynamic
activation and deactivation of a context uses the definition of consistent state
for a CoPN given in Section 3.2, which is ensured by the following process:

– Before external transitions are fired, the set of current active contexts is
saved as the current marking of the system.

– If an inconsistency exists after firing all enabled internal transitions (that is,
if a temporary place is still marked), all modifications made since the exter-
nal transition firing are reverted. This is done by reinstating the previously
saved current marking.

– In case an inconsistency exists, a message is prompt to the user with the
reason preventing the activation or deactivation to take place.

– If the system reaches a consistent state, the current marking is updated to
the marking found in the CoPN. A trace of all fired internal transitions is
given to the user.

As an example, consider the discovery of a Wifi network connection in the
mobile phone. The initial marking m0 of the CoPN representing the Wifi con-
text ism0(Wifi)=0 which is a consistent state. When a Wifi network connection
is discovered, this generates an @activate(Wifi) message. The transition to re-
quest the context activation is fired, req(Wifi), adding a token to the temporary
place Pr.Wifi. This changes the initial marking m0 to a new marking m1, where
m1(Pr.Wifi) =1. Such a marking enables the internal transition act(Wifi) which
now must fire according to the internal transition semantics described in Sec-
tion 3.2. The firing moves the token from Pr.Wifi to Wifi yielding a markingm2

where m2(Wifi)=1. At this point none of the internal transitions is enabled, and
none of the temporary places are marked. Therefore, the CoPN is in a consistent
state. The case of context deactivation is similar to the context activation one.

4.2 Consistent Interactions Between Multiple Contexts (R.2)

The CoPN model ensures the consistent state of a system in presence of multiple
active contexts by means of dependency relations and dynamic context activa-
tions. As explained in Section 3.3, CoPN currently supports the 4 dependency
relations defined in Subjective-C. Dependency relations encode interactions be-
tween contexts. Such interactions define sequences of activations and deactiva-
tions that leave the system in a consistent state.

The activation or deactivation of a context is constrained by the existing
dependency relations. For example, in the case of the requirement dependency
relation of Fig. 5, the VideoCall context is only activated when the HighBattery
context is already active. Were this not be the case, the activation of VideoCall
would leave the system in an inconsistent state, and is therefore retracted.

4.3 Multiple Activations of the Same Context (R.3)

In CoPN, contexts can be activated multiple times. To support this behavior,
CoPNs rely on the fact that a place can hold many tokens at once. Each token
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represents an activation of the context. As such, the context (and thus the adap-
tations associated to this context) will remain available for as long as there are
tokens in the context place. Fig. 7 shows an example where three internet pro-
tocols are available (e.g., Edge, Wifi, 3G) for the mobile phone. This condition
is represented in the Connectivity context by three tokens.

Pr.C

req(C) act(C)

C

req(¬C)

Pr.¬C

deac(C)

¬C

cl(¬C)

Fig. 7: Context Connectivity (C) is active three times.

Unlike existing COP approaches, CoPN allows developers to declare the acti-
vation of a context as multiple or single. For example, the generic Connectivity
context can be activated multiple times, whereas a specific protocol like 3G should
be activated at most once. This extends existing COP approaches, which sup-
port either single-activation contexts (e.g. ContextL [4]), or multiple-activation
contexts (e.g. Subjective-C), but not both.

5 Related Work

This section reviews related work by going through different context sensing ap-
proaches which provide a concrete representation of context, and by considering
alternative modeling approaches that could be used for context-aware systems.

5.1 Context Representation

The Context Toolkit [20] and WildCat [5] frameworks provide abstractions for
the representation of context information. Context information coming from sen-
sors is represented by context objects. Gathered information can be contradic-
tory or inconsistent. It is up to the system/developer to manually manage such
inconsistencies.

CORTEX [21] is a middleware architecture that exploits the sentient object
paradigm: so-called sentient objects receive events as input (from other sentient
objects or sensors), process the events by means of an inference engine and
generate further events as output. The sentient object model of CORTEX is
intended for pro-active context-aware systems that autonomously invoke some
action in response to relevant context changes. In contrast, our model deals with
reactive systems. That is, upon a context change, the most appropriate context
representation is activated.

These framework approaches provide useful modularization features to man-
age context information. However, they have little support for the dynamic acti-
vation of behavioral adaptations, and managing conflicts between them, making
them ill-suited in face of the requirements presented in Section 2.
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5.2 Alternative Approaches

CoPN serves both as a formal and run-time model of context. We now consider
other approaches that could be used for the same purpose.

State Diagrams Automata [12] and statecharts [15] are used to describe system
behavior based on its possible states, and the set of actions to be taken at each
state. Automata and statecharts are normally used to verify system properties,
such as program termination. Among the properties provided by these diagrams,
composition is the most prominent. However, the system focuses only on one
state at a time, this means that every state needs to associate all possible actions
in the system. In the context of COP, where context activations represent the
actions in the system, every state has to be connected to all such actions, making
the model cluttered and complex. Additionally, both automata and statecharts
formalisms would need to be extended to allow the interaction between contexts
and multiple activations of a context.

Process Algebra, Coalgebra and Modal Logics Process algebra [11] is used
to model concurrent processes, providing high-level abstractions for operations
between processes such as parallel composition, communication, replication, and
synchronization. Modal logics [17] have been used to represent necessity and
possibility conditions about system properties. Modal logics are mostly used to
express temporal conditions, but they also can be used to express conditions
like program termination. Coalgebras [13] have been used to express dynamic
behavior of systems. Typically, coalgebras specify state-based systems, where
the state is considered as a black box and dynamic behavior is reasoned upon in
terms of invariance and bisimilarity.

These formal methods could be used to model and reason about context-
aware systems. However, concrete models based on these formalisms would need
to be extended to match the requirements of Section 2, as we have done with
the Petri net extensions used in CoPNs.

6 Future Work

Although the CoPN model can help in tackling some of the challenges for the
consistent composition of behavioral adaptations, a number of challenging issues
need to be further explored.

First, conflicts between external, internal and cleaning transitions are avoided
by the separation of each class by their transition priorities. The question still
remains, however, if within internal transitions conflicts exist. That is, if firing
of a transition disables a previously enabled one, leading to different markings.
Although, these type of conflicts are expected from the non-deterministic choice
of transitions with the same priority, it should be proven that regardless of the
firing order of transitions the same marking is always reached.

Second, CoPN provides consistency of dynamic behavior adaptations. How-
ever, the discussion presented in this work focuses on the management of in-
teraction between contexts. How to identify such interactions, remains an open
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question. Standard Petri net analysis techniques allow to reason about a system’s
behavior [16]. Such techniques could be used to identify interaction between con-
texts. The properties that could be used in the context of COP systems comprise
(a) reachability, to identify if it is possible to have a particular configuration (i.e.
marking) of active contexts, (b) liveness, to verify if a context can ever be acti-
vated or not, and (c) persistency, to spot isolated contexts in the Petri net. This
analysis techniques can give upfront information about errors and redundan-
cies in the system. Currently the CoPN model contains inhibitor arcs and is (in
principle) unbounded, which makes these properties undecidable. However, the
addition of bounds to contexts, and removal of inhibitor arcs when possible [18],
could enable the analysis of such properties. We are currently studying which
properties can be successfully verified for CoPN.

7 Conclusions

Ensuring consistent behavior adaptation of software systems is a challenging
task. Inconsistencies in the composition of context-dependent behavior rise from
interactions when such behavior is incompatible or contradictory. We identify
three main requirements to support behavioral adaptations: dynamic context
activation and deactivation, consistent interaction between multiple contexts,
and multiple activations of the same context. As a way to address these require-
ments, this paper presents the context Petri nets (CoPN) model which builds on
the dynamic activation and deactivation of contexts provided by context-oriented
programming (COP) languages. CoPN uses different Petri net extensions to pro-
vide a precise and live representation of context, dependency relations between
contexts, and their composition. The CoPN model makes explicit the different
states in the activation life cycle of a context to cope with the reactive nature
of COP systems, and to ensure that activations and deactivations are consis-
tent. Consistent activation and deactivation of contexts is ensured by dynami-
cally checking context dependency relations. If an inconsistency is encountered,
CoPNs allows to rollback the faulty operation to the last registered consistent
state. Afterwards, the user is informed of the cause of the error.

For the advantages provided in the management and assurance of consistent
dynamic adaptations, context Petri nets are a convenient run-time representation
of contexts, their activation and interaction in COP systems.
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Abstract. Petri nets are very useful for modeling systems with concur-
rent behavior. There are many editors which support the creation of a
Petri net and almost all editors offer the possibility of simulation, i.e.
firing of transitions. Due to the limitation to possible user interaction
using a conventional user interface having only one focus a concurrent
firing of several transitions is not supported. In this paper a Petri net
simulator (MuPSi) is presented, which supports the execution of transi-
tion steps, i.e. multisets of transitions, using a multitouch user interface.
MuPSi enables concurrent execution of transitions in a single or multi-
user environment. Simulation of transition steps helps to understand the
concurrent behavior of a Petri net.

1 Introduction

Petri nets have a clear formal semantic and a simple graphical representation.
They are a popular choice for integrated modeling of systems with concurrency
in many application areas, such as software engineering, business process mod-
eling, hardware design and controller synthesis. To support the creation of Petri
nets there are many editors which differ depending on their field of application.
VipTool [1,2] is specialized on partial order semantics of Petri nets. CPN Tools
[3] considers an extension of Petri nets, so-called colored Petri nets. WoPeD [4]
is developed for teaching purpose. Each of these editors offers the possibility to
simulate Petri nets, i.e. they can simulate the firing of a sequence of transitions.

Usually the simulation consists of two steps. The Petri net editor calculates
and marks all enabled transitions. Now the user may select and fire one of these
transitions. Each firing changes the marking of the Petri net and the set of all
enabled transitions is recalculated. This so-called token game is a very simple
but also useful way to test and understand a given Petri net.

The token game allows to simulate the sequential behavior of a Petri net.
The tool presented in this paper, the MuPSi (Multitouch Petrinetz-Simulator),
removes this restriction by enabling the firing of transition steps. A transition
step is enabled to fire if all transitions of the step can be executed simultaneously.
If a step of transitions is enabled then also each linearization of the transition



step is enabled. For a lot of applications the difference between a step and all
its linearizations does not matter. But there are applications where testing and
understanding the concurrent behavior of a Petri net is of great value. A good
example is in education, because understanding the true concurrent behavior
of a Petri net is a reasonable learning objective. Therefore MuPSi allows to
simulate and visualize concurrent firing of transitions in an intuitive way which
is supported by various input mechanisms. MuPSi can be used as a desktop
application as well as in a multitouch environment.

In a learning environment an elegant approach to concurrent firing of transi-
tion steps is using a multitouch device. Multitouch environments are becoming
increasingly popular as a result of the development and propagation of smart-
phones and tablet computers. The ability to control multiple pointers in a pro-
gram allows to select several transitions in a Petri net simultaneously and fire
the selected transitions concurrently. For this purpose we have built a multitouch
table as shown in Figure 1. With the help of this multitouch table and MuPSi
multiple users can play the token game concurrently. If a multiset of transitions
is selected to be fired concurrently and there are too little tokens MuPSi supports
the users to solve this conflict by a reduction of the chosen transition step.

Fig. 1. MuPSi on a multitouch table

The next section discusses the representation of enabled transition steps in
Petri nets. At first, in Section 2, different ways to indicate enabled transition
steps are developed and evaluated. At second, in Section 3, different ways to
allow users the creation of a transition step are discussed. In Section 4 we shortly
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discuss how MuPSi supports the reduction of a disabled transition step to an
enabled sub-step. Section 5 describes the implementation of MuPSi and Section
6 provides a short outlook to further research questions.

2 Representation of enabled transition steps in Petri nets

Petri nets have two different types of nodes: places and transitions. Places
can be marked with tokens and a distribution of tokens over all places of the
Petri net is called the marking of a Petri net. Transitions and places are con-
nected by directed arcs. MuPSi considers a special class of Petri net so-called
place/transition-nets (p/t-nets) [5]. A p/t-net considers arcs with weights and a
transition is enabled to fire in a given marking if every place in the preset of the
transition carries at least as many tokens as the weight of the arc from the place
to the transition indicates. When firing a transition these tokens are consumed
and the transition produces new tokens into places in its postset, again according
to the weights of the outgoing arcs.

Petri net simulators support the user by highlighting enabled transitions,
often by coloring them green. If you allow the firing of transition steps, i.e. a
multiset of transitions, the number of tokens in the preset of all transitions given
by the transition step must be big enough to enable all transitions concurrently.
It happens that one transition is enabled to fire in some transition steps and is not
enabled to fire in others. For this reason a strict partition into enabled and not
enabled transitions is no longer possible using the step semantic. We extended
the color scheme in MuPSi by the additional color yellow. Each yellow colored
transition is enabled in the current marking, but there exist other transitions
in the Petri net such that if both transitions occure together in a step the step
is not enabled. All in all yellow transitions indicate possible conflicts. Green
colored transitions symbolize a very low conflict potential, meaning it is possible
to combine green transitions with other green transitions in a step of the Petri
net. In the following section, we discuss several different approaches on dividing
the set of all transitions of a given Petri net and its marking into sets of so-called
green, yellow and red transitions. Each approach is implemented in MuPSi and
can be useful in different scenarios. In a learning environment it can even be
useful to switch between different approaches to get a better understanding of
the nature of conflicts in a given Petri net and its concurrent behavior.

Structural conflicts between transitions

Probably the simplest approach to divide the set of all enabled transitions of a
Petri net into two sets of transitions, such that green transitions have low conflict
potential and yellow a higher conflict potential, is a simple structural analysis of
the Petri net. This approach is independent of the current marking of the Petri
net. The idea is that an enabled transition can always occur once in a next step
if there is no place in its preset which is also in the preset of another transition.
If there exists a shared place the concurrent firing of both transitions can lead
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to a conflict. This is a fairly simple method, since the partition of the set into
yellow and green transitions is calculated only once. At runtime this solution
requires no additional computational effort, since each transition, when enabled,
is always marked with the same color, either yellow or green as computed in the
beginning.

This approach can be refined by a small amount of additional computational
effort. Assuming that the user cannot add a disabled transitions to a step, a
disabled transition can never be in conflict. In the second approach a transition
is marked green if it is enabled and there is no place in its preset which is shared
with another enabled transition. Figure 2 provides a small example for the first
two approaches. The left side of the figure shows the first while the right side of
the figure shows the second approach. In this paper colors of the transitions can
only be shown as labels. The labels are g(reen) ,y(ellow) or r(ed).

Fig. 2. Coloring of transitions using structural analysis. Left: first approach. Right:
second approach.

The number of green colored transitions in the second approach is greater
than or equal to the number of green colored transitions in the first approach,
but the partition of green and yellow transitions has to be recalulated after each
step, since it depends on the marking of the Petri net. Both approaches achieve
that a set of green transitions together with only one yellow transition always is
enabled to fire. If a step contains more than one yellow transition or some green
colored transitions at least twice, it can happen that this step is not enabled.

Conflicts between transitions

To further increase the number of green transitions, the third approach analyses
the current marking in more detail. The idea is to color transitions green as long
as the marking is sufficient to enable all of them concurrently. For this approach,
first we try to fire the set of all enabled transitions in one transition step. If there
is a place that causes a conflict each transition in its postset is colored yellow.
The remaining enabled transitions are colored green.

Again, each set of green colored transitions together with one yellow colored
transition is enabled to fire. The third approach is able to color even more
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Fig. 3. Coloring of transitions using conflicts between enabled transitions. Left: second
approach. Right: third approach.

transitions green. That means that a concurrent firing of more than one yellow
colored transition leads to a conflict more probably.

Conflicts between transitions allowing for limited autoconcurrency

The fourth and fifth approach also consider autoconcurrency among transitions.
Till now, we only took care of conflicts that arise in sets of transitions. MuPSi also
supports a firing of multisets of transitions. In both approaches we have to fix an
upper bound to autoconcurrency of transition occurence. Defining such a limit is
useful because only a transition with an empty preset can fire autoconcurrently
without any limitation. Let n be such an upper bound for the autoconcurrency
of all transitions.

In the fourth approach, we test the multiset of transitions which contains
each enabled transition n times. As in approach three, transitions which contain
places in its presets, which cause conflicts are colored yellow. All other enabled
transitions are colored green. With this approach we can ensure that a step of
green transitions is enabled if each transition is contained at most n times in
the transition step. If we choose one as an upper bound, the fourth approach
equals to the third approach. It is easy to see that the number of green colored
transitions decreases with increasing n.

The fifth and most complex approach implemented in MuPSi uses the calcu-
lation of maximal steps of the Petri net in the given marking. A maximal step
of a Petri net is an enabled step which is not included in any other enabled
step. If a transition is at least n times contained in all maximal steps, the tran-
sition is enabled to fire at least n times independently from any other transition
occurence.

Fig. 4. Coloring of transitions considering autoconcurrency. Left: fourth approach
(bound one and two). Right: approach five (bound one and two).
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As a result of this approach each multiset of green colored transitions is
enabled, if any transition is contained at most n times. As a second result we
get that in any enabled multiset (consisting of yellow and green transitions)
the number of each green transition can be increased to n without causing any
conflicts.

3 Selection of a transition step

While playing the token game it is up to the user to select transition steps and
fire them. Depending on the scenario different input methods fit better for the
selection of the transition steps. One considered possible scenario is MuPSi run-
ning on a desktop computer, another scenario is MuPSi running on a multitouch
device. MuPSi offers different input methods to fit both scenarios. Remark that
while composing a step the coloring of the transitions is not updated, since we
assume that each step is build concurrently by different users.

Manual trigger

The first and simplest way to select a transition step is to use an explicit manual
trigger. The user adds transitions to a step by clicking enabled transitions. After
building a transition step the user triggers the firing of the transition step by
clicking a fire button. A disadvantage of this input method is that it is not well
suited in a multi-user environment without choosing a user having a special role,
i.e. a moderator, controlling the fire button. The great advantage of a manual
tigger in a single user environment is that the user can build and fire transition
steps without time pressure.

Fixed time intervals

In some scenarios the use of a fire button is not suitable. In a second approach
MuPSi is able to use fixed time intervals. If an interval ends the selected step will
be fired if possible. This means that for a fixed time, for example three seconds,
transitions are collected and these transitions are fired concurrently at the end
of the time interval. This input method is suitable for both: the simulation with
a single user using a PC as well as for the collaborative use with a multi-touch
device.

Sliding time intervals

A more flexible approach than using a fixed time interval is a so-called slid-
ing time interval. If any user clicks a transition a short countdown starts. If a
transition is pressed in this time period the transition is added to the transition
step and the countdown restarts. This will continue until the countdown expires.
This input method is suitable for a multi-touch table as well as for the usage
with a PC. Typically the time interval for a single user should be larger than in
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multi-user mode. Transition steps might become very large and more likely not
executable if several active users continuously add transitions to a transition step
and thereby restart the countdown. This way all transitions which are clicked
within a short period of time are never split into two different transition steps.
Such a splitting could be caused by using a fixed time interval.

Time intervals by overlapping of actions

In the last, most elegant approach MuPSi distinguishes between pressing and
releasing a transition. As long as any transition is pressed, transitions are added
to a transition step. If no transition is pressed the collected step is fired. This
input method is of course only usable with a multitouch device [6] and was the
real impulse to develop MuPSi. In a single user environment the user may hold
one transition down and then collect other transitions with his second hand to
build a transition step. If a user wants to fire a transition autoconcurrently in
one transition step he may tap one transition while holding the same transition
pressed with his other hand. This approach leads to the feeling of real concurrent
live simulation of a Petri net.

4 Conflict solving

In this section we describe the current conflict solving approach implemented in
MuPSi. Since MuPSi is intended as a tool for teaching one of its essential features
is to support the users if a disabled transition step is selected. Our approach for
conflict solving is to offer the users sub-steps of the conflicting step.

Fig. 5. An example for conflict solving

To calculate possible sub-steps we model the problem as a linear integer op-
timization problem. A linear optimization problem consists of a target function
and side conditions which restrict the set of solutions. For our model the inter-
esting side conditions are defined through the net structure and the conflicting
step. If we try to fire the step {t1, t1, t2} in the net shown in Figure 5 this leads
to a conflict in place s1. To define the suitable target function we need to know
the users intention, in case we have no further information we can only feedback
different solutions using different target functions. Currently MuPSi implements
four different target functions: maximization of the consumed tokens, maximiza-
tion of the produced tokens, the maximal number of transition occurrence or a
maximal number of occurrence of different transitions.
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Fig. 6. The conflict solving dialog.

The solutions of the optimization problem are currently calculated with the
help of the LPSolve library. LPSolve is a library which is released under LGPL
(GNU Lesser General Public License) and solves different linear problems with
a specialization to linear optimization problems. The calculated sub-steps are
presented to the users through a dialog, see Figure 6, which allows the user to
readjust the transition step. This is not yet a satisfying solution because it is
a break in the multi-user operation since a dialog can only be handled by one
user.

5 Implementation

MuPSi is currently implemented as part of a thesis of the first author of this pa-
per. It will be available as a plug-in for VipTool and can be used as a stand-alone
version at the moment. MuPSi is optimized for the use on a multitouch device
and is implemented in Java. MuPSi is available for download on the MuPSi
homepage (www.fernuni− hagen.de/sttp/forschung/mupsi.shtml). This sec-
tion describes the implementation and functions of MuPSi in more detail.

There are currently three popular frameworks which provide multi-pointer
input. The oldest of these frameworks is the multimouse driver which allows to
use multiple mice to control multiple mousepointers. This is not a true multi-
touch setting but it has the advantage that multi-touch input can be simulated
without special hardware. In the consumer sector the Windows 7 multitouch
framework has a very wide dissemination because it is part of the Windows 7
operating system. It supports multi-touch touchpads and inexpensive consumer
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multi-touch screens. The disadvantage of these monitors is the limited support
of only two input points. In the professional area the TUIO protocol is very
common. TUIO is a network protocol which supports pointers and tagged ob-
jects. Tagged objects are physical objects with a unique ID. If an application
wants to professionally use multi-touch tables it has to support this protocol.
More information about the TUIO protocol and the usual hardware setup can
be found at www.tuio.org.

We decided to use the MT4J (multi-touch for Java) library, because it sup-
ports all of these input frameworks. The big advantage of this library is that it
abstracts the input method and thus MuPSi can support all these input meth-
ods without software changes. The MT4J Library is released under GPL (GNU
General Public License).

Our homemade multi-touch table, shown in Figure 1, uses a projector for
rear projection onto a display output and an infrared camera to detect finger
inputs. The table uses a basic FTIR surface as infrared light source. The usage
of infrared light for finger detection is necessary to distinguish the input from
the output image. For the calculation of the input data from the IR image, we
use the Community Core Vision software, briefly CCV, from the NUI Group.
CCV is an open source software which is released under LGPL and has several
customizable filters in order to ensure a good detection. The detected inputs are
sent to a given IP address using the TUIO protocol. The NUI Group is an open
source community with the aim to provide natural user interfaces.

For the user interface we also used the MT4J Library. MT4J contains the
Java OpenGL library, JOGL, and offers a set of multi-touch optimized GUI
elements. The elements are grouped as a 3D scene graph. We use self defined
user elements for MuPSi which are built from polygons. The usage of a 3D scene
instead of a default Java GUI is useful because of the convenient implementation
of scrolling, zooming and rotation which are common operations for multi-touch
surfaces. MT4J allows to process the input with the aid of default and self
defined gesture processors. MuPSi uses this for example to provide a two-finger-
zoom gesture. The usage of hardware OpenGL support is preferred but it is also
possible to use software rendering.

Figure 7 shows a screen shot of MuPSi. The manual fire button is labeled
with 1.This button is only visible if the manual trigger is selected as fire mode.
The undo and redo buttons are labeled with 2. MuPSi supports to undo all fired
steps to make simulation more comfortable. All undone steps can be redone as
long as no new step was fired. The tools button is labeled with 3. This button
allows to move and zoom the loaded net. By clicking the button it is minimized
to save screen space.

All of the coloring and step building methods presented in the previous sec-
tions are implemented in MuPSi and can be used by selecting them in the con-
figuration file before starting the program. The coloring method can also be
changed during the simulation by pressing the key c. The configuration file also
allows the change of the resolution, the rendering method and all visual param-
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Fig. 7. A screenshot of MuPSi.

eters of the net elements. If visual parameters for the net elements are defined
in the config file, the information in the PNML file is replaced with these values.

MuPSi is designed in a modular way to make it easy to implement new firing
modes, coloring modes and conflict solvers but we have decided to offer no plugin
infrastructure because MuPSi is already designed as a VipTool plugin.

Since MuPSi is not yet available as a VipTool plugin but as a standalone
application, it is useful to give a brief description how to use it with various
operating systems. MuPSi is, as a Java software, platform independent but some
of the used libraries are platform dependent such as the LPSolve library and the
OpenGL library contained in MT4J. The available MuPSi zip package contains
different startup scripts for Windows x86 and x64 and for Linux x86 and x64.
The startup scripts define different platform-dependent Java classpath variables.
To support scenario dependent startup scripts a set of command line parameters
is defined which sets the display resolution, the used PNML file and a few more
settings. A full list of command line parameters is printed with the parameter
-h or –help.

6 Conclusion and outlook

In this paper the tool MuPSi was presented. It is a Petri net simulator designed
for multi-touch devices which supports simulation of transition steps. This en-
ables a simple concurrent firing of transitions of a Petri net. We discussed several
options to visualize enabled transition steps and to discover conflicts in a current
marking of a Petri net. We disscused possible input modes for the creation of
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transition steps. In MuPSi a single user or multiple users may select the most
appropriate input mode for each scenario.

After a full implementation of MuPSi we will focus on the aspects of conflict
resolution and presentation of these solutions. Another point we miss at the
moment is a smooth VipTool integration.

References

1. Desel, J., Juhás, G., Lorenz, R., Neumair, C.: Modelling and Validation with Vip-
tool. In W.M.P. van der Aalst; A.H.M. ter Hofstede; M. Weske, ed.: Business Process
Management. Volume 2678 of Lecture Notes in Computer Science., Springer (2003)
380–389

2. Bergenthum, R.: Algorithmen zur Verifikation von halbgeordneten Petrinetz-
Abläufen: Implementierung und Anwendungen. Master’s thesis, Katholische Uni-
versität Eichstätt-Ingolstadt (2006)

3. Jensen, K., Kristensen, L., Wells, L.: Coloured petri nets and cpn tools for modelling
and validation of concurrent systems. International Journal on Software Tools for
Technology Transfer (STTT)9(3-4) (2007) 213–254

4. Freytag, T.: WoPeD – Workflow Petri Net Designer. In: ATPN. (2005)
5. Desel, J., W.Reisig: Place/Transition Petri Nets. In W. Reisig; G. Rozenberg, ed.:

Petri Nets. Volume 1491 of Lecture Notes in Computer Science., Springer (1998)
123–174

6. Burmester, M., Koller, F., Höflacher, C.: Touch it, move it, scale it - multitouch.
Technical report, HDM Stuttgart (2009)

T. Irgang, A. Harrer, R. Bergenthum: MuPSi 181



PetriPad – A Collaborative Petri Net Editor

Julian Burkhart, Michael Haustermann

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics
{4burkhar, 6hauster} (at) informatik.uni-hamburg.de

Abstract. Collaboration is one of the key aspects of software engineer-
ing and commonly includes working in spatially separated teams. Many
tools exist to support such a workflow and are used extensively, espe-
cially for real-time communication, e.g. instant messaging systems and
voice chats. In contrast, programming environments and editors used in
general mostly lack synchronous real-time collaboration functionality.
In this work we present an informal specification of such a system in
the context of a groupware Petri net editor and the implementation of
our model as a proof of concept for the Renew tool. To do this we
revisit work on this subject done more than 10 years ago and update the
proposed models to the current state of software engineering. As a result
we are able to simplify the specification.

Keywords: collaborative editing, Petri nets, Renew, Mulan/Capa,
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1 Introduction

Distributed development of a common code base in a collaborative manner has
become one of the key aspects of development in computer science. Many tools
exist to support this kind of distributed workflow in different styles. The most
common of them are source code management systems (SCM) that enable dis-
tributed, concurrent editing of shared documents.

However, SCMs are tailored for sequentially structured textual documents
and perform poorly on graphically oriented data files. When using a graphical
editor the user usually has only very limited control over the serialized file for-
mats. Even when using a text-based format, slight changes in the editor can
result in vast differences in the exported file. This makes it very hard for a SCM
system to distinguish the changed parts from the (semantically) identical ones.

Also SCMs only cover scenarios where developers are working independently
in the sense that while working at the same project in general the work of others
does not immediately impact their own. This is fine for day-to-day development,
but for real-time collaborative development it is not feasible that way. Possi-
ble applications for real-time collaboration are brainstorming ideas or teaching
interactive courses over the web.



For synchronous editing of text documents there are web-based solutions, like
Etherpad1 and desktop applications, like ACE2 or Gobby3. There are plugins
for the popular development environment Eclipse4.

In this work we present a model for a collaborative Petri net editor. It is based
on prior research described in Section 2, but varies in that it does not need any
locking mechanisms of the graphical components manipulated by the users. The
resulting model therefore is much simpler and is presented in Section 3. As a
proof of concept we present the implementation of our model for the Petri net
editor Renew [17]. It is based on the multi-agent system (MAS) framework
Mulan/Capa [10]. The implementation is described in Section 4 and discussed
in Section 5. At the end we summarize our work and give an overview of potential
extensions of our model and of the possibilities for further research.

2 Related Work

The subject of collaborative Petri net editing is discussed in [1], which serves as
a canonical case study for authors to present their approaches of combining Petri
nets and object-oriented programming concepts. Some requirements for such an
editor are outlined in [2]. The editor proposed is for hierarchically structured
Petri nets and allows multiple users to work simultaneously on the same net
from different terminals over the network. The users are organized in sessions
and each user is able to work on multiple nets in different sessions at the same
time.

Each user is capable of having a customized view on the net and a set of
access privileges restricts the actions each user can make. For example a user
might only be granted reading access to a net or parts of it. The concept of
ownership of graphical elements is introduced to restrict the user’s actions at
a certain point in time. For each operation the appropriate ownership must be
acquired beforehand. Some ownerships are exclusive (e.g. delete), others may
be acquired from different users at the same time (e.g. modify). The request
for some ownership may happen implicitly by selecting an item or explicitly
by pressing a button. The case study describes different ownerships, how they
could be requested and which restrictions apply if some user holds a certain
ownership. We use the term ownership in the following section in this sense only
unless otherwise specified.

The requirement analysis in the case study is intentionally incomplete. Other
authors are encouraged to extend the requirements appropriately to their own
concept or to focus on specific points to emphasize certain properties of a chosen
formalism.

In the following subsections we describe three different approaches from [1].

1 http://etherpad.com
2 http://sourceforge.net/projects/ace
3 http://gobby.0x539.de
4 http://www.saros-project.org
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2.1 Biberstein, Buchs, Guelfi

The authors of [6] describe a centralized approach. They build upon an architec-
ture specified in [5] that is modeled in a formalism they introduced in [7] called
Concurrent Object-Oriented Petri Nets (CO-OOPN/2).

Their architecture consists of two layers: a graphical interface layer (view-
ports) and a centralized synchronization layer (server). Documents are stored on
the server and cannot be manipulated directly by users but only by the server
on request. The viewport’s task is to display the current net and send user in-
put to the server. Furthermore updates made by other users received from the
server have to be displayed. The server takes requests from users, updates the
net and informs all users about that update. Moreover it ensures the consistency
of the net and guarantees the compliance with the user rights and ownerships
as described in [2].

The procedure is as follows: a user changes an element in a net in his view-
port. This change is transported from the viewport to the server. The server
examines if the changes are compatible with the users rights and ownerships
and either includes the change into the net or rejects it. A message is sent to
all viewports, if the net changed. The net itself is represented as a tree. Com-
ponents that may have subcomponents are called hierarchical components and
stored as nodes of the tree. Components that may not have subcomponents,
called atomic components, are stored as leaves of the tree. A net in this model
is itself a hierarchical component.

2.2 Bastide, Palanque

The authors of [3] focus on locking mechanisms for objects to ensure consistency.
The majority of the requirements in [2] are not taken into account. The imple-
mentation of the locking mechanism is described in great detail and down to a
very technical level. The general concept is the locking of graphical elements that
are selected in an editor for all other users. [3] describes how the synchronization
between graphical elements and graphical editor works. They use the cooperative
objects formalism to present their approach.

We do not go into further details, since we do not use any locking in our
model.

2.3 Guerrero, Figueiredo, Perkusich

Guerrero, Figueiredo, Perkusich describe a decentralized multi-agent architec-
ture [14] for the collaborative editor. They distinguish between two kinds of
agents: user agents and manager agents. User agents may work on nets according
to their access privileges and join or leave editing sessions. Manager agents are
capable of performing administrative tasks for user and session management.
They can also grant and revoke ownerships of graphical elements.

Each agent consists of three layers. The lowest layer is the communication
layer. It provides message transportation services. The middle layer differs be-
tween user agents and manager agents. It is called control layer and management
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layer respectively. At the top lies the application layer and represents the inter-
face presented to the users of the system.

For a user agent the application layer is a graphical editor that allows the
user to view and manipulate Petri nets. User inputs are first passed on to the
control layer. The control layer verifies that the net manipulations are compliant
with the ownerships the user holds. It may try to request additional ownerships,
if needed for the desired action. If the control layer fails to acquire all necessary
ownerships, the change is rejected.

The communication layer is used to exchange messages with other agents.
Especially to request ownership and to inform other agents about acceptable
changes. Incoming changes are passed up through the layers and displayed in
the user interface (UI).

The manager agent’s application layer is a system console, which enables the
execution of administrative commands. These are performed by the manager
agent’s management layer.

3 Informal Model Specification

In this section we present our own approach. Since it differs from the aforemen-
tioned work, we first discuss the main principles behind it. Then we describe
the resulting architecture in detail. Therefore we describe the requirements on
the user interface, discuss different communication languages and explain how
consistency can be guaranteed in our model.

3.1 General Architecture

One of the goals of this work is to update the previous models to the current
practice of UI design, especially the design of the collaborative text-editor Ether-
pad. Comparing different websites offering etherpad-based services5, the editor
offers basic formatting tools only. There are no restrictions in terms of what
parts of a document a user may edit. Session management is confined to merely
distinguishing sessions, while access privileges are left out completely. The name
that uniquely identifies an Etherpad session is incorporated into the URL lead-
ing to the edited document and subsequently it can be accessed by that URL
without restrictions.

Despite of the absence of administrative capabilities, the result is well fit-
ting to the task of collaborative writing. The UI is highly intuitive and access
privileges are non-essential to enable collaborative work (though possibly helpful
in some use cases). All conflicts arising from editing the same passage can be
discussed in the integrated chat window.

From this brief analysis of Etherpad we draw three main principles for our
proposed model.

5 An overview of some of the available websites can be found on http://etherpad.
org/public-sites/
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Fig. 1: The typical use cases of a collaborative editing system, i.e. manipulating
shared Petri nets (the upper two use cases) and session handling (the rest).

1. All users have the same access privileges, i.e. no access privileges are present
at all.6

2. The user is enabled to make any change he wants, i.e. no change is rejected
afterwards or prohibited in the first place. Furthermore every change is im-
plemented immediately in the users view.

3. Any arising conflicts are dealt with automatically and in a sensible way.

From the second point it is obvious that we had to omit locking mechanisms
as described in [3] and [14] (cf. Section 2). This is also the primary source for
simplification for our model.

We adopt a number of requirements from the original case study. The session
management enables users to participate in multiple collaboration sessions and
collaborate on multiple nets at the same time. A user’s view on the shared nets
is independent of the other users.

Additional requirement on the system is the separation of communication
infrastructure and editor, so that the graphical user interface (GUI) could be
exchanged. For example it should be possible for one of two collaborating users
to work in a full-blown desktop client, while the other works in a web-based
editor in an internet browser.

6 It should be mentioned that we are not opposed to access privileges in general. A
number of use cases can be thought of that require such a mechanism, e.g. tutoring
or presentation purposes, but these are not the use cases we considered for this work.
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The system is modeled as a multi-agent application similar to [14], but with
some important differences. We identify three kinds of agents in the system (cf.
Figure 1).

User agents represent the users of the system. Since we want the UI to be
interchangeable, a user agent needs to be modular by design. It consists of
a communication module with a well-defined interface to which an arbitrary
editor can be connected.

Session management agents offer an entry point to user agents. They are
autonomous and can start or terminate sessions on request of user agents or
be queried for a list of existing collaboration sessions.

Session agents represent individual collaboration sessions and keep track of
the edited nets and the participating users. It also functions as a central
message relay between the participating user agents and resolve conflicts
arising from concurrency. It also stores the current state of each net.

3.2 Requirements on User Interface

The UI connected to a user agent’s communication module has two essential
tasks. First of all, it has to observe the actions the user takes. This follows from
the manner changes are not requested at a central authority as in [6], but simply
made and then passed on to others.

The UI should also recognize what actions result in meaningful changes. In
this case meaningful refers to the completion of an action. While the user drags
an element from one point to another, it might not be wise to flood the network
with updates for every single pixel that the element is moved. Especially, because
in the context of nets, dragging one element usually impacts the position of other
elements that are connected to it as well.

To further reduce the number of messages, actions may be grouped together
to batches and sent in one message to the session agent. The most straight
forward way for any receiving agent to deal with batches is to first execute
all operations that add new elements, then perform all operations that change
existing elements and lastly all remove operations.

The second job of the UI is to integrate incoming changes from the session
agent. A crucial requirement is for the integration to be done atomically and
between user manipulations, so that it does not interfere with changes the user
makes.

3.3 Communication Language

We consider compliance with the standards of the Foundation for Intelligent
Physical Agents7 (FIPA) [20] a baseline for our model. These include defining
the message format (Agent Communication Language – ACL [11]) for all inter-
agent communication. Choice exists however on the part of the content languages
7 http://www.fipa.org/
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for the actual message payload. Two possibilities will be discussed, namely the
Petri Net Markup Language [24] (PNML)and using ontologies.

PNML is a ISO/IEC standard for higher order Petri nets that is still in
development. Many Petri net tools have adopted it [8] and type definitions for
various different flavors of Petri nets have been created. The latter is what makes
PNML especially attractive for our work. The set goal of building a universal
platform for collaborative editing agnostic to the actual editor in use would
greatly benefit from a widely adopted standard. Renew as our main aim for
application of our work already has support for importing and exporting PNML.

The main downside of applying PNML to this work is that it only represents
the net itself and not manipulation operations on it. Describing the actions
performed directly, e.g. a moveElement or addMarking operation, is out of the
question. PNML can only be used to describe the set of elements that changed
and their relevant properties. That is however a viable solution and receiving
agents can simply overwrite the received elements in their copies of the net.

Another possibility is to use an ontology to model Petri nets and the oper-
ations. Ontologies becoming increasingly popular in software engineering. They
can be used as a glossary throughout all development phases and as a meta-
language for specification. The de facto standard ontology modeling tool Pro-
tégé8 has a built-in code generator, which can generate Java classes directly
from an ontology. Protege is based on the Web Ontology Language (OWL) de-
veloped for the Semantic Web9. It has a variety of different syntaxes to choose
from [19,15]. They can be machine-readable like the RDF-based XML syntax or
better suited to be edited by humans like the Manchester Syntax, thus lowering
the bar for adoption of OWL 2 considerably over its predecessor OWL 1.

In multi-agent systems ontologies form the basis for communication [13].
Without a common ontology to give meaning to objects and statements, there
can be no exchange of knowledge, both between agent or humans. And specif-
ically in the context of our implementation detailed in Section 4, the Mu-
lan/Capa framework relies heavily on ontologies. Not only for communication,
but for modeling purposes as well.

The two possibilities, using PNML or ontologies, are not necessarily mutu-
ally exclusive either. Attempts have been made to define ontologies for higher
order Petri nets, that are compliant with PNML [12,23]. Since we are aiming
at interoperability to some extent in our model, we suggest [23] to be used to
embed PNML into use in our multi-agent system.

3.4 Consistency Guarantee and Conflict Treatment

Guaranteeing consistency needs special care in our approach since users have
their own synchronized copies of the shared nets. To ensure that identifiers for
net elements are globally unique, we let the central session agent determine
them. So when a user adds an element locally, a temporary identifier is assigned
8 http://protege.stanford.edu/
9 http://www.w3.org/standards/semanticweb/
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Fig. 2: Possible inconsistencies from varying message transit times.

to that element. The final identifier is received as a result message, when he
informs the session agent about the new element. All changes to objects with
temporary identifiers are buffered in the user clients until the final identifier has
been determined.

To address the problem of messages overtaking one another, we add sequence
numbers to each message. A global order of all messages is determined by the
session agent, who orders them per user and integrates them into a global order
by time of arrival. The session agent accordingly sets new sequence numbers to
all messages before distributing them.

Our approach enables users to modify the same object concurrently. Thus
we allow conflicting modifications that have to be dealt with. For conflicting
changes to the same property of an element, the change processed last by the
session agent wins. To enable a user to determine which change won in such
a case, the session agent distributes change operations (but not additions or
deletions) to all users including the sender (cf. Figure 2).

A minor inconvenience of the scenario in Figure 2 is that User 2 would im-
plement the change of User 1 for a short period of time after he made his own
change which would be undone shortly after that, when his own update is sent
back to him. A possible remedy for this is that if a user made a change to prop-
erty p of element a, all incoming updates to p of a can be ignored until his own
change appears in the stream of updates.

Lastly we have to deal with incoming changes to elements that were already
deleted. This situation occurs at the session agent, when a user makes a change
to an element before receiving the delete message. It can also occur at the user
agent when an element was deleted locally, but the delete message was not yet
distributed. In either case the change can be dropped safely. The user from whom
the change originated will eventually receive the delete message and subsequently
delete the element himself. That way a consistent state is reached at quiescence,
i.e. when all messages have been distributed and processed at each site.
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Fig. 3: The four levels of the Mulan model.

4 Implementation for Renew

In this section we give an overview of our proof-of-concept implementation. We
will shortly introduce the Renew Petri net editor and the Mulan/Capa agent
framework and then describe the implementation and the Ontology we use for
communication.

4.1 Context of Implementation

Renew. The Reference Net Workshop (Renew) [17] is an editor for Petri
net formalisms developed by the theoretical foundations of computer science
group at the department of computer science at the University of Hamburg. It
is highly modular and includes plugins for different Petri net formalisms. The
integrated simulator can execute basic P/T-nets as well as higher order nets,
e.g. colored Petri nets and reference nets, which are object-oriented Petri nets
with synchronous channels that allow for tokens to be nets themselves [16,22].
Transitions of reference nets can also be inscribed with Java code, that is ex-
ecuted during simulation. This mechanism provides a seamless integration of
object-oriented programming with specification and simulation of Petri nets.

Mulan/Capa. In order to facilitate the implementation of our model, we
built upon a framework for multi-agent applications called Mulan/Capa.
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Mulan (Multi-agent nets) [21] is a reference architecture for multi-agent
systems. It is modeled completely in reference nets and consists of four different
levels as seen in Figure 3.

The highest level (level 1) is the infrastructure. The infrastructure connects
multiple agent platforms to a network. A platform (level 2) provides the environ-
ment for agents. Apart from starting and terminating agents, it provides means
for communication between agents. If sending and receiving agent are identical
the communication is considered to be an internal communication, e.g. between
different active protocols of the same agent. The next level are the actual agents
(level 3). The agents can send and receive messages to and from other agents
and the platform. This is the only externally observable behavior of an agent.
Each communication between agents and agents or agents and a platform is de-
scribed by protocols (level 4). It models the behavior of an agent or how agents
communicate with each other. A protocol is developed in complementary parts
for each participating agent and orders the flow of information and the messages
sent.

Capa (Concurrent Agent Platform Architecture) [10] is a FIPA-compliant
implementation of the Mulan model on top of Renew and Java. Capa fa-
cilitates building multi-agent applications based on the Mulan model. Hetero-
geneous systems with platforms implemented in other frameworks are possible
due to the FIPA-compliance. The infrastructure level of the Mulan model is
not implemented in Capa. It emerges when combining an arbitrary number of
instances of Capa platforms that can be interconnected over a network.

The combination of model and implementation, plus the development envi-
ronment, monitoring and debugging tools comprise the Mulan/Capa frame-
work. It provides a high level of concurrency since it is developed with reference
nets that are by design concurrent.

4.2 Coarse Design of the PetriPad Plugin

PetriPad consists of two parts. The multi-agent model is implemented in the
Mulan/Capa framework and we extend Renew with a plugin, which connects
it to the MAS. In terms of our informal model communication module is the
agent connected to the editor.

To exchange data between the editor and the agent we use the WebGateway
plugin for Mulan/Capa. It implements a gateway architecture [4], which fa-
cilitates connecting HTML5-based web services to the MAS. The WebGateway
acts as a bridge using the WebSocket protocol and although web applications
are its original aim, it can hook up arbitrary software systems.

Our utilization of WebGateway can be seen in Figure 4. The Renew Petri net
editor serves as UI for an agent running in a remote Mulan/Capa platform. We
call that agent the modeler agent. The Renew plugin tracks the changes made
by the user and passes them through a WebSocket channel to the WebGateway,
which relays them to the modeler agent in the PetriPad MAS.

The primary motivation for this architecture is that users do not need to
be running a instance of the Mulan/Capa platform locally. Instead only one
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Fig. 4: Our proposed architecture of the communication infrastructure.

platform is needed to which an arbitrary number of editors can be connected
and it is possible to use editors other than Renew.

Our use case diagram (Figure 1) showed three agent types and a number of
interactions between them. These translate directly to levels 3 and 4 of the Mu-
lan model. Each interaction is implemented as a protocol for the participating
agents.

4.3 Ontology

Although we argued in favor of using PNML compliant ontologies, we had to de-
viate from it to some extent. This is mostly due to the limited expressive power of
the Mulan/Capa default modeling formalism for ontologies. It is called concept
diagrams [9] and can define a taxonomy of concepts in a UML-based graphical
notation. Each concept can be described by a set of key-value-tuples and the val-
ues’ respective domains. A domain may be a Java data type, another concept in
the ontology or a list of either of them. Semantically concept diagrams coincide
with the idea of frames [18] limited to defining concepts only and subsumption
as the only relation.

Figure 5 shows a subset of our ontology dealing with reference nets and
possible operations on them. The semantics are as follows. The nodes in the graph
represent the defined concepts and the arcs define the subsumption hierarchy.
Every concept has a name (bold) and attributes of the form k: t, where k is the
name of the attribute and t its domain. A star (‘*’) at the end of the domain
definition denotes that an instance of the concept can have multiple values for
that attribute, whereas the other attributes must be single-valued.

Our ontology distinguishes between the structural elements (transition, place,
arc, virtual-place10) and the textual elements. Arcs in our model have type (e.g.
10 A virtual place is a reference to a place. A place and its virtual copies are semantically

identical.
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Fig. 5: A part of the ontology defining reference nets. As much as it is practical it
is modeled with their formal properties in mind rather than their representation
in Renew.

normal, inhibitory) and direction attributes that define the way they interact
with the associated place and transition.

The leafs of the text-element subtree model the four types of textual elements
that are used in Renew. A structural element can be named by a name annota-
tion and inscriptions cover all semantically relevant annotations, e.g. markings,
guards, weights, etc. All other annotations are labels and are ignored during sim-
ulation of the net. Declarations are free-standing textual elements that contain
all declarations of Java objects used in the net and all imports for Java packages
that are needed.

The top concept for elements (refnet-element) has an attribute attributes that
may contain the graphical information of the element. The concept hierarchy for
its type element-attributes is not depicted here, but contains e.g. color and size.

An operation on an element is modeled as refnet-operation. We distinguish
three different kinds of operations: add, update and remove. In case of an update
the element attribute contains the entire new state of the element that was
updated.

Note that Figure 5 describes only part of our reference net ontology.

5 Discussion

Our decision to abandon locking mechanisms resulted in a huge simplification
of the overall design of the collaborative Petri net editor. On the other hand
abandonment of locking mechanisms entails certain problems with concurrent
editing of the same elements. It can be confusing for users for example to have
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their changes overwritten immediately by other users. One such case has been
discussed in Section 3.4.

In this case the developers have to communicate to clear up the confusion
and possibly revert some changes manually. We argue that in the targeted use
case of constructive collaborative work this is a corner case that seldom arises
and thus can be neglected.

The choice of using WebSocket as communication channel and a well-defined
ontology for message contents leads to loose coupling of the infrastructure and
the editor. This has two main benefits. Firstly different editors can be connected
to the MAS and secondly the MAS can be offered as a service, which compatible
editors can connect to from anywhere over the net.

Not mentioned before, the WebGateway can convert ontology communication
into JSON or XML. These languages are common in web applications and thus
facilitate connecting web-based editors in particular.

Modeling the system as a MAS resulted in a very modular architecture and
naturally, it inherits certain properties from the Mulan/Capa framework. On
the one hand, implementing large parts of the system in Petri nets is a huge gain
in terms of concurrency. On the other hand the message transport through the
various layers of the MAS is far slower than direct peer-to-peer communication.

The ontology we designed for inter-agent communication is not yet compliant
with the PNML standard, but in general the differences are minor. Using an
ontology has the additional benefit of serving as a glossary in the development
phase. It also provides a more abstract means of modeling in conjunction with
the code generator of the Mulan/Capa framework.

6 Summary

In the preceding chapters we gave a short overview of the prior work on collabo-
rative Petri net editors. We argued that the specifications are incomplete in the
sense that they only consider parts of the overall system.

The new model proposed in this work differs from all prior approaches in
that it completely foregoes locking of elements in the edited nets. The goal is
not to restrict the user in what he can manipulate and give immediate feedback
to all inputs. We achieve this by using a multi-agent approach with a central
message relay. By serializing all communication at the central relay we were able
to implement user input immediately in the user’s view and only subsequently
send it to the relay.

Session management is incorporated in our model as well. A user can partic-
ipate in multiple sessions simultaneously and each session can hold an arbitrary
number of documents available to all users in that session.

As a proof of concept we implemented our model as a plugin for the Petri
net editor Renew and a multi-agent application based on the Mulan/Capa
framework.
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7 Outlook

Since our approach uses WebSocket for communication it allows for using a web
application as Petri net editor. With the canvas element and the WebSocket
channel HTML5 offers all the required components to build such an editor.

Another topic of great significance for developing Petri nets is the synchro-
nized simulation. The simulation of the models may reveal modeling errors. In a
collaborative development process, on-line debugging a net has the benefit that
every participant can observe the exact firing sequence in the net. Simulating
the nets individually produces various different firing sequences for each partic-
ipant due to the innate concurrency of Petri nets and is therefor of little use to
collaborative debugging.

Looking a little farther behind the horizon, the MAS specified in our model
is by itself agnostic to the subject of the collaborative work. We defined very
basic manipulation operations that can be applied to a number of collabora-
tive editing scenarios. The MAS could thus be developed into a service platform
providing an infrastructure for collaborative editing. In order to build such an
infrastructure a meta ontology for collaborative editing needs to be developed.
It will facilitate building subject ontologies that describe particular subjects of
collaborative work and the permissible manipulations and their effects. Compli-
ant subject ontologies can then be used in conjunction with the collaboration
infrastructure.
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Abstract. Dynamic aspects of workflow execution require flexible solu-
tions. Especially in an interorganisational context many variable factors
can only be determined during the actual execution of a workflow. These
factors may require contextual, local changes within a process in order
to adequately support and represent the real-world scenario. This paper
describes the agentworkflow approach, which uses a combination of the
agent and workflow concepts to address a number of challenges of work-
flow execution. Both agents and workflows are provided as high-level
Petri nets.
The focus of this paper is the flexibility aspect of this approach. Agent-
workflows allow the dynamic reconfiguration of the workflow specifi-
cation. The key to this is the exchange of subworkflows depending on
the changing circumstances of the workflow execution. This allows the
workflow system to adapt to these circumstances and support users ad-
equately.

Keywords: Workflows, Agents, Combination, Flexibility

1 Introduction

Business processes (BP) are becoming ever more complex, especially in large
organisations. Their correct execution is crucial to the successful operation of a
company. Any incident occurring due to errors in a BP needs to be avoided by
all means. This is why BP are commonly facilitated with the help of workflow
software systems. Workflow management systems (WFMS) map real-life BP
to computerised representations and manage and control their execution, while
automating the processes as far as possible and supporting human users during
task execution.

Classically, WFMS are aimed at supporting static processes, that rarely
change. Dynamic changes, which might become necessary on a case-by-case ba-
sis, are difficult to handle and often require different solutions for every situation.
This is, however, a static approach to a dynamic problem and rather inefficient,
especially if the required changes are only minor and affect very small parts
of the workflow. Unforeseen changes that develop out of unique circumstances
cannot easily be handled by a static WFMS. These changes cannot be handled
on-the-fly and require a workflow modeller to implement a new version of the



overall workflow, especially dealing with the specific problem. The new workflow
then has to be re-initiated and an equivalent to the previous workflows’ state
has to be established. This requires time and effort, which, in real-life situations,
may be in short supply.

Because of this, another fundamental approach to workflow management can
be helpful or even crucial. Instead of only supporting static workflows, a degree
of flexibility should be added to the workflow management. It should be possible
to exchange certain parts of a workflow during execution, depending on the
current state of the system and workflow. If unforeseen changes occur, eligible
workflow administrators and modellers need to be able to simply (re-)design the
relevant parts and infuse them into the system in order to make further execution
of the workflow possible. Standardised exception handling or skipping patterns
can be used to automatically handle occurring issues and simplify the work of
administrators.

Another important aspect relates to interorganisational workflows, i.e. work-
flows executed cooperatively between different organisational entities. In this
context flexibility becomes especially important if partners in a workflow of-
ten change, which would require differing workflows each time in classical ap-
proaches. Interorganisational aspects will feature heavily in the discussion later
on in this paper.

We propose an approach to flexibility in workflow execution that strongly
relies on and profits from the agent-oriented paradigm. By using software agents
we can exploit the naturally distributed nature of these software entities to profit
in various ways. The approach, called agentworkflows, uses one agent for each
workflow instance. This agent is responsible for the execution, handling and
distribution of this workflow. The workflows themselves feature a hierarchical
structure, utilising subworkflows nested in an overall workflow. These subwork-
flows are essential to the support of flexibility and will receive special attention
in this paper.

This paper is structured as follows. In Section 2 we will discuss related work.
Section 3 highlights the modelling background for our research. Section 4 then
presents the agentworkflow concept and implementation, while Section 5 dis-
cusses the flexibility aspects of agentworkflows. Both agentworkflow concept and
how it can be used for flexibility are illustrated in an simple example in Section 6,
followed by the conclusion of the paper in Section 7.

2 Related Work

In this section we will discuss other approaches to flexibility in workflow man-
agement. The ADEPT (Application Development based on Encapsulated pre-
modeled Process Templates) project described, for example, in [4] deals with flex-
ible and robust workflow management. Using an advanced meta-model, which de-
fines all possible, allowed process structures, the system developed in this project
allows users to change single process instances or whole process templates. Most
aspects of a process or template can be changed during run-time, as long as the
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changes are allowed by the meta-model. Updating a process template updates
all of its currently running instances, as long as the changes do not produce
inconsistencies. The key to the flexibility in ADEPT is the so-called delta-layer.
This layer is situated between process template data and process instance data
and enables changes made to single instances. If the template is changed, the
information in the delta-layer and process instance data are checked against the
updated template and the decision whether to migrate or not is made. Com-
pared to our approach, the agentworkflows, ADEPT offers a much higher degree
of flexibility, but is very focussed on the processes. Agentworkflows add qualities
to the workflow execution, which are usually only associated with agents. These
go beyond the flexibility, which is the focus of this paper.

Another approach is presented in [6]. Similar to our approach the JBees
WFMS is implemented using agents and Petri nets. Based on the agent-platform
Opal and the Petri net tool JFern, the JBees system consists of several types of
agents. Interactions between these agents enable the execution of workflows. Of
special interest is the process agent, which similarly to our approach, encapsu-
lates a process instance and is responsible for its execution. Workflow flexibility
is also available in JBees using different algorithms to determine safe transfers
between process instances. While JBees uses agents and Petri nets to implement
workflow management it does not seem to offer the integration between agents
and workflows we strife to achieve with our overall approach. The agentwork-
flows partially fulfil our goals and can be compared in scope to a WFMS like
JBees.

[1] proposes a smart WFMS. During execution the WFMS possesses con-
text awareness for a process, so that it can adapt to the current circumstances.
The conceptual framework adds two key components to an otherwise regular
WFMS: smart workflow descriptions and a context reasoner. The smart work-
flow descriptions contain generic activities that are only linked to particular tasks
during runtime, similar to our approach. The context reasoner is responsible for
evaluating current circumstances and linking the generic activities to tasks.

[3, 2] propose recursive ECATNets (Extended Concurrent Algebraic Term
Nets) to model hierarchical and flexible workflows. Similar to our approach they
differentiate between elementary tasks, which are directly executed by resources,
and abstract tasks, which correspond to subworkflows.

Both the smart WFMS and the recursive ECATNets share similarities to
how flexibility is handled (e.g. late coupling of tasks, representing subworkflows
as tasks in overall workflows). However both approaches do not utilise agents.
As mentioned before agentworkflows can benefit in more ways then flexibility
from the employed agents.

All approaches, which have been discussed here, deal with flexibility in work-
flow execution in different and effective ways. Our approach exhibits similarities
to certain aspects of these approaches, like the use of Petri nets and agent-
orientation. In its current stage our approach may not offer the distinguished
and elaborated possibilities offered by the other approaches. However, it is just
one of the stepping stones toward a full integration of agents and workflows as
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proposed in [11]. As such, the possibilities, w.r.t flexibility and other properties,
in later stages will be significantly improved yet again, though this is outside the
scope of this paper (see [17] for more information).

3 Modelling Background

The modelling background for our approach contains two major areas: agents
and workflows. Agents are provided through the Mulan and Capa agent archi-
tectures ([12, 5]). Mulan is a conceptual agent framework/architecture based
entirely on reference nets, a high level Petri net formalism introduced in [8].
Every aspect of a multi-agent system in Mulan, from agent protocols to the
overall systems, is modelled in reference nets. As the reference net formalism
follows the nets-within-nets principle [13], each layer is nested within its upper
layer creating a four-level hierarchy. Capa is an extension to Mulan introducing
full FIPA compliance to Mulan and replacing the upper levels of the Mulan
hierarchy. This provides the functionality to allow distributed execution.

Workflows on the other hand are provided through workflow (Petri) nets. In
our implementation workflow nets are specialised reference nets using a special
transition to model the tasks of the process. These workflow nets were introduced
in [7]. They follow the basic principles of (coloured) workflow Petri nets described
in [14].

Since both agents and workflows have a common technological base, the
reference net formalism, an integration of both concepts is not only possible in
our approach, it is also quite natural. Both concepts can profit from one another,
though the focus of this particular paper is on workflows benefiting from agent
technology. The overall aspects of the work on integrating agents and workflows
has been the subject of, for example, [11, 16, 10, 17].

Mulan/Capa and workflow nets have previously been used to implement
WFMS functionality. In [15] an agent-based WFMS (AgWFMS) was presented,
which provides full workflow functionality using the above mentioned technolo-
gies. The functionality required is naturally divided between several types of
agents. Users can log into the system remotely, but workflows are executed cen-
tralised. The AgWFMS managed to capture and support many interesting as-
pects, like interoperability due to the FIPA compliance of Capa. Some aspects,
however, such as distribution and flexibility of workflows, could not be ade-
quately supported in the classic AgWFMS. This was one of the motivations to
extend the system with our new approach.

The development and runtime environment for our systems is the Renew
(Reference Net Workshop) editor. The editor was developed alongside the refer-
ence net formalism and is described, for example, in [9]. It supports the execution
of all aspects described in this paper.
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4 Agentworkflows

Our approach to flexible workflow management is called agentworkflows. This
name reflects the combination of the agent and workflow concepts in this ap-
proach. The approach was originally described in [16] and general properties were
discussed in [10, 17]. It is part of a larger, ongoing effort, also described in the
previously mentioned works, but originating in [11]. This effort aims to combine
agents and workflows into a new concept that exhibits the advantages and char-
acteristics of both classical concepts. The overall goal in this is to address some
of the shortcomings each classical concept (can) exhibit. The agentworkflow ap-
proach represents one of the later steps in the overall effort, that integrates both
agents and workflows conceptually in the background, but still exhibits classical
workflow behaviour to its environment.

The approach is based on the classic, regular AgWFMS, mentioned above.
The agentworkflow approach replaces part of the workflow handling process in
the AgWFMS and can thus be seen as a natural extension. The extended Ag-
WFMS containing the enhanced functionality of and for agentworkflows is called
AgWFMS*.

The basic principle behind our agentworkflow approach is that of hierar-
chical nested subworkflows. In short a workflow basically consists of a num-
ber of subworkflows, which are orchestrated in an overall workflow, called the
structure-workflow. The relation between structure-workflow and subworkflows
is handled through the tasks of the structure-workflow. Tasks in the structure-
workflow correspond to subworkflows. Subworkflows can, conceptually, be other
structure-workflows also containing further subworkflows. However, for readabil-
ity and simplicity we will restrict ourselves to a two-level hierarchy in this paper.
This means that subworkflows consist only of tasks being executed by work-
flow resources (human or automated). In other words, the structure-workflow
defines the basic outline and connection (the structure) between the different
subworkflows. One key aspect of the development of this approach was to allow
distributed workflow execution. For the agentworkflow approach in particular
this manifests itself in the subworkflows. Each subworkflow is independent from
the others and can be executed on a different registered system in the network,
depending on the requirements of the particular subworkflow. Since the data-
and control-flow of the workflow is handled within the structure-workflow the
different subworkflows can be executed independently and only need to be coor-
dinated at their beginning and end.

One designated agent, the so-called structure-agent, is responsible for the exe-
cution of the structure-workflow and the aforementioned distribution aspect. For
each new workflow instance a new structure-agent is instantiated. This structure-
agent is only responsible for his own agentworkflow instance. The structure-
workflow is part of the structure agent. In fact, the agent is not only responsible
for the execution of the structure-workflow, it even handles most of it itself. For
this (and further autonomy reasons) it contains and replicates some parts of the
AgWFMS functionality.
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The system functions as follows: When the structure-agent is started it re-
ceives the structure-workflow definition from the AgWFMS*. It instantiates and
stores the workflow net internally and registers as a listener for this net (and
this net only). This way, when tasks become activated the structure-agent can
automatically react. When that happens it reads the description of the subwork-
flow directly from the task of the structure-workflow. From this description the
structure-agent determines the circumstances for the subworkflow execution. It
determines what kind of or what particular system this subworkflow needs to be
executed on and then inquires which of these eligible systems are currently online
and registered. It then proceeds to choose one of the (possibly) multiple systems
for the actual execution of the subworkflow and contacts the interface agent of
the chosen AgWFMS*. After authentication the interface agent can decide to
accept or reject the subworkflow. If it rejects the subworkflow the structure-
agent chooses another system and tries instantiation of the subworkflow again,
unless no suitable systems are found, in which case error handling must occur1.
If it accepts the subworkflow, (optional) input data is sent from the structure-
agent and the subworkflow is instantiated locally at that AgWFMS*. This point
is crucial to the flexibility aspect, since only the designation of the local sub-
workflow needs to be known to the structure-agent. The actual implementation
of the subworkflow is, except for input and output data, independent from the
structure-workflow. This will be discussed in the next section. The subworkflow
is executed by the local2 resources logged into that AgWFMS*. When the sub-
workflow has finished its execution the (optional) output data is transferred,
along with the confirmation of the subworkflows success, from the AgWFMS* to
the original structure-agent. The structure-agent then takes this information for
the structure-workflow, which completes its own task-transition. This process is
repeated for all subworkflows that become active during the execution of the
structure-workflow. Once the structure-workflow reaches the final transition the
workflow is finished and the structure-agent can persistently store the data and
then terminate.

Figure 1 shows a snapshot of an execution of an exemplary agentworkflow.
The structure-workflow is being executed by the structure-agent on AgWFMS*1.
It contains two active tasks/subworkflows that are currently being executed
on two AgWFMS*. AgWFMS*1 is home to the structure-agent and is execut-
ing subworkflow A, while AgWFMS*2 is executing subworkflow B. The figure
clearly shows the relations between the agents and the workflows. The structure-
workflow is only executed by the structure-agent. The structure-agent is in com-
munication with the AgWFMS* agents to oversee subworkflow execution. The
subworkflows are in no way executed by the structure-agent, but only corre-
spond to tasks in the structure-workflow. The only agents involved in the actual
execution of the subworkflows are the ones of the local AgWFMS* systems.

1 This could, for example, include the search for alternate systems or require manual
input from a user.

2 Local in this context refers to the resources logged into this particular AgWFMS*
and does not exclude resources connected to the AgWFMS* through a network.
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Fig. 1. Principle agentworkflow approach (from [17])

To conclude this description of the agentworkflow principle and AgWFMS*
system we will now shortly discuss its general attributes. This will not include
the flexibility aspect, which will be discussed in the next section especially ded-
icated to this aspect. One of the most prominent features of the agentworkflow
approach is the clear encapsulation of a workflow instance through a software
agent. It provides the workflow instances with a very clear identity during its exe-
cution. This can be advantageous for monitoring and maintenance of the system.
A disadvantageous aspect of the encapsulation is, that it increases the number
of agents active within the system which can lead to performance issues. Fur-
thermore if the structure-agent or its agent platform is terminated erroneously,
the entire agentworkflow is lost. This is a problem we aim to fix in the future.

Additionally the encapsulation opens up many of the possibilities of software
agents for workflow instances. Since, logically, the structure-agent and the work-
flow can be seen as equivalent many attributes usually associated with agents
can be related to the workflow. This is further supported by the fact, that both
the workflows and agents rely on the same technical background: reference nets.
Both the approach and the technological implementation add to the integration
of agent and workflow principles as proposed by the overall effort in [11].

The most obvious possibilities opened up by the integration are the distri-
bution of workflow execution and interoperability. Since now all parts, including
workflow instances, are implemented as agents, they can be distributed almost
arbitrarily on the network. Also, since Capa adheres to the FIPA standards,
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interoperability with other agent systems is guaranteed, as long as the interfaces
match up. In the future, further agent attributes can be added to the agentwork-
flow approach. Mobility for one matter can remedy some issues arising from the
fact that the structure-agent serves as a central point of execution. In the orig-
inal agentworkflow approach a AgWFMS* platform would have to stay online
for as long as the structure-agent was active. If the structure-agent was able to
migrate to other platforms, the AgWFMS* platform could shut down while the
structure-agent continued its work on another AgWFMS* in the network. This
could also be used in error handling situations.

Furthermore, intelligence and autonomy could be added to the structure-
agent. These two attributes could be used in various ways, for example resource
access or control. But in combination with the mobility and distribution aspects
this becomes even more interesting, since it is possible to create an intelligent,
adaptive, migrating workflow instance. This is, however, outside of the scope of
this paper.

5 Flexibility in Agentworkflows

In this section we will discuss the agentworkflows with regards to their flexibility
aspects. As other attributes, such as mobility and intelligence, have already
shortly been discussed before, we will not address these here.

The most crucial aspect of the agentworkflow approach with regards to flex-
ibility is obviously the exchange of subworkflows and the loose coupling be-
tween structure-workflows and their related subworkflows. In the local view of
the structure-agent (and as such, the structure-workflow) each subworkflow pos-
sesses only a name, a place to be executed at and a (possibly empty) input and
output. The internal workings of a subworkflow are completely transparent to the
structure-agent. In fact, they are completely irrelevant to the structure-workflow,
as long as the subworkflow is completely executed and the correct output, w.r.t.
types, is produced. As a simple example imagine a subworkflow dealing with
checking the validity of a document nested within a structure-workflow for a
bank. As input, this subworkflow would possess the document, the output could
be a report on the document. How and in which order the different attributes
of the document are checked is of no concern to the structure-workflow3, which
just needs the report to continue its execution.

This key characteristic of agentworkflows can positively influence flexibility
in workflow execution in a number of ways. First and foremost, it can enable
the dynamic reconfiguration of the workflow specification. The simplest way to
support this is to use a variable for the name of the subworkflow in the structure-
workflow, instead of a constant identifier. This variable can depend on various
factors, like results of previous subworkflows, and implicitly4 represents the cur-
rent circumstances of the workflow execution. When the task/subworkflow be-
3 Of course it is of concern for the real-world application, but for this generalisation
we can abstract from this.

4 The variable has to be an identifier for the subworkflow.
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comes activated now it is instantiated with an identifier depending on the current
circumstances of the workflow execution. In this way, the structure-workflow can
dynamically adapt to external factors of the execution. From a technical point of
view, this is relatively easy to realise, since the unification algorithm of Renew
allows for such substitutions. The idea can even be extended to the target Ag-
WFMS* of the subworkflow. Depending on certain factors it might be necessary
to not simply execute another subworkflow, but to also change the location.
This can be achieved, pretty much in the same way it was done for the sub-
workflow identifier, although the computations might be a bit more complex.
One might also consider extending this principle to input and output. This is
however, more difficult, since input and output are usually quite closely tied to
the subworkflow. Changing them in accordance to changing the subworkflow is
possible (input and output are just variables anyway), but changing them inde-
pendently would require the target platform to provide subworkflows with equal
names and differing parameters. This would make the system more difficult to
maintain, administrate and monitor.

It should be noted though, that the degree of flexibility added by this is not
as high as could be desired. The subworkflows have to be known prior to work-
flow execution, so that they are available and compiled during runtime. This
implies that unforeseen situations cannot be handled by our current approach.
However, the particular flexibility added by the agentworkflows still enhances the
system to deal with predictable, dynamic situations. This, in combinations with
standardised error-handling mechanisms (e.g. subworkflows that involve admin-
istrators), can handle many practical scenarios. Furthermore, it is already quite
easy to exchange or add subworkflows in the system. If unforeseen situations
arise, adapted subworkflows could be modelled by a workflow modeller and in-
troduced into the system. Making this functionality available more “on-the-fly”
and integrating it more directly into the approach could remedy the current
shortcomings in flexibility.

Though not implied by the “regular” agentworkflow approach it is also pos-
sible to modify the AgWFMS* in order to support the flexibility mechanic from
its side. In principle, this is mostly equivalent to the variable identifier ver-
sion described above, only that the variables depends on factors of the target
AgWFMS* and the structure-agent. In this modification, the AgWFMS* can
autonomously decide which subworkflow to instantiate. It can take the proposed
subworkflow, the input and the output, as well as its own state into consider-
ation in this decision. The effect would generally be the same, only that the
ultimate control would lie with the target AgWFMS*. The combination of both
approaches would yield an even higher degree of flexibility, since all factors local
to the structure-agent and AgWFMS* would be taken into consideration during
subworkflow instantiation.

There are some further aspects the subworkflow characteristic adds to work-
flow execution with regards to flexibility, though these do not impact as much as
the ones described above and also focus on other variations of flexibility. Since the
structure-agent is ultimately responsible for choosing which AgWFMS* should
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execute a subworkflow, an adapted structure-agent with reasoning functionality
and additional information about the different AgWFMS* available could en-
hance flexibility in regards to load balancing or other similar efficiency factors.
The agent could, for example choose (among the set of suitable AgWFMS*)
the system with the lowest workload or the one with the best network connec-
tion. The counterpart to this mechanic is to include the reasoning within the
AgWFMS*, which yields similar results. If the AgWFMS* determines that its
workload is too high, or that too few resources are available, it can reject the sub-
workflow, which would force the structure-agent to choose another AgWFMS*.

The subworkflow hierarchy also contributes to flexibility. The two-level hier-
archy discussed in this paper is only the simplest and easiest to describe version
of the agentworkflow approach. When considering workflow hierarchies of more
then two levels, each additional level offers a more fine-grained degree of flexi-
bility. This can be especially useful in an interorganisational context, since the
additional levels of organisation can profit there.

Interorganisational workflow execution deals with workflows that are exe-
cuted cooperatively by different organisations. In this context each organisation
is responsible for its own part of the workflow. Even though the organisations are
working together within the process, each organisation is, of course, interested
in keeping the confidential details from the other partners. Furthermore, each
organisation will prefer to use their own WFMS, instead of relying on a central
one which is used by all partners. For these reasons the agentworkflow approach
is well suited for the interorganisational context, since the encapsulation ensures
security and the interoperability and distribution aspects support the second
requirement.

Nevertheless the flexibility aspects discussed above are also quite effective in
this context. First and foremost, the ability to exchange subworkflows without
influencing the overall structure-workflow is even more useful. In an interorgan-
isational setting, factors that influence workflow execution can be even more
varied, dynamic and demanding, since the collaboration introduces a lot of com-
plexity in the real-world scenario. Being able to handle these factors by providing
different subworkflows for different examples reduces the complexity again.

As mentioned before, adding additional levels to the hierarchy can also be
used as an improvement in this context. By allowing subworkflows to be structure-
workflows again, the flexibility aspects available on the interorganisational level
(original structure-workflow) become available to the individual organisation as
well. If the individual organisation uses this hierarchy-level to distribute work
between different departments, additional levels would again open up these pos-
sibilities to the departments and so forth.

The structure-agents ability to choose a WFMS for subworkflow execution
could take on a fully different role in the interorganisational context. By using
negotiation concepts, different WFMS of different organisations could offer to
take over subworkflows, which in the real-world scenario would translate to or-
ganisations competing for work assignments/contracts. This is, however, outside
of the scope of the current agentworkflow approach.
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Fig. 2. Example Structure-Workflow
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Fig. 3. Example Subworkflows
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6 Example

In this section we will discuss a simple example of a flexible agentworkflow in
an interorganisational setting. The structure-workflow can be seen in Figure 2.
Workflow nets like these consist of regular Petri net places and transitions, as
well as a few special elements. A workflow net starts with a transition connected
to a synchronous channel labeled :startWf(input) over which it can receive pa-
rameters, and ends with a transition connected to synchronous channel labeled
:stopWf(output) over which an optional result can be send. Tasks are repre-
sented as transitions with thick vertical bars, called task-transitions. Tasks in a
structure-workflow representing subworkflows are also drawn as transitions with
thick vertical bars and the letter S marked in the centre. The “regular” Petri net
transitions within the figure represent (abstract) operations on the variables and
data within the workflow. Usually they would/could feature more complex net
structures as well as synchronous channels to receive outside information. How-
ever, to retain readability of the net for this paper we have chosen to abstract
from a detailed and technical view in favour of a simplified version. For the same
reason we omitted the exact, complex inscriptions on the example workflow nets.
It should also be noted that, in order to keep the net size and complexity man-
ageable error handling and aborting the workflow due to failures in subworkflows
have largely been omitted.

Figure 2 represents a workflow for processing and handling an incoming order
in a generic company offering many items. The company offers standard items,
which are in stock and don’t need special treatment, and special items, which
have to be ordered from a third-party provider and handled differently (e.g.
large items or large quantities of items). The workflow encompasses the different
steps from processing the incoming order, handling the standard or special item,
handling payment, shipping via another third-party and finally book keeping.
Each of these complex tasks is modelled as a subworkflow. It should be noted
that we consider the main company to be in charge of this workflow, so that only
the two subworkflows for the third-party providers feature distributed execution.
We can observe three different types of subworkflows in this example.

The first type are regular subworkflows, which do not exhibit or require flex-
ibility. In this example these are the processing of the original order (Receive
order) and informing the consumer about problems in ordering a special item
(Inform consumer about failure). These subworkflows do not need to be flexible,
since, given the scenario, one version for each subworkflow can handle the pos-
sible circumstances. However, changing these subworkflows to be flexible would
only require adding some variable processing ahead of them, changing the in-
scriptions to support the variables and providing the different subworkflows on
the systems they would need to be executed on.

The second type of subworkflows are the flexible, interorganisational ones.
These are ordering a special item (Order special item) and handling the shipping
(Shipping). These are flexible since, depending on the item, they might have to
be taken care of by different companies and through different subworkflows.
For example ordering a bulky, large household item like a refrigerator would
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require a different company and subworkflow then ordering a smartphone. These
subworkflows illustrate how agentworkflows in general and their flexibility in
particular can support interorganisational settings.

The third and final type of subworkflows are flexible, but local ones. These
are handling a special item which has been ordered and received and now needs
to be temporarily stored (Handle special item), the handling of the payment for
a consumer (Handle payment) and book keeping and accounting (Book keeping).
These are flexible since special items may have special requirements in storage
or handling and the company might offer different ways of paying for an item.

Three different versions of the Handle payment subworkflow are shown in
Figure 3. The three versions all represent the process involved in handling and
receiving payment from the user. All three have in common that the original
order information is stored for later processing with the last task before the
subworkflow is finished (the lower branch in all three versions).

The topmost version represents prepayment by the user. The company pre-
pares the invoice, sends it out and, at some later point, receives payment before
the item is shipped. The middle version supports payment by credit card. The
company receives credit card information from the consumer and executes the
transaction. At this point the transaction was either successful or failed. If it
failed user interaction (e.g. re-entering the credit card information) is required. If
the transaction succeeds the item can be processed and shipped. The lowest ver-
sion models payment by cash-on-delivery. In this case the cash-on-delivery only
needs to be prepared with the postage service before the item can be shipped.
In this case processing payment would be included in later stages of the overall
workflow (e.g. a corresponding version of the Book keeping subworkflow).

This example illustrates the kind of scenario for which agentworkflow flexibil-
ity is especially suited. The different possibilities are known beforehand (e.g. the
different payment options offered by the organisation) and each can be modelled
accordingly. During execution the correct subworkflow can be instantiated and
the requirements given by the variable factors of the workflow (in this simple
example the choice of payment) can be fulfilled. While the different versions
of the Handle payment subworkflow only differ in small parts, other scenarios
could require more substantial changes in subworkflows. This could also easily
be handled by the agentworkflow approach.

Though the workflow of Figure 2 is a simple example, it serves to illustrate
the agentworkflow approach quite well. Subworkflows can feature distribution
and flexibility, and it is also conceivable to mix subworkflows and regular tasks
to loosen the hierarchy. If further aspects of agentworkflows, like intelligence and
mobility, are considered, it becomes clear that even these already versatile ways
only scratch the surface of the overall approach and its possibilities.

7 Conclusion

In this paper we have presented an approach to workflow management, called
agentworkflows. It incorporates elements of both agent orientation and classic
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workflow execution to combine strengths of both fields. The agentworkflow ap-
proach exhibits many interesting attributes, like encapsulation, intelligence and
distribution. The focus of this paper though, was on the flexibility introduced by
it. The flexibility of the agentworkflows relies on using a hierarchy of workflows
and subworkflows and on allowing the dynamic exchange of subworkflows depen-
dent on variable factors. This enables the dynamic reconfiguration of workflow
instances at runtime. We discussed this aspect of the approach in detail and fi-
nally gave an example of how it could be used in an interorganisational context.
The example illustrated the versatile ways, in which agentworkflows and their
subworkflows could be deployed.

The flexibility introduced by the agentworkflow approach makes it more suit-
able for real-world scenarios than a classically rigid approach. However, there
are currently some shortcomings to our approach, since subworkflows need to
be known and compiled before execution of the overall structure-workflow. This
limits the possibilities of the approach, since on-the-fly changes become difficult.
These limitations, however, do not relate to the general approach and need to
be fixed on a technological level, rather then a conceptual one. Addressing them
is one of our goals for future work. Furthermore we also aim to address the
other flexibility aspects discussed in this paper, as well as generally extend the
agentworkflow approach with more concepts from both agents and workflows.
Enhanced agent mobility, intelligence and distribution can greatly improve work-
flow execution and the process view given by workflows can enhance the agent-
side. We hope to combine the two paradigms to profit from one another and
further our overall goal to provide the desired complete integration of both. Ul-
timately, the intent is to develop a novel, general unit concept, which can serve
as agent, workflow or both, depending on the dynamic requirements at runtime.
Agentworkflows are one of the later steps towards that goal.

In conclusion, the agentworkflow approach possesses many qualities beneficial
to flexible workflow execution. Tt serves as an important basis for future work
regarding the integration of the agent and workflow concepts. By itself, the
approach offers a simple, yet elegant way of supporting flexibility in workflow
management.
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Extended Abstract

In this paper, we present the Cloud Workflow Transition. An extension of Petri
nets formalisms to adopt Cloud interactions. This allows workflows to request
compute or storage services from the cloud. Such refinements permit to codify
operational procedures into Petri net models and reduce user implication during
the specification of their workflows. The main purpose behind our proposed
refinements is to allow users to automatically execute workflows on distributed
infrastructures (Cloud, SOA, grid, cluster).

Through the Cloud transition users can specify their requests formulated as
tasks and parameters (see Figure 1). These requests will be treated in a transpar-
ent way i.e. that technical information is hidden from the user. The WFMS will
then either accept the request and make the connection to the specified Cloud
services according to user inputs or will reject it. The input places of the Cloud
transition model the pre-conditions of an event, the input data for the com-
putational task. The output places of the transition model the post-conditions
associated with an event, the results of the computational task.

Our approach uses workflow Petri nets [1]. More specifically we use the ref-
erence net formalism [2] extended with a specialized workflow task transition
[3]. Renew, the Reference Net Workshop, is our chosen tool for modeling with
reference nets. A very interesting and useful property of reference nets in Renew
is their use of the so-called shadow layer. It hides the technical details from the
user, who can concentrate on simply the nets.

The technical integration of the Cloud transition into our workflow nets and
workflow managment system is carried out in three main steps: The integration
into the existing workflow net formalism for Renew [3], the integration into the
current WFMS in Renew [4] and finally the integration into the user interface.
Due to the dynamic aspect of the cloud computing, further integration issues are
investigated such as including Quality-of-Service (QoS) requirements (time and
expenditure limit). The WFMS should be able to identify and handle failures
and support reliable execution in the presence of concurrency to guarantee a
high level of performance and availability of services.



We plan to define the oprational semantics of the Cloud transition using
Renew as well as a working use case. As an example, we intend to include the
Cloud transition to model and enact a storage workflow using existing Cloud
storage services within a Petri net-based multi-agent system.

Fig. 1. The cloud transition
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Abstract. In this paper we propose a concurrent simulator for Petri nets
based on the model of Actors of Hewitt. The classes of Petri nets that are
supported for the simulation are Place-Transition Nets and Elementary
Nets. The simulator is written in Scala, a programming language with a
library implementing the Actors model.
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1 Introduction

This paper deals with the design and implementation of a concurrent simulator
for Petri nets based on Hewitt’s Actor model. Different versions of the simulator
have been built: two versions for Marked Graphs, one version for Free Choice
Nets and finally the simulator for general Petri Nets. All the versions support
both the firing rule of Elementary Nets and the firing rule of Place-transitions
Nets. In this paper we will only describe the case of Place-Transition nets.

The simulator is based on the algorithm described by Dirk Taubner in [4],
and is written in Scala, an object-oriented language built over Java. We chose
to use the Actor model for the implementation of the concurrent simulator to
make a comparison between the level of concurrency offered by this paradigm
and that offered by Java threads. The algorithm is explained in Section 2.

The paradigm of Actors was introduced in 1973 by Carl Hewitt in [1]. An
Actor is an independent entity which, concurrently to other Actors, can receive
messages from other Actors, change its internal state, send new messages and
create new Actors. Each Actor is identified by a mailing address; an Actor needs
to know the mailing address of the Actors with which it wants to communicate.
Each message contains the address of the sender.

Section 3 describes how Scala implements the Actor model. Several experi-
ments have been made whose results are discussed in Section 5.

2 The Simulation Algorithm

Starting from Taubner’s analysis ([4]) we have built a simulator such that two
concurrent firings in the model correspond to (potentially) concurrent activi-



ties in the program. The strategy applied in our simulator provides a process
for each place and for each transition of the net. Each transition communicates
with its input places to check the firing condition. If enabled, the transition
asks its neighbouring places either to decrement or to increment their number
of tokens. The processes associated to places manage their number of tokens
and the requests made by transitions. The communication between place and
transition must follow a specific protocol because of conflicts. In a conflict sit-
uation a place must manage requests from different transitions; for this reason,
a token reservation strategy is needed. Conflicts can also generate deadlocks in
a simulator; if two transitions have made some of their reservations but they
need a further reservation that they can’t make because of the reservations of
the other, a deadlock situation is generated. To avoid it, a transition must be
able to cancel previous reservations.

The strategies just described are applied in the Polling of places in a fixed
order algorithm (also called PTO). Each transition sequentially polls the pro-
cesses corresponding to its input places in a fixed order and waits for the answer.
At the first refusal, the transition cancels reservations made earlier and restarts
polling from the first place. If the transition receives affirmative answers from
all the places, it informs each place to increment or decrement its number of
tokens. On the other hand, a place manages the reservation requests: if it can
satisfy a request, it reserves the necessary token to the transition and it sends
an affirmative message to the transition; if it can not satisfy a request, it sends
a negative message to the transition.

3 Scala and Actor Model

Several programming languages realize concurrency through the paradigm of
Actors. Scala has been designed in 2001 by Martin Odersky and it was released
for the first time in 2004 on Java platform. Scala runs on the Java Virtual Ma-
chine, providing a high compatibility with existing Java code. Scala is a pure
object-oriented language, supporting also functional programming. A library is
provided implementing the Actor model. Each Actor in Scala has a mailbox in
which it stores the received messages. The react() and receive() methods pick
a message from the mailbox and check if it matches one of the patterns specified
in the Actor. Scala Actors using react() are lightweight in comparison to Java
threads. In particular, if an Actor implements the receive() method, Scala
makes a one to one mapping with Java Virtual Machine threads; therefore each
Scala Actor is implemented as a Java thread. For this reason, a program imple-
mented through Scala Actors using receive() method has similar performances
of a program based on Java threads. An Actor using the react() method in-
stead, when it is started its behavior is captured in a closure and its stack is
discarded. At this point, the Actor is suspended and the associated thread is free
to execute other tasks. When the Actor receives a message, the corresponding
closure is executed by a thread. Using this strategy, a thread is able to execute
more than one Actor at the same time.
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4 Implementation of the Simulator

The simulator is composed first of all by the Net, Place and Transition classes
that define the structure of the net. When the user asks for the simulation of the
specified Petri net, the class Net provides for the creation of the Actors needed.
Two kinds of Actors are needed: one to represent places and one to represent
transitions. For this reason, the classes PlaceActor and TransitionActor have
been implemented. Each implements an Actor whose behavior reflects the task
described in Taubner’s algorithm.

In the first version for Marked Graphs, in which conflicts are not allowed,
the reservations and cancellation strategies are not needed. In a second version
of the simulator of Marked Graphs each place is seen as just a communication
channel between two transitions, and not as an Actor.

Another version simulates Free Choice Nets, in which if two or more transi-
tions are in conflict, then they have a single input place (that is the same for all
the transitions in conflict). In this case the reservation strategy is needed, but
there is no need for cancelling reservations.

Finally, the simulator for general Petri nets has been implemented. This
version reflects Taubner’s algorithm, implementing both reservation and cancel-
lation strategies.

5 Experimental Results

A series of experiments has been made in order to compare the degree of con-
currency offered by the simulator based on Actors and the simulator based on
Java threads: by degree of concurrency we mean the number of processes that
the simulator can start during a simulation. We recall that when we speak about
simulator based on Java threads we mean a simulator implemented through Scala
Actors using receive() method. Moreover we have studied the ratio between
the number of transition firings and the number of cancellations of reservations.

For the first experiments we used a net with a regular structure, whose size
is simply parameterizable. In particular, we considered the following net, where
the basic module can be replicated:

The experiments have been conducted on two different computers: the first
has a dual-core processor with 2 GB of memory, the second has a quad-core pro-
cessor with 4 GB of memory. The results of experiments made on first computer
are the following:
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Processes Core 1 Core 2 Memory used

Actors 18 000 30% 30% 2000/2000 Mb

Threads 200 100% 100% 1200/2000 Mb

From the table it can be seen that the number of processes started in the case
of Actors is much greater. In the case of Actors the number of started processes is
limited by memory, which is totally occupied; in case of threads, the limit comes
from the processors usage. The experiments made on the second configuration
have yielded results consistent with those just described.

The aim of the second type of experiments was to record some significant
parameters to test the efficiency of the implementation. The net used in this case
models the dining philosophers (see Fig 1). Specifically, we consider a variant of
the model in which some philosophers take first their left fork, while the others
take first the right fork.

Fig. 1. The net of three dining philosophers.

The first kind of data we wanted to record was the number of transitions
that fire and the number of negative answers that the transitions receive.

An interesting property shown by data concerns the ratio between the number
of transitions that fire and the number of refusal received by transitions (see
table below); this ratio is constant and independent from time and number of
transitions. Its value is close to 0.1, which means that each transition, to obtain
the permission to fire, receives on average ten refusals. This result is justified
by the fact that each transition continually tries to fire, this suggests to explore
changes to the algorithm in order to reduce the number of refusals.
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Time Philosophers Transitions Negative answers Ratio
(sec)

60 50 2344 22564 0.1038
250 2357 22678 0.1039

1000 2355 22421 0.1051

600 500 23620 227666 0.1037

The second kind of data that we have recorded is the number of transitions that
fire and the number of messages sent by transitions to cancel a reservation (see
the table below). We recall that the number of negative answers (recorded in the
first experiments) and the number of cancellations of reservations are not the
same. In fact if a transition receives a negative answer from the first place, it does
not need to cancel any reservation. In this case the ratio between the number
of transitions and the number of cancellations of reservations is approximately
1, which means that each transition sends on average a single message to cancel
reservations before firing.

Time Philosophers Transitions Delete reservation Ratio
(sec)

60 50 2332 2359 0.9885
60 250 2344 2252 1.0408
60 1000 2320 1868 1.2419

600 500 23635 24139 0.9791

6 Conclusion

Taubner’s algorithm allowed us to implement a concurrent simulator for Petri
nets. Furthermore Scala has proved to be a very simple and elegant program-
ming language, which, thanks to Actors model, offers a level of concurrency
significantly higher than threads Java. Planned future developments are the im-
plementation of a GUI for the simulator and other tools for analyzing the results
of simulations. We will also explore alternative algorithms which exploit struc-
tural properties of the net to be simulated. In particular, we will consider nets
that can be decomposed in several State Machine. An Actor will be associated
to each sequential component.
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Abstract. Application of service-oriented architecture, which builds the
entire system by a combination of independent software components, to
a wide variety of computer systems is expected. The problem to synthe-
size state machine models of the services from a communication diagram
representing the overall specifications of service interaction is known as
the choreography realization problem. It should be minded on automatic
synthesis that software models should be simple to be understood easily
by software engineers. In this paper, we propose a method to synthesize
hierarchical state machine models for the choreography realization prob-
lem. The proposed method is evaluated using a metric for intelligibility.

1 Introduction

In recent years, the internationalization of activities and information technology
in the enterprise has intensified competition between companies. Companies are
under pressure to respond quickly to business needs, and the period for making
changes to existing business and launching new businesses has been shortened.
For this reason, the need to change or build quickly information systems has
been increasing.

Under such circumstances, service-oriented architecture (SOA)[12] has been
attracting attention as the architecture of information systems in the enterprise.
In SOA, an information system is built by composing independent software units
called services.

In this paper, we consider the problem of synthesizing a concrete model from
an abstract specification. It is not easy for the designers to design a concrete
model directly from requirements since there exists huge gaps. But, defining an
abstract specification is relatively simple. Therefore, if we can automatically syn-
thesize a concrete model from abstract high-quality specification, it is expected
that designer’s workload is greatly reduced and product quality is improved.

In the field of software engineering, there exist several investigations that syn-
thesize the concrete model from the abstract specification. Harel et al. proposes
a methodology for synthesizing statechart models from scenario-based require-
ments[5]. Whittle et al. proposes a methodology for synthesizing hierarchical
? This work was supported by KAKENHI (23500045).



state machine models from expressive scenario descriptions[13]. Liang et al. de-
fines a set of comparison criteria, and surveys 21 different synthesis approaches
presented in literature based on the criteria[7]. In addition, the theory of regions
has been attracting attention as a method to synthesize nets[3].

In SOA, the problem to synthesize the concrete model from an abstract
specification is known as the choreography realization problem[11]. In which
the abstract specification, called choreography, is defined as a set of interactions
among services, which are given in a dependency relation of messages sent and
received; the concrete model is called the service implementation which defines
the behavior of the service. This paper utilizes the communication diagram and
the state machine of UML 2.x[10] to describe the choreography and the service
implementation, respectively.

Bultan and Fu formally introduced the choreography realization problem in
[2]. They used collaboration diagrams of UML1.x and showed some conditions
for a given choreography to be realizable. In addition, they showed a method
to represent the service implementation as the state space in which a state was
defined as a set of unsent messages, and they also showed a method to map to
a set of finite state machines. However, it is not intelligible because the number
of states increases exponentially as the number of messages increases. Further-
more, they have adopted the semantics that message send and receive events for
a synchronous call occur simultaneously. Under this semantics, the UML speci-
fication that “the execution of the call operation action waits until the execution
of the invoked behavior completes and a reply transmission is returned to the
caller”[10] can not be represented.

Miyamoto et al. have proposed a method to synthesize hierarchical state
machines from the choreography given in communication diagrams[8]. In the
method, dependency constraints between message send and receive events are
represented by Petri nets[9]; the state machine is synthesized from its reach-
ability space. A method to extract the hierarchical structure by analyzing the
reachability space is given, but the technique can only be applied to simple cases.

This paper proposes a method of converting a Petri net into the state machine
directly. It is shown that there is a relation between the possibility of direct
conversion and structural properties of Petri nets. At first the proposed method
converts the Petri net so as to satisfy the structural properties, then it converts
Petri nets into hierarchical state machines without generating their state spaces.

This paper is organized as follows. Section 2 introduces an UML subset,
called subset of UML for formally describing choreography and behavioral feature
(cbUML), to discuss the choreography realization problem, and an extended
Petri net, called message mark graph (MMG). The proposed method, called
Construct State-machine Cutting Bridges (CSCB) method, is evaluated in terms
of the intelligibility in Sect. 3. However, in this paper it is assumed that the
choreography is given in a single communication diagram as the first stage of
the study. Section 4 is the conclusion.
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2 Preliminaries

2.1 cbUML

Let us introduce a subset of UML, called cbUML, for the discussion in this paper.

Definition 1 (cbUML). cbUML is a tuple (C,M,A, CD,SM), where C is the
set of classes, M is the set of messages, A is the set of attributes, CD is the
set of communication diagrams, and SM is the set of state machines. Each of
messages and attributes is owned by a class, and behavior of a class is defined
by a state machine.

Messages The set M of messages are partitioned with respect to the sort of
messages: M = Msop ∪Maop ∪Mrep, where Msop is the set of synchronous
messages generated by synchronous calls,Maop is the set of asynchronous mes-
sages generated by asynchronous calls, and Mrep is the set of reply messages
to synchronous messages. Let Ms = Msop and Ma = Maop ∪ Mrep. Corre-
spondence between the synchronous call and its response is given by the func-
tion refer : M 7→ M ∪ {nil}, such that ∀m ∈ Msop : refer(m) ∈ Mrep,
∀m ∈ Mrep : refer(m) ∈ Msop, and ∀m ∈ Maop : refer(m) = nil. Note that
∀m ∈Msop ∪Mrep : refer(refer(m)) = m.

There is a difference in behavior during interactions due to differences in the
sort of message as follows: In a synchronous call, caller’s execution is stopped
until it receives a reply from the callee. On the other hand, in the asynchronous
call, the caller is possible to continue to operate, regardless of the behavior of
the callee side.

In UML, each message has two events: a send event and a receive event. For a
synchronous message, it is considered that they occur simultaneously. However,
for the later discussion we need two events that occur separately. Therefore
we define that each synchronous message has two events: a preparation event
for message sending and a send-receive event, where the preparation event is a
caller’s event and the send-receive event is a callee’s event. A preparation event
and a send-receive event for a synchronous message m ∈Ms are denoted by $m
and !m, respectively. For an asynchronous message m ∈Ma, its send event and
receive event are denoted by !m and ?m, respectively. Hereafter a send event is a
send-receive event for a synchronous message or a send event for an asynchronous
message. The set Σ of message events and the set ∆ of send events are defined
as follows:

Σ = {$m, !m | m ∈Ms} ∪ {!m, ?m | m ∈Ma}, and
∆ = {!m | m ∈M}.

Communication Diagrams Communication diagrams show interactions where
the arcs between the communicating lifelines are decorated with description of
the passed messages and their sequencing.
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Service1
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Service4

Service6
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Req1

Answer

Check1
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ReplyCheck2

Check5
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Info1

Ack1

Fig. 1. A communication diagram

!Check5

!Check5_rep

!Req1

!Req1_rep

!Check1

!Check2

!Check3

!ReplyCheck2
!Check4

!Ack1

!Info1

!Answer

Fig. 2. Dcd

Definition 2 (Communication Diagram). A communication diagram cd ∈
CD is a tuple cd = (Ccd,Mcd, Conncd, linecd, Dcd), where Ccd ⊆ C is the set of
instances of classes (called lifelines or objects) in cd, Mcd ⊆ M is the set of
messages in cd, Conncd ⊆ Ccd×Ccd is the set of connectors, which is given as a
symmetric relation on Ccd, linecd :Mcd 7→ Conncd assigns a connector for each
message, and Dcd ⊆ ∆cd × ∆cd is a dependency relation among send events.
Note that the reflexive and transitive closure of Dcd is a partial order.

A conversation is the sequence of messages exchanged among the objects.
The set of conversations defined by a communication diagram cd is denoted by
C(cd) ⊆ 2M

∗
, whereM∗ is the set of all sequences of messages.

Definition 3. A conversation σ = m1m2 · · ·mn is in C(cd) if and only if σ ∈
M∗ and the corresponding sequence γ =!m1!m2 · · ·!mn of send events satisfies
∀i, j ∈ [1..n] : (!mi, !mj) ∈ Dcd ⇒ i < j.

Figure 1 shows a communication diagram. In this example, messages Req1
and Check5 are synchronous messages, and dashed lines with open arrow head
are their reply messages. Suppose that the dependency relation among send
events is given as shown in Fig. 2, where rhombuses, rectangles, and ellipses
indicate synchronous calls, their reply, and asynchronous calls, respectively. The
following sequence is a conversation of the example.

σ = Req1 Check1 Req1_rep Check2 Check3
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State Machines The behavior of each object is described by a state machine.

Definition 4 (State Machine). A state machine is a tuple sm = (Vsm, Rsm,
topsm, contsm, TRsm, Esm, Constsm, Behsm), where Vsm = SSsm∪CSsm∪FSsm∪
ISsm is the set of vertices1, Rsm is the set of regions, top ∈ Rsm is the top re-
gion, contsm : (Vsm ∪Rsm) \ {topsm} 7→ (CSsm ∪Rsm) is an ownership relation
between vertices and regions, TRsm is the set of transition relations, Esm is
the set of events, Constsm is the set of constraints, and Behsm is the set of
behaviors.

In UML state machines, although there are various kinds of states and
pseudo-states, only simple states, composite states, final states, and initial pseudo-
states are used in this paper. A composite state is able to own one or more
regions, and a region is able to own vertices. The function contsm represents
the ownership of vertices and regions, and contsm(x1) = x2 means that x1 is
owned by x2. For a x ∈ Vsm ∪Rsm, let des(x) = {x′ | ∃i > 0 : contism(x′) = x}
be the set of descendants of x, where cont1sm(·) = contsm(·) and contism(·) =
contsm(conti−1sm (·)) (i > 1).

Definition 5 (Orthogonal State). If there exist vertices v1, v2 ∈ Vsm and
different regions r1, r2 ∈ Rsm, r1 6= r2 such that contsm(r1) = contsm(r2),
v1 ∈ des(r1), and v2 ∈ des(r2), two vertices v1, v2 are called orthogonal, and
denoted by v1 ⊥ v2.

Definition 6. A set V̂sm ⊂ Vsm of vertices is called consistent if and only if for
each pair v1, v2 ∈ V̂sm of vertices v1 ⊥ v2, v1 ∈ des(v2), or v2 ∈ des(v1).

The set Esm of events is given as Esm = Σsm ∪ {τ}, where Σsm is the set of
message events in the state machine and τ is the completion event that occurs
when a transition with no trigger event fires.

A transition relation etr ∈ TRsm is a tuple etr = (src, trig, grd, eff, tgt),
where src ∈ Vsm is the originating vertex of the transition, a trigger trig ∈
Esm is the event that makes the transition fire, a guard grd ∈ Constsm is
a constraint, an effect eff ∈ Behsm is an optional behavior to be performed
when the transition fires, and tgt ∈ Vsm is the target vertex. Note that {src, tgt}
must not be consistent. According to the UML specification[10], triggers, guards,
and effects are denoted like “trig[grd]/eff ” in diagrams. It is supposed that
Σsm ⊆ Behsm, and a caller’s event of message sending becomes an effect and a
callee’s event becomes a trigger.

Due to space limitations, the details of operational semantics of state ma-
chines are omitted, and the steps of doing synchronous calls and asynchronous
calls are explained by examples.

Figure 3 shows the execution of the asynchronous call. Gray states are active.
When state machine sm1 transitions from state s11 to state s12 by the occurrence
of the completion event, an asynchronous call is executed. At this time the send
1 SSsm is the set of simple states, CSsm is the set of composite states, FSsm is the set
of final states, and ISsm is the set of initial pseudo states.
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Fig. 3. Steps for an asynchronous call
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Fig. 4. Steps for a synchronous call

event !m occurs, and the message m will be appended at the end of the queue of
sm2. The state machine sm2 transitions from state s21 to state s22 consuming
the message m by the occurrence of the receive event ?m.

Figure 4 shows the execution of the synchronous call. A synchronous call is
executed in sm1. At this time, the preparation event $m occurs in sm1, and the
region that contains the transition is suspended. In addition, the message m is
appended at the end of the queue of sm2. The state machine sm2 transitions
from state s21 to s22 consuming the message m by the occurrence of the send-
receive event !m. The sm2 sends a reply message rm to sm1 on transitioning
from s22 to s23. At this time the send event !rm occurs, and the message rm
is appended at the end of the queue of sm1. The sm1 releases the suspended
region, and transitions from state s11 to state s12 consuming the reply message
rm by the occurrence of the receive event ?rm. Note that the receive event ?rm
does not appear in the state machine, because we are using the region suspend
mechanism.

The set of all conversations obtained by the execution of a set SM of state
machines is denoted by C(SM).

2.2 Petri nets

The proposed method represents the dependency relation between message send
an receive events by using Petri nets[9]. Since this paper assumes that the chore-
ography is given by a communication diagram, Petri nets that appear in this
paper are marked graphs.

A Petri net N = (P, T, F,W ) is called ordinary when ∀(x, y) ∈ F : W (x, y) =
1. Then the weight function W is omitted. For x ∈ P ∪ T , the set {y ∈ P ∪ T |
(y, x) ∈ F} is called the preset of x, and denoted by •x. In the same way, the
set {y | (x, y) ∈ F} is called the postset of x, and denoted by x•.
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A place p ∈ P is called a source place and a sink place when •p = ∅ and
p• = ∅, respectively. In the same way a transition t ∈ T is called a source
transition and a sink transition when •t = ∅ and t• = ∅, respectively. A transition
t is called a fork transition and a join transition when |t • | ≥ 1 and | • t| ≥ 1,
respectively. The sets of join transitions and fork transitions are denoted by Tjoin
and Tfork, respectively. Under the standard definition, if ∀p ∈ P : | • p| = 1 and
|p• | = 1, then the Petri net is called a marked graph. In this paper, we relax the
condition as ∀p ∈ P : | • p| ≤ 1 and |p • | ≤ 1.

Definition 7 (Message Marked Graph). A message marked graph (MMG)
is a tuple N = (P, T, F,W,G,A), where the underlying Petri net (P, T, F,W )
satisfies the following conditions:

1. N is an ordinary and acyclic,
2. there exist only one source place ps and only one sink place pe,
3. no source transitions and sink transitions exist, and
4. |ps • | = 1, | • pe| = 1, and ∀p ∈ P\{ps, pe} : [| • p| = 1, |p • | = 1].

G : T 7→ 2T is a firing constraint, and the partial function A : T 7→ Σ assigns
an event for the transition.

A state of MMG is expressed by a pair (M,X), where M : P 7→ Z+ is a
marking and X : T 7→ B is a firing configuration, where Z+ is the set of non-
negative integers and B = {true, false}. The initial state (M0, X0) of MMG is
given as follows:

M0(p) =

{
1 if p = ps

0 otherwise, and

X0(t) = false (∀t ∈ T ).

A transition t ∈ T is enabled if and only if ∀p ∈ •t : M(p) ≥ W (p, t) and
∀t′ ∈ G(t) : X(t′) = true. A new state (M ′, X ′) obtained by the firing of
transition t is given as follows:

M ′(p) = M(p)−W (p, t) +W (t, p), and

X ′(t′) =

{
true if t′ = t

X(t′) otherwise.

Handles and Bridges Let N = (P, T, F ), and N1 = (P1, T1, F1) be a subnet
of N . An elementary path H = (n1, . . . , nr), r ≥ 2 of N is a handle of N1 if and
only if H ∩ (P1 ∪ T1) = {n1, nr}.

Let N = (P, T, F ), and N1 = (P1, T1, F1) and N2 = (P2, T2, F2) be subnets
of N . An elementary path B = (n1, . . . , nr), r ≥ 2 is a bridge from N1 to N2 if
and only if B ∩ (P1 ∪ T1) = {n1} and B ∩ (P2 ∪ T2) = {nr}.

For a transition t ∈ T , FJ(t) ⊆ T is a set of terminal vertices of handles
starting from t. Similarly, JF (t) ⊆ T is a set of starting vertices of handles
terminating at t. Please refer to [4] for more detail about handles and bridges.
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Convertible MMG Intuitively, if two states in a state machine are consistent,
both states may be active concurrently. The UML specification prohibits draw-
ing a transition between consistent states. An MMG is a representation of the
relationship between the order of the messages in the marked graph; in general
cases a state machine which satisfies the specification can not be directly, namely
without generating its state space, derived from the MMG.

Let us introduce a subclass of MMG called the convertible MMG (CMMG),
from which we can get a state machine satisfying the specification directly by
using Algorithm 1 shown later.

Definition 8. A MMG is called a CMMG if the following conditions hold:

1. |Tfork| = |Tjoin|
2. Tfork ∩ Tjoin = ∅
3. For any pair of handles H,H ′ in the MMG, only one of following conditions

holds: (a) H and H ′ share the same starting vertex and the same termi-
nal vertex, and (b) the starting vertices of H and H ′ are different and the
terminal vertices of H and H ′ are different.

4. If A(t) = $m, then t • • = {t′}, A(t′) =?refer(m).

From the definition of CMMG, for all t ∈ Tfork (resp. t ∈ Tjoin) |FJ(t)| = 1
(resp. |JF (t)| = 1). Moreover the following lemma holds.

Lemma 1. Let N be a MMG, N1 be a subnet of N , and H be a handle of N1.
If N is a CMMG, then there is no bridge from H to N1.

Algorithm 1 shows how a CMMG is converted to a state machine. In the
algorithm, if A(t) ∈ {!m | m ∈Ms}∪{?m | m ∈Ma} then Event(t) = A(t), and
Constraint(t) = ∧a∈G(t)fireda. The mapping Behavior(t) is given as follows:

Behavior(t) =





own(m).m(· · · ) if A(t) ∈ {$m | m ∈Msop}
send m(· · · ) to own(m) if A(t) ∈ {!m | m ∈Maop}
reply to m(· · · ) if A(t) ∈ {!m | m ∈Mrep}

where, own(m) is the owner object of message m, and in cbUML these ex-
pressions show a synchronous call, an asynchronous call, and a reply for a syn-
chronous call. In addition, if firedt ∈ A, then add an expression ‘firedt = true’
to Behavior(t). The ‘new’ expression shows a new element is generated.

Lemma 2. A CMMG is directly convertible to a state machine.

Figure 5 shows an example of CMMG, and Fig. 6 is the synthesized state
machine by Algorithm 1. In Fig. 5, places on each edge, ps and pe are omitted.

3 Choreography Realization Problem

3.1 Choreography Realization Problem

By a single communication diagram, one scenario that is an interaction of objects
in the system are described. All behavior of the system is given by a set of
communication diagram; this is referred to as choreography.
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Algorithm 1: Converting CMMG to a state machine
Input: CMMG (P, T, F,G,A)
Output: State machine (V,R, top, cont, TR,E,Const,Beh), Attribute A

1 begin
2 A ← {firedt | t ∈

⋃
t′∈T G(t′)};

3 E ← {Event(t) | t ∈ T};
4 Const← {Constraint(t) | t ∈ T};
5 Beh← {Behavior(t) | t ∈ T};
6 V ← ∅;
7 R← ∅;
8 tinit ← ps•;
9 tend ← •pe;

10 top ← new Region();
11 RNG(tinit, top, tend);

12 RNG(t, r, te)
13 ip ← new InitialPseudoState(); cont(ip)← r;
14 if Event(t) = Constraint(t) = ε then
15 s← ip
16 else
17 s ← new SimpleState(); cont(s)← r;
18 new Transition (ip, ε, ε, ε, s);

19 while t 6= te do
20 ev ← Event(t); const← Constraint(t); beh← Behavior(t);
21 if ev = const = beh = ε ∧ |t • | = 1 then
22 t← t • •; continue;

23 if A(t) ∈ {$m | m ∈Ms} then t← t • •;
24 if |t • | ≥ 2 then
25 s′ ← new CompositeState(); cont(s′)← r;
26 forall the p′ ∈ t• do
27 r′ ← new Region(); cont(r′)← s;
28 RNG(p′•, r′, FJ(t));

29 t← FJ(t) ;
30 else
31 s′ ← new SimpleState(); cont(s′)← r;
32 t← t • •;
33 new Transition (s, ev, const, beh, s′);
34 s← s′;

35 fs ← new FinalState();
36 new Transition (s, ε, ε, ε, fs);

Intuitively, the choreography realization problem is the problem to determine
whether it is possible to synthesize a set of state machines which realize the
choreography. In addition, it is desired to synthesize the state machines. The
choreography realization problem is formally defined as follows.
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Service6-init

!Check5 ?Check4

!Check5_rep

Service6-end

Fig. 5. CMMG

/ reply to Check5;

Check5 / Check4 /

Fig. 6. Generated state machine

Problem 1. For a given set CD of communication diagrams, is it possible to
synthesize the set SM of state machines which satisfy C(CD) = C(SM)? If
possible, obtain the set of state machines.

In the case of un-realizable choreography, is is desired to synthesize state
machines which behave as close to the choreography as possible. It is called
weakly realizable if there exist state machines which satisfy C(CD) ⊇ C(SM).
For a weakly realizable choreography, obtain the set of state machines whose
C(SM) is maximal.

In [2], sufficient realizability conditions for a class of collaboration diagrams
have been shown. We suppose that given CD is (weak) realizable hereafter and
the set CD contains only one communication diagram.

3.2 CSCB Method

The proposed CSCB method synthesizes state machines from a communication
diagram as below. Due to space limitations the details of the algorithm are
omitted.

1. Construct a dependency relation ⇒cd on the set of events.
For each object c, perform the following steps.

2. Derive a dependency relation ⇒c
cd from ⇒cd.

3. Construct an MMG from ⇒c
cd.

4. Cut T-T bridges from the MMG.
5. Separate fork and join transitions in the MMG.
6. Find one-to-one correspondence between Tfork and Tjoin in the MMG.
7. Perform Algorithm 1.
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Fig. 7. ⇒cd

Service1-init

$Req1
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?Answer

Service1-end
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!Req1

!Req1_rep

!Check1

!Check3

Service2-end

!Check2

?Ack1

?ReplyCheck2

!Answer

Service3-init

?Check1

!Ack1 !Check4

Service3-end

Service4-init

?Check2

?Info1$Check5

!ReplyCheck2

?Check5_rep

Service4-end

Service5-init

?Check3

!Info1

Service5-end

Service6-init

!Check5 ?Check4

!Check5_rep

Service6-end

Fig. 8. ⇒c
cd and MMGs for Service1, Service2, ... are shown from left to right.

Construction of dependency relation ⇒cd The dependency relation⇒cd⊆
Σcd ×Σcd on the set of events is given by the following expression:

⇒cd=Dcd ∪ {($m, !m) | m ∈Mcd
s } ∪ {(!m, ?m) | m ∈Mcd

a }
∪ {(?m1, !m2) | m1 ∈Mcd

a ,m2 ∈Mcd
a , (!m1, !m2) ∈ Dcd}

∪ {(?m1, $m2) | m1 ∈Mcd
a ,m2 ∈Mcd

s , (!m1, !m2) ∈ Dcd}
∪ {(!m1, $m2) | m1 ∈Mcd

s ,m2 ∈Mcd
s , (!m1, !m2) ∈ Dcd}

Figure 7 shows the dependency relation⇒cd for the communication diagram
shown in Fig. 1.

Deriving ⇒c
cd and Construction of MMG At first, ⇒cd is transitively

reduced, then the dependency relation ⇒c
cd for each object c is derived. At this

time, in order to satisfy the condition 4 of CMMG, for all synchronous message
m ∈Ma, if there exists an event e 6=?refer(m) such that ($m, e) ∈⇒c

cd, then a
relation (?refer(m), e) is added in ⇒c

cd.
The dependency relations ⇒c

cd, which are derived from the dependency re-
lation ⇒cd shown in Fig. 7, are shown in Fig. 8. Here, since ($Req1, ?Req1rep),
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Fig. 9. Separating fork and join
transition

A

C

B

A

C

B

(D)

Fig. 10. Finding one-to-one correspondence

($Req1, ?Answer) ∈⇒c
cd for Service1, a relation (?Req1rep, ?Answer) is added

in ⇒Service1
cd .

MMGs are constructed by converting vertices into transitions, adding a place
for each edge, and adding source and sink places in Fig. 8.

Cutting T-T bridges As shown in Lemma 1, since bridges are unnecessary in
CMMGs, they are cut. In the example in Fig. 8, (!Check1 !Check2 ?ReplyCheck2)
of Service2 is a bridge. After removing edges (!Check1, !Check2) and (!Check2,
?ReplyCheck2), edge (Service2-init, !Check2) and (!Check2, Service2-end) are
added. At that time, in order to avoid changing the behavior, the following
firing conditions are added.

G(t) =

{
!Check1 if A(t) = !Check2
!Check2 if A(t) = ?ReplyCheck2

Cutting all bridges is not always necessary. Let U be a set of bridges and
f : U 7→ 2U be a function such that f(u) is a set of bridges which will not
be bridges by cutting bridge u. Then, the problem to finding the set of bridges
results in the set cover problem[6].

Separating fork and join transitions If there exists fork and join transition,
it is split into a fork transition and a join transition as shown in Fig. 9.

Finding one-to-one correspondence As shown in Fig. 10, dummy transition
D is added in order to find one-to-one correspondence between fork and join
transitions..

Lemma 3. The MMG obtained by applying steps 1∼6 of CSCB method is a
CMMG.

Figure 11 shows CMMGs obtained from MMG in Fig 8.

Conversion into state machines By performing Algorithm 1, state machines
shown in Fig.s 12, 14, 13, 15, 16, and 6 are obtained.
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[!Check1]!Check2

!Req1_rep

!Check1 !Check3

?Ack1

[!Check2]?ReplyCheck2

!Answer

Service3-init
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!Check5_rep
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Fig. 11. CMMG of the example

Answer /

/ Service2.Req1();

Fig. 12. State machine of Service1

Check1 / /send Ack1 to

Service2;

/send Check4 to

 Service6;

Fig. 13. State machine of Service3

3.3 Intelligibility Evaluation

Antonio et al. have experimentally evaluated the relationship between metrics
and intelligibility of the state machines by measuring time to understand state
machines[1]. According to the result, state machines are intelligible the smaller
the following metrics: the number of simple states (NSS), the number of transi-
tions (NT), and the number of guards (NG). In this section, the CSCB method

/reply to Req1;

Ack1 /

/send Check1 to Service3;

 fired_Check1=true;

ReplyCheck2 [fired_Check2] /

/send Check3 to Service5;

/send Answer to Service1;

Req1 /

[fired_Check1] /

send Check2 to Service4;

 fired_Check2=true;

Fig. 14. State machine of Service2
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/ send ReplyCheck2 to Service2;

Check2 /

Info1 /

/Service6.Check5();

Fig. 15. State machine of Service4

Check3 /

/send Info1 to Service4;

Fig. 16. State machine of Service5

Table 1. Evaluation result

Method in [2] Method in [8] CSCB
NSS NT NG NSS NT NG NSS NT NG

Service1 5 7 0 5 9 0 2 3 0
Service2 31 59 0 31 59 0 9 17 2
Service3 5 7 0 5 9 0 5 9 0
Service4 8 11 0 7 11 0 6 10 0
Service5 3 4 0 3 4 0 3 4 0
Service6 5 7 0 5 9 0 5 9 0

is evaluated by comparing with Bultan’s method[2], the state space generation
method[8] by using the above metric.

The Bultan’s method[2] synthesize flat state machines from the dependency
relation. Suppose the number of events relating to object c to be |Σc|, then the
number of states of the state machine becomes 2|Σ

c|. This method, however,
generates plenty of unreachable state from the initial state. In this paper, state
machines after removing these unreachable states are used.

The state space generation method[8] generates a state space for each MMG
at first, and then converts the state spaces into state machines. The method, how-
ever, tries to find “independent sequences” in the state space, and tries to reduce
the number of states by using composite states. Therefore, when no independent
sequence is found, the same result with the Bultan’s method is obtained.

Table 1 shows values of the metrics of state machines which are obtained
from the communication diagram in Fig. 1. Note that in the Bultan’s method
and the state space generation method, the reply message to a synchronous
call is considered as an asynchronous message which is independent with the
synchronous call. On the other hand, in the proposed method, the state transition
relating to a synchronous call terminates only when it receives the reply message.
The proposed method adds relation at step2 so as each preparation event for
message sending has only the receive event of the reply message as an immediate
successor. Therefore, in the dependency relation for Service1, events ?Req1_rep
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and ?Answer are in concurrent for the Bultan’s method and the state space
generation method, but they are in sequential for the CSCB method.

As for Service2, since the state space generation method failed to find inde-
pendent sequences, the state space are converted into a state machine as is. In
contrast, the proposed method succeeds to significantly reduce the number of
states by cutting bridges.

4 Conclusion

In this paper, we considered the approach to the choreography realization prob-
lem considering intelligibility of synthesized state machines. We proposed a
method to synthesize state machines without generating state spaces from the
choreography defined by single communication diagram. We evaluated the pro-
posed method by using metrics about intelligibility of the generate state ma-
chines.
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Abstract. We present the command line tool SYNOPS. It allows the
term-based construction of partial languages consisting of different kinds
of causal structures representing runs of a concurrent system: labeled di-
rected acyclic graphs (LDAGs), labeled partial orders (LPOs), labeled
stratified directed acyclic graphs (LSDAGs) and labeled stratified order
structures (LSOs). It implements region based algorithms for the synthe-
sis of place/transition nets and general inhibitor nets from behavioural
specifications given by such partial languages.

1 Introduction

Synthesis of Petri nets from behavioral descriptions has been a successful line of
research since the 1990s. There is a rich body of nontrivial theoretical results and
there are important applications in industry, in particular in hardware design
[9,12], in control of manufacturing systems [25] and recently also in workflow
design [23,22,1,10,4].

The synthesis problem is the problem to construct, for a given behavioral
specification, a Petri net such that the behavior of this net coincides with the
specified behavior (if such a net exists). There are many different methods which
are presented in literature to solve this problem for different classes of Petri
nets. They differ mainly in the Petri net class and the model for the behavioral
specification considered. On the other hand, all these methods are based on
one common theoretical concept, the notion of a region of the given behavioral
specification.

In this paper, we present a new tool for the region based synthesis of Petri
nets from behavioral specifications given by so called partial languages. A partial
language is a set of finite causal structures, where a causal structure represents
causal relationships between events of a finite run of a concurrent system. If
the concurrent system is given by a Petri net, events represent transition oc-
currences. Expressible causal relationships are for example direct and indirect
causal dependency, concurrency and synchronicity of events. The tool supports
different kinds of causal structures, describing different semantics of different
Petri net classes and having different expressiveness and interpretation:
? Supported by the German Research Council, Project SYNOPS 2008 - 2012 [13]



– Labelled acyclic graphs (LDAG): LDAGS represent runs underlying process
nets of place/transition-nets. They are used to specify all direct causal de-
pendencies caused by token flow between transitions occurrences.

– Labelled partial orders (LPO): LPOs represent non-sequential runs of place/transi-
tion-nets. They are used to specify all ”earlier than”-relations (which we
call indirect causal dependencies) between transitions occurrences. Unrelated
events are called concurrent. LPOs are transtively closed LDAGs.

– LDAGs extended by synchronicity (LSDAG): LSDAGs represent runs un-
derlying process nets of general inhibitor nets according to the a-priori-
semantics. They are DAGs extended by ”not later than”-relations between
events. A cycle of ”not later than”-relations between events represents a syn-
chronous step of events, i.e. it is possible to distinguish between concurrency
and synchronicity.

– Labelled stratified order structures (LSO): LSOs represent non-sequential
runs of general inhibitor nets according to the a-priori-semantics. LSOs are
transitively closed LSDAGs.

This means, by a partial language the set of runs of a Petri net for different
Petri net classes and different net semantics can be specified. It depends on the
application area, which Petri net class and which kind of causal structures are
appropriate or available for solving a concrete synthesis problem. In [10,4] case
studies are presented illustrating the applicability and usefulness of synthesis
from partial languages in practise.

Infinite behaviour can be represented by an infinite set of finite runs, i.e. an
infinite partial language (where one finite run can be the prefix of another finite
run).

The tool allows to construct finite partial languages (allowing to specify fi-
nite behaviour) of the mentioned types via command line using a term-based
notation. This term based notation allows to compose runs from a set of basic
runs by several composition operators (sequential and parallel composition and
iteration). For the synthesis of nets the tool implements algorithms based on a
technique using so called token flows developed in the project SYNOPS [13]. Up
to now, only an algorithm for the synthesis of place/transiton nets from finite
sets of LPOs is supported.

The paper is organized as follows. In section 2 we briefly recall some basic
mechanism of region-based synthesis. In section 3 we present some new technical
developments for the synthesis of place/transition nets from finite sets of LPOs.
In section 4 we describe the architcture and the components of the tool. In
particular we describe how to specify finite sets of LPOs, LDAGs, LSDAGs and
LSOs via command line. In section 5 we present some case studies involving the
implemented algorithm for the synthesis of place/transition nets from finite sets
of LPOs. In section 6 we briefly compare the tool to other synthesis tools. In
section 7 we give a brief outlook onto current and further developments and in
section 8 we give some hints for downloading and testing the tool.
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Fig. 1. An LPO (left part) and two feasible and two non-feasible places w.r.t this LPO.

2 Region based Synthesis

In this section, we denote the set of runs of a net N by L(N). L(N) is called the
language generated by N . We formally consider the following synthesis problem
w.r.t. different Petri net classes and different types of partial languages:

Given: A prefix-closed partial language L over a finite alphabet of transition
names T .

Searched: A Petri net N with set of transitions T and L(N) = L.

That means, we search for an exact solution of the problem. Such an exact
solution may not exist, i.e. not each language L is a net language.

The classical idea of region-based synthesis is as follows: First consider the
net N having an empty set of places and set of transitions T . This net generates
each run in L (i.e. L ⊆ L(N)), because there are no places restricting transition
occurrences. But it generates much more runs. Since we are interested in an
exact solution, we restrict L(N) by adding places.

There are places p, which restrict the set of runs too much in the sense that
L \ L(N) 6= ∅, if p is added to N . Such places are called non-feasible (w.r.t. L).
We only add so called feasible places p satisfying L ⊆ L(N), if p is added to N
(Figure 1). The idea of region-based synthesis is to add all feasible places to N .
The resulting net Nsat is called the saturated feasible net. On the one hand, Nsat
has by construction the following very nice property: L(Nsat) is the smallest
net language satisfying L ⊆ L(Nsat). This is clear, since L(Nsat) could only be
further restricted by adding non-feasible places. This property directly implies
that there is an exact solution of the synthesis problem if and only if Nsat is
such an exact solution. Moreover, if there is no exact solution, Nsat is the best
approximation to such a solution ”from above”.

On the other hand, this result is only of theoretical value, since the set of
feasible places is in general infinite (Figure 2). Therefore, for a practical solution,
a finite subset of the set of all feasible places is defined, such that the net Nfin
defined by this finite subset fulfills L(Nfin) = L(Nsat). Such a net Nfin is called
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Fig. 2. The shown place is feasible w.r.t. the left LPO for each integer n ∈ N.

finite representation of Nsat. In order to construct such a finite representation,
in an intermediate step a feasible place is defined through a so called region of
the given language L.

Language L Petri net N with

L⊆L(N), L(N) minimal

Regions

(finite repr.)

Feasible places

(finite repr.)

Fig. 3. The approach of region-based synthesis.

The described approach is common to all known region-based synthesis meth-
ods (see Figure 3) and can be applied to all kinds of partial languages. In par-
ticular, this approach can be applied to different notions of regions (of a partial
language) and of finite representations Nfin. There are two types of definitions of
regions and two types of definitions of finite representations, covering all known
region-based synthesis methods [16].

Experiments in the first phase of the project SYNOPS showed that the so
called separation representation produces Petri nets which are simpler and more
compact, especially having less places [2]. Moreover, it turned out that so called
token flow regions can be computed more efficiently in the presence of much
concurrency. Therefore, the first synthesis algorithm implemented in SYNOPS
computes a place/transition net from a finite set of LPOs using the separation
representation of the set of all token flow regions. Note that this variant is not
yet implemented in other tools.
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Fig. 4. Several wrong continuations of the LPO shown in the previous figures. A wrong
continuation consists of a prefix (grey color) and a follower step (black) including an
additional event (white) and represents one or more step sequences.

For computing the separation representation, first all so called wrong con-
tinuations of L are constructed. The set of wrong continuations represents the
behaviour which is not specified. Briefly, a wrong continuation consists of a pre-
fix of some specified run together with a follower step of transition occurrences
extending a specified run by one additional event. Figure 4 shows examples of
wrong continuations. For every wrong continuation, the synthesis algorithm tries
to compute a place prohibiting the wrong continuation (for details on how to
compute such a place we refer to [16]. The synthesized Petri net is an exact
solution (does not have runs which are not specified) if and only if each wrong
continuation can be prohibited by some place. Figure 5 shows the result of the
synthesis algorithm. The wrong continuations shown in Figure 4 are forbidden
by the places p3, p2 and p1 (from left to right).

Fig. 5. Synthesized net (right part) for the partial language only containing the LPO
shown in the left part.

The synthesized Petri net depends on the considered order of wrong con-
tinuations, since places often prohibit more than one wrong continuation. It is
advantageous to compute such places first, which prohibit much wrong contin-
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uations. Therefore several new methods were implemented for constructing an
appropriate order of wrong continuations. In the next Section 3 some technical
details of the implemented synthesis algorithm are described.

3 Newly developed Techniques

In this section we briefly introduce wrong continuations formally and describe
some newly developed ideas optimizing the synthesis procedure.

A multiset over a set T is a function m : T → N. A step T is a multiset
over T . Addition + on multisets is defined by (m+m′)(a) = m(a) +m′(a). We
write

∑
a∈T m(a)a to denote a multi-set m. The relation ≤ between multiset is

defined through m ≤ m′ ⇐⇒ ∀a ∈ T (m(a) ≤ m′(a)). An LPO over a set T
is a tuple (V,<, l) where V is the finite set of events, <⊆ V × V is a partial
order, and l : V → T is a labelling function. For W ⊆ V we define the multiset
l(W )(a) = |{v ∈W | l(v) = a}|. An LPO (W,<, l) is a prefix of an LPO (V,<, l)
ifW ⊆ V and (w ∈W )∧(v < w)⇒ (v ∈W ). A step sequence w = α1 . . . αn can
be represented by an LPO, where each step αi corresponds to a set of pairwise
unordered events and events from different steps are ordered according to the
step sequence. A step sequence σ is a step linearization of an LPO (V,<, l), if
the partial order representing σ contains <. For example, the step sequences
a(b + c)a(b + c), ab(a + c)(b + c) and aba(b + 2c) are step linearizations of the
LPO shown in Figure 5.

Throughout this section, let L be a prefix closed partial language of LPOs.
We denote Lstep the set of all step-linearizations of LPOs in L. Since lpo ∈ L is
a run of a net N if and only if each step linearization of lpo is a step execution
of N , wrong continuations are defined formally as step sequences which extend
elements from Lstep by one event as follows:

Definition 1 (Wrong Continuation). Let σ = α1 . . . αn−1αn ∈ Lstep and
t ∈ T such that wσ,t = α1 . . . αn−1(αn+ t) 6∈ Lstep, where αn is allowed to be the
empty step. Then wσ,t is called wrong continuation of L.

We call α1 . . . αn−1 the prefix and αn + t the follower step of the wrong
continuation.

To prohibit a wrong continuation, one needs to find a feasible place p such
that after occurrence of its prefix there are not enough tokens to fire its follower
step. A prefix α1 . . . αn−1 of a wrong continuation stepwise linearizes a prefix of
an LPO in L. A follower step of such a LPO-prefix can constructed by taking
a subset of its direct successor in the LPO and add an event with a new label.
This means, a wrong continuation can be represented on the level of LPOs,
where wrong continuations having the same follower step and whose prefixes
stepwise linearize the same LPO-prefix need not be distinguished. For example
a(b+ c)a(b+ c)a, aba(2b+ c) and aba(a+ c) are wrong continuations of the LPO
shown in Figure 5. Their representations on the level ofs LPOs are shown in
Figure 4 (from left to right).
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Since the follower marking after the occurrence of a prefix of a wrong con-
tinuation only depends on the number of occurrences of each transition (but not
on their ordering), the following statement holds:

Proposition 1. Let wσ,t = α1 . . . αn−1(αn + t) be a wrong continuation and
σ′ = α′1 . . . α

′
m−1αn ∈ Lstep satisfying α1 + . . .+ αn−1 = α′1 + . . .+ α′m−1. Then

wσ,t can be prohibited it and only if wσ′,t can be prohibited.

That means in particular, for storing the set of all wrong continuations it
is enough to construct all pairs (l(W ), l(S)), where (W,<, l) is a prefix of some
LPO in L and S is a subset of direct successors of (W,<, l) extended by an
additional event. For example, the wrong continuation a(b+ c)a(b+ c)a is stored
in the form (2a+2b+2c, a). Moreover, the follower steps of wrong continuations
with equivalent prefixes need to be merged.

We now define an order on the set of wrong continuations.

Definition 2 (More restrictive wrong Continuation). A wrong continua-
tion wσ,t is more restrictive than a wrong continuation wσ′,t′ , if the following
holds: If wσ,t is not a step execution of a place/transition net N , then wσ′,t′ is
not a step execution of N .

If it is possible to forbid a wrong continuation, then automatically all less
restrictive wrong continuations are forbidden, too. This means, if one considers
more restrictive wrong continuations first, then less places are computed and
runtime is faster.

If two wrong continuations have equivalent prefixes and the follower step
of the first is included in the follower step of the second, then the first wrong
continuation is more restrictive than the second one, since its follower step needs
less tokens. For example a(b+ c)a(2b) is more restrictive than a(b+ c)a(2b+ c)
in this sense.

Proposition 2. Let wσ,t = α1 . . . αn−1(αn+t) and w′σ′,t′ = α′1 . . . α
′
m−1(α′m+t′)

be wrong continuations of L satisfying α1 + . . . + αn−1 = α′1 + . . . + α′m−1 and
(αn + t) ≤ (α′m + t′). Then wσ,t is more restrictive than wσ′,t′ .

If the last step of a wrong continuation is sequenzialized by several terminal
steps of a second wrong continuation, then the second wrong continuation is more
restrictive than the first one, since a step is not enabled, if a sequentialization of
the step is not enabled in a marking. For example a(b+ c)aa is more restrictive
than a(b+ c)(2a) in this sense.

Proposition 3. Let wσ,t = α1 . . . αn−1(αn+t) and wσ′,t′ = α′1 . . . α
′
m−1(α′m+t′)

be wrong continuations of L satisfying α1 + . . .+ αn−1 + (αn + t) = α′1 + . . .+
α′m−1 + (α′m + t′) and α1 + . . . + αn−1 ≥ α′1 + . . . + α′m−1. Then wσ,t is more
restrictive than wσ′,t′ .

According to these oberservations, wrong continuations are ordered in the
following way: Wrong continuations with longer prefixes are considered first and
if two wrong continuations have equal prefix, then the wrong continuation with
the shorter follower step is considered first.
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4 Architecture and Functionality

4.1 Overview

The SYNOPS tool is implemented strictly following advanced object oriented
paradigms using a classical 3-tier-architecture:

- The client tier is realized as a command line interface (CLI). In the meanwhile
we also provide a graphical user interface (GUI) which additionally visualizes
Petri net synthesis results. The CLI (resp. GUI) and the middle tier are loosly
coupled, such that an easy and fast change is possible.

- The middle tier (SynCore) encapsulates data types for the supported kinds
of runs, sets of such runs and Petri nets and basic operations for creating,
manipulating and destroying such objects. It can only be accessed via a
facade (SynShell).

- Sets of runs and synthesized Petri nets are stored in text files. For Petri nets
the PNML-standard is used, such that synthesis results can be visualized by
many Petri net editors. For storing sets of runs we use a simple self-created
text format which lists runs, events and edges.

Fig. 6. Architecture of the system.

Figure 6 shows the architcture. Synthesis algorithms are connected with
SynCore through a plug-in system, where each plug-in communicates with SynCore
via the facade SynShell. SynShell implements interfaces supporting such a
plug-in system.

4.2 The middle tier SynCore

A run consists of a finite set of events labelled by action names and a finite set
of directed edges between events. A run can be represented through the four
different causal structures previously mentioned.

The object of interest are sets of runs, since synthesis algorithms are operating
on such sets. Every event has an ID which is unique within a run. Every run has
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an ID which is unique within a set of runs. Sets have global unique IDs. This
way, each object can be identified by a combination of IDs in the usual way. For
example, the identifier set1.lpo5.event3 represents the event with ID event3
in the run with ID lpo5 belonging to the set with ID set1.

There are several useful operations for manipulation of these data structures,
for example operations testing consistency properties of runs specified by the
user (such as cycle-freeness), operations computing the transitive closure of runs
specified by the user, operations computing all prefixes of a run (based on a
modified version of the algorithm of Warshall [24]) and operations computing
the direct successors of a prefix of a run.

A Petri net consists of places, transitions and two kinds of edges between
places and transitions (flow edges and inhibitor edges). Places have a unique ID,
a name, a number of tokens and a maximum capacity of tokens (which can be
infinity). Transitions have a unique ID and a name. Edges have a weight. This
way several low level Petri net classes can be represented such as place/transition
nets and inhibitor nets. Moreover, there are several restrictions available such
as a bound of 1 for arc weights in order to represent elementary Petri nets.
Such restrictions are realized by overwriting methods in specialized classes. This
modular construction makes it easy to extend the framework by other net classes
in future.

4.3 Synthesis algorithms

So far, there is only one synthesis algorithm implemented in the download version
of the tool: The algorithm syn-tf-sep computes place/transition nets from finite
sets of LPOs using the separation representation of the set of token flow regions.

4.4 Command line interface CLI

The CLI allows easy construction of long runs and sets of runs using a term-based
notation. Currently, each command may only contain one operation. Compli-
cated terms are constructed stepwise command by command.

A set (of runs) is opened by ’set ID’. After opening a set, runs of the set
can be specified. Runs can only be specified within a set. Finally, a set is closed
by ’tes’.

A run is opened by ’dag ID’ (for LDAGs), ’lpo ID’ (for LPOs), ’sdag
ID’ (for LSDAGs) or ’lso ID’ (for LSOs). After opening a run, events and
edges of the run can be specified. Events and edges can only be specified within
a run. A run is closed by ’gad’, ’opl’, ’gads’ or ’osl’. After closing a run,
consistency of the user input is checked. Moreover, in case of LPOs and LSOs,
the transitive closure is constructed (that means, it is not necessary to specify
all transitive edges). Finally, all prefixes of the run are computed, preparing the
synthesis computation.

An event is specified by ’event ID LABEL’. An edge in a LDAG or an LPO
between two events with IDs e1 and e2 is specified by ’et e1 e2’. A ”not later
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than” edge is specified by ’nlt e1 e2’. Using these operations, simple runs can
be constructed such as LPO lpo1 shown in Figure 7. Figure 8 shows the syntax
for specifying lpo1.

Fig. 7. Examples of LPOs.

1 set set1
2 lpo lpo1
3 event a a
4 event b b
5 event c c
6 et a b
7 et a c
8 opl
9 tes

Fig. 8. Syntax for specifying LPO lpo1.

There are several operations for combining existing runs:

- If run1 and run2 are runs, then by ’append ID run1 run2’ the sequential
composition of run1 and run2 is stored in a run with ID ID. Sequential
composition means, that from each event in run1 to each event in run2 an
LPO-edge is drawn.

- If run1 and run2 are runs, then by ’compose ID run1 run2’ the parallel
composition of run1 and run2 is stored in a run with ID ID. Parallel com-
position means, that between event in run1 and run2 there are no edges.

- If run is a run, then by ’iterate ID run N’ the run is N times sequentially
composed with itself (iterated) and the result is stored in a run with ID ID.

Using these operations, longer runs can be construced such as LPO lpo2
shown in Figure 7. Figure 9 shows the syntax for specifying lpo2.

It is also possible to apply sequential composition and iteration only partially
w.r.t. a so called interface. An interface specifies explicitly, which events of the
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1 set set1
2 lpo a
3 event a a
4 opl
5 lpo b
6 event b b
7 opl
8 iterate lpo1 b 3
9 compose lpo2 a lpo1

10 tes

Fig. 9. Syntax for specifying LPO lpo2.

previous run are in direct causal dependency with which events of the subse-
quent run. Only between such events an edge is drawn. An interface is specified
as an option of the operations append and iterate of the form ’-interface
EDGELIST’, where an edge in EDGELIST between events with IDs e1 and e2 is
specified by ’e1 < e2’ and edges are separated by a space. An interface can be
used to specify LPO lpo3 shown in Figure 7. Figure 10 shows the syntax for
specifying lpo3.

1 set set1
2 lpo a
3 event a a
4 opl
5 lpo b
6 event b b
7 opl
8 lpo c
9 event c c

10 opl
11 compose lpo1 b c
12 append lpo2 a lpo1
13 iterate lpo3 lpo2 2 -interface b<a
14 tes

Fig. 10. Syntax for specifying LPO lpo3.

It is possible to use a run specified in a certain set within another set by
using its fully qualified ID. The same holds for events.

A run or a set of runs with ID ID can be stored by ’save ID FILE’ at
location FILE. A run or set of runs stored at location FILE can be be loaded by
’load FILE’. A run can be loaded only within an opened set of runs.

At each stage of the input, by ’state all’ all objects constructed so far
are printed in form of text. The notation used here is the same as in the case of
saving objects. If the GUI is used, by ’plot ID’ the run with ID ID is visualized.
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A synthesis algorithm ALG can be applied to a set of runs with ID ID by ’ALG
ID [OPTIONS]’. The synthesized Petri net is stored in PNML format, such that
it can be visualized by Petri net editors. If the GUI is used instead of the CLI, the
Petri net is also visualized. The user is noticed, if the synthesized net is an exact
solution or not. If the algorithms uses the separation representation and the net
is not an exact solution, all wrong continuations which could not be prohibited
are returned as a tuple (prefix, step), where prefix and step are given by their
Parikh-vector (counting the number of transition occurrences in the prefix and
in the follower step). As already mentioned, only the algorithm syn-tf-sep is
available in the download version. This algorithm has no options, so far.

The program is exited by ’exit’.

4.5 Storing Petri nets and sets of runs

Synthesized Petri nets are stored in the Petri Net Markup Language (PNML)
[20], version 2009. Runs are stored in a simple text format listing events and
edges. As an example, Figure 11 shows the text file storing LPO lpo3 from
Figure 7.

1 lpo lpo3
2 event a a
3 event b b
4 event c c
5 event a_1 a
6 event b_1 b
7 event c_1 c
8 < a b
9 < a c

10 < a_1 b_1
11 < a_1 c_1
12 < b a_1
13 < a a_1
14 < a b_1
15 < a c_1
16 < b b_1
17 < b c_1
18 opl

Fig. 11. Text format for storing runs.

5 Case Studies

We tested the algorithm syn-tf-sep w.r.t. two aspects: Performance, and com-
pactness and simplicity of the synthesized net.
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For testing compactness, we constructed several simple Petri nets with dif-
ferent initial markings having a finite set of runs, synthesized a net from this set
of runs and compared the result with the initial net. Figure 12 shows two of the
considered Petri nets with parametrized initial marking allowing different num-
bers of iterations. The complete set of considered sets of runs can be downloaded
with the tool. In all cases the synthesized net and the initial net coincided.

Fig. 12. Petri nets having runs lpo1 (N1 with n = 1), lpo2 (N2 with n = 3) and lpo3
(N1 with n = 2).

For testing performance we considered the following examples used in [2]
for comparing performance and number of places of the synthesized net of two
algorithms implemented in VIPTOOL (which also can be downloaded with the
tool):

– LPOs for testing performance in presence of non-determinism (all LPOs are
given in the form of step sequences): lpo1 = b, lpo2 = a(a+ b), lpo3 = c(2a),
lpo4 = cb and lpo5 = cc.

– LPOs for testing performance in presence of concurrency (the notion uses
iteration of events of the form an and a parallel composition operator ‖):
lpo6,n = an ‖ bn ‖ cn.

Algorithm basis computes place/transition nets from finite sets of LPOs using
the basis representation of the set of token flow regions. Algorithm classic
computes place/transition nets from finite sets of LPOs using the separation
representation of the set of transition regions of the step language corresponding
to the set of LPOs. It turned out in [2] that algorithm basis performed much
better in case of much concurrency and little nondeterminism (test series lpo6,n)
and the other way round that algorithm classic performed much better in case
of little concurrency and much nondeterminism (test series with combinations
of lpo1 - lpo5). Moreover, algorithm classic computed smaller nets.

Our experimental results show, that algorithm syn-tf-sep computes as
small nets as algorithm classic, since it also uses the separation representation.
Concerning performance on the other side, algorithm syn-tf-sep performes
much better than algorithm classic and little worse than algorithm basis for
the test series lpo6,n (for example runtimes 13 ms for the LPO-set {lpo6,2} and
132 ms for {lpo6,3}). Concerning the test series with combinations of lpo1 - lpo5,
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it performs as fast as algorithm classic (for example runtimes 5 ms for the
LPO-set {lpo1, lpo2} and 6 ms for {lpo1, lpo2, lpo3, lpo4, lpo5}). Altogether, it is
able to cope with nondeterminism and concurrency (since we ran the algorithms
basis and classic several years ago on another system at another institut as
syn-tf-sep, it does not make sense to compare absolute runtimes).

Currently we are working on a more efficient implementation concerning con-
currency. In particular, it is possible to significantly reduce the number of pre-
fixes, which need to be computed, by considering a more compact representation
of iterations (which is currently implemented in the context of infinite iterations,
see Section 7).

6 Comparison to other Tools

Up to our best knowledge, the only tool which also supports synthesis from
partial languages is the graphical Petri net editor VIPTOOL [11]. In VIPTOOL
many synthesis algorithms for languages of LPOs of the first phase 2008 - 2010 of
the project SYNOPS are implemented [5,2,3,16,15]. VIPTOOL concentrates on
business process modelling and has also verification and simulation capabilities.
VIPTOOL currently is further developed and maintained at Distance Univer-
sity in Hagen (Germany), while the project and tool SYNOPS is developed at
Augsburg University (Germany). In contrast to VIPTOOL, the SYNOPS tool
supports more kinds of causal structures and Petri net classes and more general
classes of infinite partial languages (see section 7). It only concentrates on syn-
thesis capabilities and is text based. It mainly serves for rapid implementation
and evaluation of newly developed term based representations of infinite par-
tial languages and synthesis algorithms. For such term based representation and
synthesis algorithms, which turn out to be stable, an integration into VIPTOOL
is planned.

There is is another tool-supported line of research considering transition sys-
tems instead of languages as behavioral specification. The tool [6] computes
distributable bounded Petri nets from such specifications. In [8,7] tools are de-
scribed which synthesize labelled Petri nets with non-unique transition names
(here the techniques are different to the presented ones).

One application of synthesis algorithms is process mining. There is a big
tool frame work called PROM [17] which integrates many different mining and
analysis capabilities concerning process modells and event logs. The mining tools
are based on descriptions of the sequential behavior of systems (which cannot
directly represent concurrency).

7 Outlook

Currently, an analoguous algorithm is implemented for the synthesis of general
inhibitor nets from finite sets of LSOs [21] based on results in [15]. For this,
some new ideas concerning wrong continuation were developed (which are not
presented here due to lack of space). Within another bachelor thesis, operations
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for the specification of infinite sets of LPOs and a corresponding synthesis algo-
rithm are implemented at the time of writing [18] based on results in [5,14]. In
[19] a synthesis algorithm which computes place/transition nets from finite sets
of LDAGs is described. This algorithm still needs some improvements which are
currently implemented.

The presented set of operations is currently extended by the following oper-
ations allowing fast generation of large sets of runs: Alternative composition of
runs, sequential composition, parallel composition and iteration of sets of runs,
and standard operations on sets (of runs) like union, intersection, difference.

In order to increase usability, we plan to implement shortcuts for all opera-
tions (such a ’a<b’ instead of ’et a b’ or ’lpo1 a<b’ instead of ’append lpo1
a b’) and the possibility to use more than one operation in a command (such
as ’lpo1 a<(b|c)’ instead of the sequence ’compose lpo0 b c’ and ’append
lpo1 a lpo0’).

Further steps are: Adapting the algorithms to restriced net classes such as
elementary nets and workflow nets and to the use of additional information such
as predefined places or undesired runs.

8 Download

The tool can be downloaded from the project webpage [13]. There are executable
program files for 32 Bit and 64 Bit Windows systems, with and without GUI.
On the webpage you also find the example sets of runs we used to evaluate the
tool.
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Abstract. The aim of the paper is to show basic elements of a system
design methodology which uses Object oriented Petri nets. The method-
ology features conformity with UML and uses simulation as a means
to verify the models in all system development phases. Simulation also
helps in making decisions about structural and behavioral specification
of the system. The paper will demonstrate layered modeling technique
based on Object oriented Petri nets.

1 Introduction

Modeling and Simulation-Based Design (MSBD) of systems denotes a set of tech-
niques and tools intended for the software system development which is based
on formal models, model continuity, and simulation techniques. Its goal is to in-
crease efficiency and reliability of development processes including the software
system deployment. The key activities in the system development are specifica-
tion, testing, validation, and analysis (e.g., of performance, throughput, etc.).
Most of the methodologies use models for system specification, i.e., for defin-
ing the structure and behavior of developed system. There are different kinds
of models, from models of low-level formal basis to pure formal models. Each
kind has its advantages and disadvantages. Less formal models (e.g., UML) al-
lows to quickly describe basic system concepts, in the other hand, they do not
allows to check the system correctness or validity by means of testing or formal
methods—the system has to be implemented before its testing. The more ad-
vanced approaches (e.g., Executable UML and Model Driven Architecture [15])
allow to simulate models, i.e., to provide simulation testing. The pure formal
models (e.g., Petri Nets, calculus, etc.) allows to use formal or simulation ap-
proaches to complete the testing and analysis activities.

The paper aims at system specification using a formalism of Object Oriented
Petri Nets [2, 3] (OOPN). The idea of merging Petri nets and objects has been
found and elaborated in the 1990’s independently by several researchers. The
approach closest to our work is the system Renew [11] and associated formalism
of Nets-in-Nets [16, 14, 1]. Renew supports modeling of systems using layered
Petri Nets and Java language. Similarly to the system Renew, the proposed ap-
proach fully supports an integration of formal objects described by Petri Nets



and other objects (e.g., it allows to reference and communicate with Smalltalk
objects and Petri Net objects uniformly). This feature eases interfacing objects
with surrounding world and consequently facilitates hardware-in-the-loop simu-
lation. The idea of using models in all development stages, in conjunction with
hardware-in-the-loop simulation, was working up in several projects and is sup-
ported by several tools, e.g., the MetaEdit System [13] or Simulink [12]. MetaEdit
supports Domain Specific Modeling which allows to generate code from high-level
models defined for the domain-specific language. Simulink is aimed at design
control systems and hardware architectures. It allows for hardware-in-the-loop
simulation for testing designed models in a real environment. Contrary to the
works cited above, the proposed approach uses the same model in all develop-
ment phases including deployment (or final implementation). The formalism of
OOPN, in conjunction with the design and simulation framework PNtalk [5],
can be directly interpreted and, consequently, integrated into the target system
[6].

This paper summarizes methodical approach to system design using Object
Oriented Petri Nets. It is a result of previous activities on the field of system
design techniques [4, 7], modeling techniques [10], simulation testing and analysis
[8], and combination of the OOPN formalism and the UML language [9]. The
paper is organized as follows. First, we introduce the used formalism of Object
Oriented Petri Nets in section two. The section three describes the basis of design
methodology resulted from principles of Modeling and Simulation Based Design.
The next three sections deal with particular parts of design methodology includ-
ing the demonstration on the simple case study. We conclude by summarizing
of results and definition of future works.

2 Modeling Formalisms

2.1 Object Oriented Petri Nets

An object-oriented Petri net (OOPN) is a triple (Σ, c0, oid0) where Σ is a system
of classes, c0 an initial class, and oid0 the name of an initial object from c0.
A class is specified by an object, a set of method nets, a set of synchronous ports
and negative predicates. Object nets describe possible autonomous activities of
objects, while method nets describe reactions of objects to messages sent to them
from the outside. Each net is described by means of high-level Petri nets.

Object nets consist of places and transitions. Every place has its initial mark-
ing. Every transition has conditions (i.e., inscribed testing arcs), preconditions
(i.e., inscribed input arcs), a guard, an action, and postconditions (i.e., inscribed
output arcs). Method nets are similar to object nets but, in addition, each of them
has a set of parameter places and a return place. Method nets can access places
of the appropriate object nets in order to allow running methods to modify states
of objects, which they are running in.

Object nets can also contain special kinds of transitions—synchronous ports
and negative predicates. Synchronous ports are special transitions, which cannot
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fire alone but only dynamically fused to some other transitions, which activate
them from their guards via message sending. Every synchronous port embodies
a set of conditions, preconditions, and postconditions over places of the appropri-
ate object net, and further a guard, and a set of parameters. Thus, synchronous
ports combine concepts of transitions (they have to satisfy preconditions and
guards; if the synchronous port is fired, the postconditions are performed) and
method nets (they have to be called from a guard of another transition).

A synchronous port can be activated via a message sent from a guard of some
transition. During transition fireability testing, the searching for suitable vari-
ables binding uses backtracking mechanism which takes in account also guard
expressions which can consequently test synchronous ports fireability. A syn-
chronous port can be activated with either bound, or unbound formal parame-
ters. In the second case, activation of the synchronous port can bind the formal
parameter to some value which can be further used by the calling transition.

Negative predicates are special variants of synchronous ports. Its semantics is
inverted—the calling transition is fireable if the negative predicate is not fireable.

o

o := Rand next

t1

p2

p1

#e

C0 is_a PN

init: x
x

x

t1

x

return

x‘#e
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x
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t2

c

c get: n

s := s + n
c empty

t3

c

s

c

ss
s

p1

p20

empty

Fig. 1. An OOPN example.

An example illustrating the important elements of the OOPN formalism is
shown in Figure 1. There are depicted two classes C0 and C1. The object net of
the class C0 consists of places p1 and p2 and one transition t1. The object net
of the class C1 is empty. The class C0 has a method init:, a synchronous port
get:, and a negative predicate empty. The class C1 has a method doFor:. An
invocation of the method doFor: leads to random generation of x numbers and
a return of their sum.

Let us investigate what happens if we call the method doFor: with a value
3 on the instance of a class C1 (the instance will be denoted by obj1). First,
the transition t1 is fired with following actions: the instance of the class C0 is
created (the instance will be denoted by obj0) and the symbol #e is put to the
place p1 of the object net obj0 three times (see the method net init:). Now, the
object net of obj0 generates three random numbers (the transition t1) and puts
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them into the place p2. Second, the transition t2 of the object net obj1 tests if
there is any random number in the object net obj0—then the synchronous port
get: is firable. If the transition t2 fires, the synchronous port get: fires too.
Since the variable n is unbound, the calling binds any random number from the
place p2 of the object net obj0 to the variable n. The transition t2 of the object
net obj1 then adds this value to the sum (the variable s). Third, the transition
t3 of the object net obj1 tests if there is no random number in the object net
obj0—then the negative predicate empty is firable. If the transition t3 fires, it
places the sum (the variable s) to the return place as a method result.

3 Modeling and Simulation Based Design Technique

Modeling and Simulation Based Design (MSBD) is a technique of system design
where the system is specified in a form of an executable model which can be
verified using simulation experiments. During the development, the model is
incrementally refined and each development step is tested and verified. There are
two phases which rotate until the system development is finished: Modeling phase
and simulation phase. We will especially take into account the techniques of the
modeling. In the following sections, we will demonstrate their basic concepts in
a small case study.

3.1 Modeling Technique

The modeling technique is focused on the technique of system description, i.e.,
how the models are created. The technique stems from the classic approach of
class identification and definition and extends it to the new features. The design
process comprises:

– the identification of use cases of the system,
– the specification of roles and active subjects,
– the specification of activity nets—it is similar to workflow modeling,
– the specification of application nets.

The models are layered hierarchically as shown in Figure 2. Each arrow shows
what layers encapsulated another ones. There is a special relationship between
use cases in UML and activity nets, and roles in UML and roles nets. These
mentioned nets represent appropriate use cases and roles in the system (see the
sections 4 and 5). Each role net encapsulate one active subject (see the section
4.1). Each role encapsulate activity nets (see the section 5.3). Moreover, each
role can encapsulate another role, and the active subject can also encapsulate
another active subject. It allows to get a new view to the role (or active subject)
based on the existing one.

The way of system usage is defined by application nets which encapsulate
roles nets. Each role has its own set of allowed activities which offers to appli-
cation nets. The application net can then instantiate and use this activity (see
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the section 6). The execution of layered nets are synchronized by means of syn-
chronous ports. The nested nets define synchronous port for synchronization of
executions and the net at higher layer is controlled by calling these ports. This
principle will be demonstrated at the appropriate places in following parts.

Fig. 2. The layered architecture: an overview.

The design activities are performed in a sequence use cases–roles and sub-
jects–activity nets–application nets. But, the system is developed incrementally,
in each step, we model selected parts, make decision what part is to be modeled
at what layer, and, if necessary, we decide what nets should be changed. Thus,
the developer has to go back to designed layer and modify them. The decisions
are supported by simulation techniques, i.e., designed models are simulated, the
statistic data can be collected, the condition testing can be performed, etc.

3.2 Case Study

We will demonstrate the key features of presented modeling technique on the
simple case study. It concerns the reservation system whereas the structure and
workflow is only taken into account. The real data associated with the real system
will not be modeled.

As we mentioned in the brief description of design process, the process starts
with use cases identification. The use case diagram is one of the key diagrams in
system specification defined by the Unified Modeling Language (UML). The use
case defines a functionality of the system, it is usually complex set of functions
to achieve a particular behavior. There is a set of actors who can interact with
the use case. The use cases of our case study is shown in Figure 3—there is one
actor and two use cases. It represents a system allowing users (an actor User) to
sign up to the system (a use case Login) and to edit its reservations (a use case
Edit Reservation). In UML, the use case is supplemented with its specification
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Fig. 3. The use case diagram.

(a text description or other models from UML). Presented technique supposes
that the use case is specified by OOPN as will be demonstrated in the section 5.

4 Roles and Active Subjects

4.1 Specification of Active Subjects

Each actor from use case diagrams has its own subset of use cases it can partic-
ipate with. However, different actors usually have the same basis, e.g., the user
represented by its name can act as different actors (administrator, customer,
manager, etc.) having different set of behavior (use cases). So we can identify
active subjects (e.g., person) and their roles (e.g., customer, manager). Although
we call it an active subject, it does not perform any autonomous action. It only
models current state and possible actions shared by all its roles.

type

notType: t type: tt t

reservations

res: s<L> s

name

name: nn

notRes: r r

changeRes: nR

r id = nR id

r

nR

Fig. 4. The active subject Member (modeled as OOPN class).

The example of an active subject is shown in Figure 4. It depicts the object
net of OOPN class Member storing information about person’s name, type, and
set of reservations. The type is a set of role identifications the member can act
as. Attributes are stored in places (name, type, and reservations) and are

258 PNSE’12 – Petri Nets and Software Engineering



accessible by means of synchronous ports. Ports including negative predicates
can also serve for testing whether some value of the attribute is set or not.

In real system, the reservations should be stored in some database system,
but it is possible to use places for the same purpose for a relative small number
of records. But, in this case, there is a problem how to model the iteration of
the place content effectively, e.g., if we want to show list of records. The arc
between the place reservations and the synchronous port res: is denoted by
a symbol <L>. It means that the variable s is bound to whole content of the
place and this content is accessible as a list (the list is assigned to the variable
s). Then it is possible to use conventional approach to this list. To change a
reservation, the synchronous port changeRes: is defined. Each reservation has
its unique identification accessible via a call id. The event is fireable, if there is
the reservation (r) in the place reservations with the same identification as
the given one (nR). Then the old reservation is replaced by its new variant.

4.2 Specification of Roles

The member can act in different roles—for our needs we will describe only one
role called User. The role is modeled as an object net of OOPN class User. The
example is shown in Figure 5. The role should know about an active subject
this role is intended for. In our example, this information is stored in the place
member.

member

member: mmnotMember: m m

member

return

for: member

t1

self noMember

t2

self member: mm

self fail: ’...’

m m

false

true

m
 noMember

m

Fig. 5. The role User (modeled as OOPN class).

The net User defines two testing negative predicates notMember: (it is true
if the role does not represent given member m) and noMember (it is true if there
is no represented member) and one synchronous port member:. The synchronous
port can server for testing (if the role represents given member m) or for attribute
collection (the example will be shown in chapter 5).

R. Kočí, V. Janoušek: Modeling and Simulation-Based Design Using OOPN 259



The attributes should be initialized by method nets. Figure 5 shows one net
as an example. The method net for: initializes the attribute member and tests
if the role was not initialized yet. If the role is not initialized, the transition
t1 is fireable (the negative predicates noMember is true). If the role is already
initialized, the transition t2 is fireable (the synchronous port member: is true
for a member m). In this case, the method net returns false and can generate
an exception (the calling of self fail: ’...’); it is useful for testing.

4.3 System as a Special Role

The system usually needs means for persistence, accessing shared objects etc.
For this purposes, we introduce a special role net called Application (see Figure
6). It allows for getting members (the external event member:), storing logged
users (the external event newUser:), etc.

loggedUsers

notRegistered: u uu

logout: u

members

member: mmnotMember: m m

newUser: u

u

Fig. 6. The role Application (modeled as OOPN class).

5 Activity nets

5.1 Specification of Activity nets

An activity net describes a use case of the system. Each use case is modeled as an
OOPN class. Its object net contains transitions, synchronous ports, and places.
Since a transition is conditioned only by its input places, it models internal event
in the activity. On the other hand, a synchronous port is intended for activation
from the outside of the activity object. Therefore the synchronous port represent
external event. Each place in the activity net represents the state of the activity.
The state can be tested by means of synchronous ports or negative predicates.

Let us demonstrate this principles in our small example. The example defines
Member’s role User who participates in the use case editReservation. The activity
net which corresponds to the use case is modeled by the object net of OOPN
class EditReservation which is shown in Figure 7. The activity net has to know
about the role which is associated with the activity. The role is stored in the
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place user. This attribute should be initialized by a method net—because the
concept is similar to the net intended for the same purpose (e.g., the net for:
in the role User), the implementation is not shown here.

ready

show: s

edit: r

confirm: r cancel: r

finish

finish

r

r

r

notReady

notShowed

notEdited r

u member: m. m res: s

u member: m.

m changeRes: r

user

u

u

showing

editing

Fig. 7. The activity EditReservation (modeled as OOPN class).

The basic workflow consists of following events: list of reservations represen-
tation (see the external event show:), one reservation editing (the external event
edit:), and confirmation (the external event confirm:) or to cancellation (the
external event cancel:) of changes. The net defines three places representing
three states of the activity (ready, showing, and editing). The activity can be
finished from states ready and showing by external event finish.

It is possible to add synchronous ports for testing activity states. There are
defined events for testing whether the activity is not in the defined state, modeled
as negative predicates notReady, notShowed, and notEdited. This predicates are
true (fireable) only if the state is not satisfied.

5.2 Specification of Actions

The activity usually needs to define some actions. Actions are associated either
with internal events or with external events. In the case of internal events, actions
are defined inside the transitions (in the action part) or in subnets—then the
net is modeled as a method of the appropriate OOPN class and is called from
the internal event. In the case of external event, actions are modeled by calling
another external events (synchronous ports) from the event’s guard.
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Figure 7 shows the second approach. For example, the external event show:
detects the member which is represented by the role User (calling the syn-
chronous port u member: m—because the variable m is unbound, the object net
Member stored in the place member in the object net User is bound to the variable
m). Then the synchronous port m res: s is called and the variable s then the
bound to a list of reservations. The transition, which calls this event, can then
use this list (it is shown in the chapter 6).

login: name as: type

(name, type)

(name, type)

u := self verify: name as: type

u

u

ready

user

verify

verifiedUser: u

u != nil. a newUser: u.

notVerifiedUser

u = nil

u

a

nested

Fig. 8. The activity Login.

Figure 8 shows the activity net Login corresponding with the use case Login.
The basic workflow consists of following events: user’s data getting (the external
event login:as:), the data verification (the internal event verify), and testing if
the desired role has been created (the external event verifiedUser:) or not (the
external event notVerifiedUser). The action of user verification is associated
with the internal event modeled as the sub-net verify:as: called from the
internal event verify. The sub-net is not shown because its implementation is
not important for this paper.

There are also actions associated with the external event. If the user is ver-
ified and its role is detected (the external event verifiedUser:), one action is
performed—adding the role into the special role Application (a newUser: u);
see the section 4.3.

5.3 Instantiation of Activity Nets

The activity nets have to be instantiated to serve for their purpose. Because
each activity is usually allowed for only specified roles, it is just a role which can
instantiate an activity. The example for the role User is shown in Figure 9 on the
left. The role allows for reservation editing so that the role defines the method
net newEditReservation which creates a new activity net for reservation edit.

262 PNSE’12 – Petri Nets and Software Engineering



Each activity has to know for which role it is created—it is set by the message
for:.

p1

return

newEditReservation

t1

n := EditReservation new.

n for: self.

n

p1

return

newLogin

t1

n := Login new.

n for: self.

n

Class User Class Application

Fig. 9. The methods creating instances of activities.

There is a special kind of activity nets associated with the system instead of
the role. These activities are instantiated from special roles as they was intro-
duced in the section 4.3. As an example we can take an activity of user login
associated with the role Application. Figure 9 on the right shows the instanti-
ation of the activity net Login from the role Application; the principle is same
as in ordinary roles.

6 Application Nets

Application nets model a presentation layer of the system. We can also imagine
it as an interface to the system. The application net uses roles to generate a
list of permitted activities and to instantiate the concrete activity net. The
particular behavior of application nets is then controlled by the appropriate
activity net. The application nets execution is synchronized by means of external
events (synchronous ports) of control (activity) nets.

The presented case study needs some kind of user interface—the part of appli-
cation net UserInterace is shown in Figure 10. The application net UserInterface
represents an interface to behavior of one role of User—how the user can work
with the system. The net knows the user (i.e., the role User) and the special role
Application.

Let us investigate the modeled functionality of the application net. First,
the transition login tests if the user is logged to the system (see the negative
predicate noUser). If there is no logged user (no role User is stored in the place
user, the activity net Login is created (via the special role Application) and
then the method net loginUser: is called. Its execution is controlled by the
activity net Login using synchronous ports and negative predicates. If the login
action is successful, the created role User is placed into place user. If the login
action failed, the procedure is repeated, i.e., the transition login is fired again.
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user
return

loginUser: ln

t1
application

d := self openLoginForm.

n := d name.

t := t type.

ln

ln

ln notVerifiedUser ln verifiedUser: u

ln ln

unil

ln := a newLogin.

self loginUser: ln.

self noUser

login

ln

(ln, n, t)

ln login: n as: t

(ln, n, t)

noUser

return

edit

t1

en := u newEditReservation.

en

return

show: en

en show: s

"to show a list"

en notReady

"not allowed"

en en
t1 t2

en

snil

u u

u

a a

Fig. 10. UserInterface. The topmost level of the application modeled as OON class.

The procedure can be performed at most one at the same time. It is assured by
the precondition of the transition login to the place application.

Second, if the logged user perform an action edit reservation, the activity
net EditReservation is created (see the transition t1 in the method net edit).
The activity net then serves as a control mechanism watching if some operation
is allowed or not. For example, the method net show: makes decision if it is
possible to show the reservation list (the activity net is in appropriate state) on
not. The method net has show: one parameter en of the activity net which is
used for control.

The model of application net uses rather asynchronous processing of events.
For instance, the methods edit and show represent fragments of a behavior
controlled by the activity net EditReservation. Each fragment is called as a
reaction to the event. For example, there can be generated a graphic user inter-
face offering a button to start reservation editing—if the actor press this button,
it generates an event and the method net edit is called and the instance of
activity net EditReservation is created. Then, the first event of activity is to
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show a list of reservation—as a reaction, the method net show: is called. Its
execution checks the activity state and collects a list of reservations (calling the
synchronous port en show: s in the transition t2). Then the list can be dis-
played. The details of graphics user interface and its cooperation with application
nets are not described here.

7 Conclusion

The paper dealt with Modeling and Simulation Based Design using the formalism
of Object Oriented Petri Nets. It presented the key ideas of a modeling technique
which is based on layered approchach. The presented approach is a part of the
development methodology, which allows to use formal models in all phases of
system development including as basic design, analysis and also programming
means with a vision to allow to combine simulated and real components and to
deploy models as the target system with no code generation.

So far, the models are interpreted in deployed application and are connected
to other software components. The advantage is a possibility to monitor, to pro-
file, to test, and to debug application at the model level with no needs to model
transformations. The disadvantage is a possible inefficiency of the model inter-
pretation. Therefore we plan to investigate an approach allowing to transform
models into low-level models. Nevertheless, this transformation have to fulfil a
condition of having a view to the system at the model level. It means, that it has
to be possible to get a state from low-level models and to impose a new state to
the low-level model.
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Porting the Renew Petri Net Simulator to the
Operating System Android

Dominic Dibbern

University Hamburg
Faculty of Mathematics, Informatics und Natural Sciences

Department Informatics

Abstract. This article describes the steps to identify, extract and adapt
the core parts of the Renew simulator in order to make them usable
on an Android-powered device. As Renew is build in Java and has a
plugin-architecture, a few plugins have to be adapted to get a working
Petri net simulator for the operating system Android, which applications
are widely written in Java. The result of this work is a framework for
simulating and using Petri nets in an Android application.

To extend the Petri net-based Agent-Oriented Software Engineering (PAOSE,
see [1]) approach, to use Petri net-based agents on mobile devices like smart-
phones and tablet computers, the first step is to develop a Petri net simulator
for this type of devices. As Renew is used to create and simulate the agents,
its simulation engine has been ported to the operating system Android. Renew
(see [2]) is written in Java and Android applications are usually also written in
Java (see [3]), so the expenditure to port the application is not large. Further-
more, Renew has a plugin-architecture, which allows to extract the needed core
plugins and embed them into an Android application.

As a matter of fact, there are only three plugins needed for the simulation en-
gine plus a plugin management system. As Android misses some libraries from a
standard Java version, there are some plugins that have to be adapted. The miss-
ing libraries are essentially the graphical user interface and the remote method
invocation capabilities. Fortunately, the graphical user interface is disconnected
from and not referenced in the simulator core plugins. The remote method in-
vocation is encapsulated and can easily be extracted to a new plugin, without
a loss of functionality. Some additional minor changes are not further discussed
here. With these changes Renew’s simulation engine is able to run on an An-
droid device, using the same codebase as the full Renew. This is an advantage,
by having an up-to-date version on the mobile devices.

Although the Renew simulation engine can now be used on Android, the
start-up of application differs from the way of normal Java applications. This plus
a relative huge amount of needed space for the plugins, on a mobile device with
limited space for applications, implies several difficulties to create a practical sys-
tem architecture for Android. Figure 1 shows the envisioned system-architecture.
There is one application providing Renew, which contains and distributes the



Renew plugin archives to other application, that want to make use of the simu-
lator. To allow application developers an easy use of Renew, three components
have been build. The Renew Service as the server and the Prepare Renew Ac-
tivities as clients communicate at application start-up and automatically start
the Renew simulation engine. The Renew Activity is a convenient extension
of the Prepare Renew Activity for easy control of the simulation engine. To
develop a new application, using the simulation engine, the developer has to
extend the Renew activity and make use of its control functions. To reduce the
use of disk space and to ensure an easy update there is one application providing
Renew for a couple of applications, which use the Renew simulator.

Fig. 1. System architecture showing an Android application, which is able to integrate
Petri nets into application development

As a result the simulation engine of Renew is used to create a framework for
Android applications, allowing them to take advantage of developing Petri nets
instead of normal code, if it is useful. This prototypical implementation is the
first step to extend the PAOSE approach into the mobile world of smartphones.
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SonarEditor:
A Tool for Multi-Agent-Organizations Modelling

Jan Bolte

Department of Informatics, TGI, University of Hamburg
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Abstract. This paper presents the SonarEditor, which supports the cre-
ation of Sonar models. It provides pre-build net components, a well-
formedness check and a wizard that aims at the support for possible
enhancements of the model.

SonarEditor [1] is a prototypical implementation that enables multi-agent system
developers to model organizational models following the Sonar formalism. It is
implemented as plugin for Renew [3]. The SonarEditor consists of three parts:
pre-build net components [2], which help to create models, a well-formedness
check that can check the well-formedness of the model and a wizard that can
be used to enchance the model. Well-formedness of a model is defined by the
definition of an organization and that the model is acyclic [4, Section 3.1].

Sonar is an approach to model organizations based on Petri nets. Such
a model is composed of a delegation net and a set of distributed workflow nets
(DWFs). The DWFs model the real workflows and the delegation net all possible
courses of actions in an organization. The SonarEditor focuses on the delegation
net, which is a Petri net (P, T, F ) with P a set of Tasks, T a set of Implementa-
tions and F a set of arcs between P and T . Every Task and Implementation has
to be assigned to a Position. This Position models a position in the organization.
A Task models a task, which has to be executed. The Implementations define
how every Position can implement each task. There are four different types of
Implementations allowed by formal definition of the delegation net. The four
types are named execute, delegate, split, refine and the pre-build net compo-
nents for them are presented in the bottom of Figure 1. The top of Figure 1
displays the toolbar of the Sonar net components. There are from left to right
Position, Initial Task, Task, execute, delegate, split, refine, refine+split. These
are the net components for the delegation net. refine+split is the combination of
the Implementations refine and split. The next components Declaration Node,
Role and DWFAction are the components for creating DWFs. The last three
buttons trigger the well-formedness check and the wizard: the first two trigger
the well-formedness check with and without DWFs, the last triggers the wizard.

The SonarEditor shows an error frame if errors occur while checking the well-
formedness. This frame contains a list of these errors and three buttons: Select,
Select All and Cancel. If an error item is selected in the error frame the button
Select can be pushed to select the corresponding element in the delegation net.
With the button Select All all elements causing errors will be selected.



execute delegate

DWF[roleName]

split

DWF[roleName]DWF[roleName]

refine

DWF[roleName]

Fig. 1. Toolbar and Sonar net components

The last button of the toolbar starts the wizard, which supports the user by
proposing possible enhancements based on the existing DWFs and delegation
net. The wizard pages hold their previous and their following page and manage
the remaining GUI of the wizard. There are five different wizard pages in this
implementation:

ErrorPage is the first page, if a Task is selected, which causes an error.
InitOrPosPage is the first page, if nothing is selected and you can create a

Position or start the creation of an initial Task with this page.
TypePage is the first page, if the selected Task does not cause an error. On

this page you can define the type of the new Implementation. In the cases
of execute and split this page is the last page.

PosPage is the page, where one can select the Position of the initial Task or
the output Task of a new delegate Implementation.

DWFPage is the page, where you can select the DWF of the initial Task or
the refining DWF in a refine or refine+split Implementation.

The SonarEditor supports the user with net components, a well-formedness
check and a wizard. By these means, it supports the creation of well-formed
Sonar models. A possible extension to this tool would be the consideration of
the DWF well-formedness in the well-formedness check.
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