
Model-Driven Middleware Support
for Team-Oriented Process Management

Matthias Wester-Ebbinghaus and Michael Köhler-Bußmeier

University of Hamburg, Department of Informatics
Theoretical Foundations of Informatics

{wester,koehler}@informatik.uni-hamburg.de
http://www.informatik.uni-hamburg.de/TGI

Abstract. Management of collaborative processes involving multiple
parties is one of the dominant topics in contemporary information sys-
tem research. While the process perspective is quite well understood and
supported by a wide range of modeling approaches, it is necessary to
go beyond the process perspective alone. We specifically address the fol-
lowing question: If we consider the involved parties of a collaborative
process as a team, then (1) which are the general formation rules for
such a team together with the collaborative process it carries out and
(2) to which concrete underlying organizational structure do these rules
apply? To address this question, we present the organizational modeling
approach Sonar. The accompanying models are rather high-level and il-
lustrative but at the same time they are rich enough in order to generate
executable models and other kinds of code that together form the core
of a middleware implementation for team-oriented process management.

1 Introduction

Management of collaborative processes involving multiple parties is one of the
most dominant topics in contemporary information system research, especially
in the field of business process management (BPM) but also on a smaller scale in
the field of computer-supported cooperative work (CSCW) or community sup-
port. The process perspective itself is quite well understood and there exists
a wide range of more or less similar process modeling approaches (differing in
specific aspects), including workflow nets and their descendants [1,2], the Busi-
ness Process Modeling Notation (BPMN) [16], the Web Service Business Process
Execution Language (BPEL) [4], Event-driven Process Chains (EPCs) [13] and
the Yet Another Workflow Language (YAWL) [3]. However, there remains the
question of organizational structures behind a given set of processes, which is
not addressed in a thorough and systematic way by these approaches. We want
to formulate this question a bit more vividly in the following way: If we consider
the involved parties of a collaborative process as a team, then (1) which are the
general formation rules for such a team together with the collaborative process
it carries out and (2) to which concrete underlying organizational structure do
these rules apply?



To answer this question, a more comprehensive modeling approach is nec-
essary, encompassing both a system’s processes and structure in an integrated
manner. While this is to some extent addressed in the field of enterprise archi-
tecture management (EAM), EAM is a rather high-level discipline and is at least
not necessarily concerned with models whose primary purpose is to be directly
transferred into software artifacts (although this may be true for some parts, es-
pecially for process models). Contrary to that, the field of organization-oriented
multi-agent systems is primarily concerned with rather comprehensive organi-
zational models that exhibit a close gap to software-technical deployment [5,8].
Here we find models that encompass multiple integrated organizational per-
spectives (e.g. structure, function, interactions, norms). But despite this multi-
perspective approach, we typically still find approaches where either a struc-
tural or a process perspective dominates. In approaches like S-MOISE+ [12])
or TEAMCORE/KARMA [17], a structural perspective dominates and a pro-
cess perspective has to be inferred from certain functional specifications or
from normative requirements concerning action execution. In approaches like
ISLANDER [9], a process perspective dominates and a structural perspective
has to be inferred from decompositions of the process models.

In this context of process and overall organizational modeling, we present
the Petri net-based organizational modeling approach Sonar (Self-Organizing
Net ARchitecture).1 It explicitly addresses the question from above concerning
structure and process perspectives in teamwork modeling. We provide a way
to capture the whole context of team-oriented process management: from the
underlying organizational structure over team formation up to process execution
by the team.

We have laid specific emphasis on achieving the following combination: (1)
Sonar models are simple enough to be easily understood and analyzed (by
means of standard Petri net tools). (2) Sonar models are rich enough to cap-
ture the interplay of various organizational concepts in such detail that we can
automatically generate executable models and other kinds of code from them. In
this context, Figure 1 gives an overview of the results we present in this paper.
We concentrate on the modeling approach and in which ways model parts are

Fig. 1: Model-driven support for teamwork, general overview

1 We are not dealing with the “self-organizing” part in this paper, but see the conclu-
sion.

94 PNSE’12 – Petri Nets and Software Engineering



made executable or other code is generated from them. The figure can be re-
garded as capturing the most fundamental way of applying our Sonar approach.
In the outlook of the paper we address several extensions that build upon it, but
here we just regard the basic case. A manager creates a high-level organizational
model that is void of execution details. The different model parts undergo a pre-
liminary deployment phase where they are pre-processed and then passed on to
a middleware layer for team-oriented processes management. Here, models are
actually deployed and support the different phases/aspects of teamwork. Some
of the pre-processed model parts are persistent and directly used while others
serve an on-demand generation of temporary executables. Users access the mid-
dleware layer and act as organizational members that participate in teamwork
(this users might be social but also artificial/software-technical actors).

In the remainder of the paper, we flesh out this rather abstract description. In
Section 2, we introduce the Sonar modeling approach. In Section 3 we elaborate
on transformations of original Sonar models in order to obtain code from them
and in Section 4 we describe how this code is embedded in an agent-based
middleware for teamwork. We conclude our work in Section 5 and give an outlook
to advanced and future topics of our research.

Note that both the Sonar modeling approach and the middleware imple-
mentation rest on our previous work (cf. especially [14,15]). Several extensions,
simplifications and improvements have been introduced over the years and in
this paper, we present the consolidated current state with original contributions
concerning both the modeling approach and the middleware support.

2 Organizational Models Based on Sonar

For organized activities two fundamental (and opposing) requirements have to
be taken into account, the division of labour into various tasks and the coor-
dination of carrying out these tasks. For Sonar, this can be rephrased more
concretely and with reference to the terminology used in the introduction of
the paper. Coordinated carrying out of tasks corresponds to a team executing a
distributed (multi-party) workflow (DWF). Division of labor corresponds to the
formation of such a team together with a DWF definition. Formation takes place
according to general formation rules and a specific organizational structure to
which these rules are applied. Consequently, Sonar models center around the
duality of DWF (process) and organizational structure models. Both sides have
to be coherently related with one another.

Sonar is based on Petri nets which offer both a graphical representation and
formal semantics. In [14] we present Sonar in a formal way with theorems and
proofs. However, in this paper we present a new version of Sonar, where the
differences concern mainly a more readable and better structured organizational
structure model. We will avoid formal specifications and instead give a rather
illustrative introduction of the Sonar modeling approach. We just assume a
general understanding of Petri nets (cf. [10]).

M. Wester-E., M. Köhler-B.: Team-Oriented Process Management 95



We will consider a running example throughout the paper. As Sonar models
are based around the duality of distributed workflow (DWF) and organizational
structure models, we could start with either of them. Here we begin with the
workflow perspective. Figure 2 shows a DWF for collaboratively submitting a pa-
per. The DWF is distributed in the sense that it encompasses multiple roles, here

Fig. 2: Workflow with multiple roles for submitting paper

providePaperFrame and providePaperBody. Each action of the DWF is mapped
onto exactly one role. Actions are modeled as transitions. They are connected
by places. Places connecting actions belonging to the same role form the DWF
life line of that role and we arrange such a life line vertically in our models.2
Places connecting actions of different roles can best be considered as message
transfers between roles and we draw them as horizontal connections. One can
consider the places between the transitions of different roles as the interface be-
tween these roles. Places and transitions of a DWF model are named. Names
of message places are prefixed with a key for the role sending that message (for
example ppf: for the role providePaperFrame). Such message place names have
to be unique across the whole set of DWF models of an overall Sonar model
(see below for the reason). If a DWF model is decomposed into role parts and
there exists an interface between two roles, each role part gets its own copy of
the corresponding interface places.

Figure 3 shows another DWF. More exactly, it shows a DWF fragment. This
fragment consists of two roles supervisePaperSubmission and writeIntroAndCon-
clusion. These two roles can be used to refine the role providePaperFrame from
2 Of course, we do not rely on graphical arrangements in order to determine the
different role parts of a DWF. We are currently working on an action inscription
language for DWF transitions. So far, such an inscription does at least contain
the name of the role that the transition belongs to. This is even more important
when DWF life lines are not just sequences as in the rather simple examples in this
paper. They may include forks, joins and concurrency. However, we have omitted the
transition inscriptions in the DWF figures of this paper as the different role parts
should be easily identified.

96 PNSE’12 – Petri Nets and Software Engineering



Fig. 3: Refined workflow part for the providePaperFrame role from Figure 2

Fig. 4: Refined workflow part for the providePaperBody role from Figure 2

Figure 2. Note that on the right side of Figure 3, the two roles supervisePaperSub-
mission and writeIntroAndConclusion in combination share the same interface as
the role providePaperFrame in Figure 2 in terms of message places (whose names
have been carried over and uniquely identify them). In fact, it is possible to
substitute the two combined roles supervisePaperSubmission and writeIntroAnd-
Conclusion for the role providePaperFrame and obtain the same input/output
behavior to the outside, i.e. from the viewpoint of the partner role providePaper-
Body.

Likewise, Figure 4 shows a DWF fragment, where the two roles writeRelat-
edWorkSec and writeMainPart can be used to refine/substitute the role provide-
PaperBody from Figure 2 while obtaining the same input/output behavior from
the viewpoint of the partner role providePaperFrame.

Following this line of thought, it is of course also possible to substitute both
roles providePaperFrame and providePaperBody with the combined roles from Fig-
ures 3 and 4 respectively as both refinements respect the original input/output

M. Wester-E., M. Köhler-B.: Team-Oriented Process Management 97



Fig. 5: Delegation model for jointly submitting a paper

behavior of the substituted roles and the overall composition thus fits together.
To conclude, we arrive at basically four possible DWFs for jointly submitting
a paper. Further models of role refinements would lead to more possibilities of
DWF composition. It remains to supplement such a set of DWFs and DWF
fragments with a model that determines not only when to compose which DWF
parts but also who takes on which roles in a finally composed DWF. This is
where Sonar organizational structure models come into play.

Organizational structures in Sonar are basically modeled as delegation struc-
tures. Figure 5 shows such a delegation net for the running example of joint paper
submission.3 A Sonar delegation net comprises multiple positions that are ab-
stractions of actors (that occupy these positions when a Sonar organization
is deployed). Positions are modeled as grey boxes that partition an underlying
task structure. In Figure 5, we have as positions a supervisor, a phd student and
two students that distribute tasks among themselves in order to jointly submit a
paper. The underlying task structure is modeled as a Petri net. A place models
a task and a transition models the implementation of a task. For this purpose,
each transition has exactly one place in its preset. Task implementation can take
on multiple forms and transitions are named accordingly:
3 Delegation nets have been over-hauled compared to previous publications, cf. [14,15].
The explicit inscription of transitions with the implementation type that they rep-
resent leads to slightly larger but much more readable models.

98 PNSE’12 – Petri Nets and Software Engineering



1. Execute: The task is directly executed.
2. Delegate: The task is delegated.
3. Refine: Sub-tasks for a task are determined.
4. Split: A task is split into (already determined) sub-tasks.

The latter two cases are typically combined. All the implementation cases appear
in Figure 5. Delegations are the kind of task implementation that relates two
positions while refines, splits and executions are internal to positions.

The intertwining of a Sonar delegation net with DWF (fragment) models
lays in the nature of the tasks. Each task in a delegation net corresponds to one
or more roles in a DWF. Consequently, the places in Figure 5 are named accord-
ing to the pattern DWFa[role1, ..., rolen], meaning that the task corresponds
to implementing the roles role1, ..., rolen from DWF DWFa. Combining a del-
egation model with a set of DWF models leads to a straightforward notion of
well-formedness of an overall Sonar model: (1) Delegation has to start with an
initial task that corresponds to all roles of a complete DWF model (not a DWF
fragment) and (2) task refinements must map onto associated role refinements in
the set of DWF (fragment) models. Consequently, Figure 5 shows one possible
delegation model for the DWF models from Figures 2 – 4 (likewise, other sets
of DWF models may fit to the delegation model).

This way, the process perspective represented by DWF modeling is supple-
mented with an organizational structure perspective that guides both the forma-
tion of teams (where positions represent the team members) and the associated
team DWFs. For example, the delegation model from Figure 5 allows multiple
teams to be formed. An interesting fact is that team formation actually corre-
sponds to the possible firings of the delegation net, its Petri net processes, cf. [11].
Each Petri net process of a delegation net model corresponds to a possible team.

Using Petri nets as the basis for Sonar modeling allows us to to take ad-
vantage of well-known analysis techniques. As we rely on simple place/transition
(P/T) nets, there exist standard techniques and tools for checking the soundness
of workflow net models or the free-choice nature of delegation models (cf. [1,7]
and the ProM framework4). The interleaving of delegation and DWF models and
especially the notion of role refinement of course goes beyond P/T net analysis.
But especially the tool set from http://www.service-technology.org promotes a
service-oriented perspective on Petri net models where Petri nets with interface
places (open nets) are characterized in terms of their possible partners, cf. [20].
For our purpose, this allows to analyse whether a role and its refinement in
terms of multiple roles really have the same input/output behavior and can be
substituted with one another in DWF models.

3 Model Deployment

The models presented so far have been on a relatively high level. They are
basically P/T nets, where some naming conventions have to be followed. There
4 http://www.promtools.org/

M. Wester-E., M. Köhler-B.: Team-Oriented Process Management 99



are no execution details, except for the fact that Petri nets inherently have an
operational semantics. It is not even necessary to model all possible DWFs that
can occur during the execution of a Sonar organization. Instead, it is sufficient
to model some initial DWF models and then just add models for selective role
refinements.

In order to utilize the models in the context of a Sonar-based middleware
layer for teamwork, some deployment steps are necessary. Based on the preceding
section, it is now possible to be more specific on the model-driven support for
teamwork illustrated in Figure 1 from the introduction. Figure 6 shows a Sonar-
based re-interpretation of the figure.

Fig. 6: Model-driven support for teamwork based on Sonar

After checking well-formedness of all aspects of an overall Sonar model (see
the previous section), the first phase of model deployment is pre-processing.
One immediate question is whether to use the Petri net models themselves (en-
riched/extended for deployment)5 or whether to transfer them into other ar-
tifacts. Although we do not deal with run-time re-organization in this paper,
this aspect has a strong impact on answering this question. Changing the Petri
net models and re-deploying them at run-time can get quite cumbersome and
costly. Currently, we have decided to use the DWF models directly in their Petri
net form and to transfer the delegation model into a Java data structure. We
treat DWF models and thus how things are basically done as rather fixed and
the role parts as the basic behavioral building blocks. Fundamentally chang-
ing the DWF models is often better done by starting from scratch (however,
instead of changing DWF models, they can be extended by further role refine-
ments). The delegation model on the other hand and thus the context leading to
the actual behavior is prone to quite frequent and light-weight re-organization
efforts: adding/removing positions, adding/removing delegation relationships,
adding/removing execution etc. Consequently, we prefer a data structure that
handles changes easier. In addition, such a data structure is helpful to share
(communicate about) and process knowledge in the context of team formation
(determining eligibility of task implementations, possible delegation partners or
whole sub-teams etc.). To conclude, the pre-processing phase of model deploy-
ment comprises two parts.

5 This is what we did for our previous versions of a Sonar middleware layer, cf. [15].

100 PNSE’12 – Petri Nets and Software Engineering



1. All DWF models are decomposed into their singular role parts, which makes
it easy to dynamically compose team DWFs later on.6

2. From the delegation model, a Java data structure is generated. Figure 7
shows the according class diagram in UML style. More specifically, it is a
concept diagram [6] and is supported by the tool suite that we use in the
context of our multi-agent framework Mulan that we briefly address in
the following section.7 The class hierarchy resulting from a concept diagram
comes with the handy feature that all objects of these classes have FIPA8-
conform String representations, which allows to directly include them as
message contents in agent communication. According to the class hierarchy
from Figure 7, each Sonar delegation model is transferred into an organi-
zation object that contains all other information.

Fig. 7: Concept (or class) diagram for Sonar delegation models

In the second phase of model deployment, the pre-processed models are used
by the Mulan4Sonar middleware layer to enable and frame teamwork among
members of a Sonar organization. Members are (social or artificial) actors that
access the middleware layer and occupy positions of a Sonar delegation model.
We will elaborate on the Mulan4Sonar middleware layer and on how to access
it in the next section.

6 It might of course be possible to keep role compositions that always have to appear
together in a team DWF, like supervisePaperSubmission and writeIntroAndConclusion
from the running example. But as we intend to have dynamic re-organizations of
Sonar models at run-time (see the conclusion), further role refinements might be
introduced. Thus it is simpler to keep track of each singular role part in the first
place.

7 see also http://www.paose.net.
8 http://www.fipa.org

M. Wester-E., M. Köhler-B.: Team-Oriented Process Management 101



Basically, the Java data structure of the delegation model is used to manage
task delegation and thus the team formation process. As soon as a team is
formed, there is a unique team DWF associated with it: It is the composed
DWF that consists of the role parts that are implemented by execute (instead
of refine, split or delegate) transitions during the delegation process. The well-
formedness of an overall Sonar model ensures that these role parts fit together.
For example, the composed DWF from Figure 8 is the team DWF for a team
where the delegation process has lead to the maximum level of task (and thus
role) refinement for the running example of joint paper submission.

Fig. 8: A multi-role workflow for submitting a paper composed from role frag-
ments

Consequently, team formation leads to an on-thy-fly generation of the corre-
sponding team DWF. However, for such a team DWF to be executable in the
context of the middleware layer, a further refinement and enrichment has to
be carried out. This is also done by automatic generation. Basically, each action
transition of a team DWF has to be enriched with execution inscriptions and has
to be divided into a call and return part. Figure 9 exemplifies the substitution
rule applied to a DWF transition for the addConclusion action of the team DWF
from Figure 8. The transition is split into two transitions for call and return.
The names of places lead to the generation of variable names that are bound to
work-item and result objects of the action. The action call is parametrized with
the role name, action name and a set of incoming work-items. The surrounding
engine for the execution of team DWFs has to take care of forwarding the call
to the position holder that implements this role for this team. In addition, the
engine generates a unique action ID that can be used to associate action call and
return. The action return is parametrized with a result object. We omit details
on handling erroneous or aborted execution of DWF actions here.

Figure 10 shows the class diagram for content objects used in the context
of executable team DWFs. More specifically, it shows the generic part. Con-
crete Sonar models are intended to extend the concept dwf-action-content with
customized concepts. In fact, we are working on a high-level action inscription
language for Sonar DWF models. Such a language can for example be used to
attach pre-conditions, post-conditions and effects for/of DWF actions based on

102 PNSE’12 – Petri Nets and Software Engineering



Fig. 9: Substitution rule (by example) for generating executable workflow models

Fig. 10: Concept (or class) diagram for executable team DWF contents

the content objects and their attributes that are involved in the action. For this
purpose it is necessary to explicitly define the according custom concepts.

To conclude this section, the illustrative and rather high-level Petri net mod-
els that a modeler has to create for a Sonar organization are rich enough to allow
the generation of different kinds of executable artifacts for computer-supported
teamwork. In the next section, we give an overview of a middleware implemen-
tation that utilizes these artifacts.

4 Mulan4Sonar: Agent-Based Teamwork Engine

We present a middleware implementation for teamwork support that is based on
Sonar models and their deployment. There exist of course multiple possibilities
and here we present our current approach, called Mulan4Sonar. This name

M. Wester-E., M. Köhler-B.: Team-Oriented Process Management 103



stems from the fact that it is based on the multi-agent system (MAS) framework
Mulan (cf. [6] and www.paose.net). This framework provides the possibility to
combine Java programming with Petri net modeling and simulation for realizing
MAS and is consequently perfectly suited for our purpose. More concretely,
Mulan relies on the high-level Petri net formalism of Java reference nets that
is supported by the Renew tool (www.renew.de).9

Figure 11 shows our general proposal for multi-agent system deployment of
Sonar models. We have an organization agent that represents the Sonar or-

Fig. 11: Basic concept for Sonar-based multi-agent systems

ganization as a whole. It is responsible for initialization and for keeping a global
perspective. With each position of a Sonar model we associate one dedicated
agent, called an organizational position agent (OPA). From a conceptual point
of view, the resulting OPA network (together with the organization agent) em-
bodies a formal organization as each OPA represents an organizational artifact
and not a member/employee of the organization. From a technical point of view,
the OPA network is an agent-based middleware layer for supporting teamwork
according to Sonar models. Consequently, each OPA represents a connection
point for an organizational member agent (OMA). Each OMA interacts with its
associated OPA to carry out organizational tasks and to make decisions where
required. An OPA both enables and constrains organizational behaviour of its
OMA. The OMA can effect the organization only in a way that is in confor-
mance with the OPA’s specification. In return, the OPA relieves its OMAs of
a considerable amount of organizational overhead by automating coordination
and administration. Conceptually speaking, OMAs implement/occupy the for-
mal positions and thus represent the informal part of the organization. Note
that an OMA can be an artificial as well as a human agent. OMAs might of
course only be partially involved in an organization and have relationships to
multiple other agents than their OPA or even to agents completely external to

9 An example for using Java inscriptions in the context of a Petri net model was already
shown in Figure 9. The other way round is equally possible, namely having Java
objects monitoring, triggering or even controlling parts of the execution (simulation)
of a Petri net model.

104 PNSE’12 – Petri Nets and Software Engineering



the organization. From the perspective of the organization, all other ties than
the OPA-OPA and OPA-OMA links are considered as informal connections.

Our current implementation of Mulan4Sonar follows this general proposal.
However, it does not (yet) feature OPAs as distinct agents. Instead, our current
implementation features a central organization agent that manages the teamwork
processes of a Sonar organization but also utilizes separate OPA shells for each
position. Consequently, we have already prepared the implementation in way to
be able to single out the shells as OPAs and thus to obtain a more distributed
implementation. Figure 12 shows the three-level architecture of the organization
agent in its current form. This architecture is actually realized based on the

Fig. 12: Three-level architecture of the Sonar teamwork engine agent

high-level Petri net concept of nets-within-nets [18] where Petri nets can have
other Petri nets as tokens and cross-net communication is possible. Nets-within-
nets modeling and simulation is supported by the Renew tool and is one of the
fundamental features of MAS development with Mulan. The figure only shows

M. Wester-E., M. Köhler-B.: Team-Oriented Process Management 105



a high-level overview of the organization agent’s architecture but it represents
the actual implementation quite precisely.

On the top level of the organization agent, the organization is initialized and
the pre-processing of the original Sonar models is carried out, just as described
in the previous section. Afterwards, the teamwork engine is initialized with the
pre-processed models as input and represents the second level.

The teamwork engine sets up OPA shells for all positions and makes the
delegation model available to them. We will not go into detail concerning the
manifold responsibilities of the OPA shells. We just assume that basically, they
take care of binding users as members (OMAs) into the organization and manage
the inclusion of the OMAs’ actions and decisions in conformance to the organi-
zational specifications. New teamwork activities can be started and represent the
third level. Teamwork activities and OPA shells stay connected via the teamwork
engine level.

A teamwork activity basically comprises the delegation process for team
(DWF) formation and afterwards the execution of the composed team DWF
by the team members that take on roles in the DWF. All of this is managed by
the teamwork activity level, together with the involved OPA shells that can be
consulted via the joint teamwork engine super-level.

5 Conclusion and Outlook

Starting from the question for an integrated treatment of structure and process
perspectives in modeling collaborative systems, we have presented our Sonar
approach. It provides a way to capture the whole context of team-oriented pro-
cess management: from the underlying organizational structure over team for-
mation up to process execution by the team. The accompanying models are
rather high-level and illustrative but at the same time they are rich enough in
order to generate executable models and other kinds of code that together form
the core of the Mulan4Sonar middleware implementation for team-oriented
process management.

Regarding our future research efforts, there is a range of topics that we and
other people from our research group are working on.

– Collaborative Agent Platform (deployment): Our group has the long-term
goal of developing an agent-based platform for computer-supported collabo-
ration. We envision Sonar-based organizational models to be used for spe-
cific teamwork applications on top of the platform as well as for supporting
the infrastructure of the platform itself, managing the various platform tasks
and processes.

– Self-organization: Instead of the manager from Figure 1 we promote an al-
ternative approach where a Sonar model has multiple management levels
and the team processes on one level lead to the transformation of the speci-
fications of the lower levels, cf. [15].

– Hierarchy/holism: While the idea of self-organization introduces multiple
management levels in the context of one Sonar organization, we also address

106 PNSE’12 – Petri Nets and Software Engineering



the concept of having multiple levels of nested Sonar organizations. The ba-
sic idea is to have positions being occupied by organizational units that are
Sonar organizations themselves. This allows to model inter-organizational
scenarios and so-called multi-organization systems. The refinement concept
for roles and tasks inherent to Sonar directly supports such an extension.
For a thorough report of our research on modeling organizational units and
multi-organization systems (not limited to Sonar), we refer to [19] (in Ger-
man).

– Simulation: We are also interested in organizational simulation. We intend to
enrich the models with quantitative information and apply routines to evalu-
ate simulation runs with respect to certain criteria. Especially in combination
with hierarchic models we are interested in studying the fit of different (types
of) organizational units to one another (in terms of nesting relationships as
well as in terms of cooperation effectiveness on the same level).

References

1. van der Aalst, W.: Verification of workflow nets. In: Application and Theory of Petri
Nets 1997. Lecture Notes in Computer Science, vol. 1248, pp. 407–426. Springer
(1997)

2. van der Aalst, W.: Interorganizational workflows. Systems Analysis - Modelling -
Simulation 34(3), 335–367 (1999)

3. van der Aalst, W., ter Hofstede, A.: YAWL: Yet another workflow language. Infor-
mation Systems 30(4), 245–275 (2005)

4. Alves et al., A.: OASIS web services business process execution language (WS-
BPEL) v2.0. OASIS Standard, 11. April 2007 (2007)

5. Boissier, O., Hübner, J., Sichman, J.S.a.: Organization oriented programming:
From closed to open organizations. In: O’Hare, G., Ricci, A., O’Grady, M.,
Dikenelli, O. (eds.) Engineering Societies in the Agents World VII. Lecture Notes
in Computer Science, vol. 4457, pp. 86–105. Springer (2007)

6. Cabac, L.: Modeling Petri Net-Based Multi-Agent Applications, Agent Technology:
Theory and Application, vol. 5. Logos (2010)

7. Desel, J., Esparza, J.: Free Choice Petri Nets, Cambridge Tracks in Theoretical
Computer Science, vol. 40. Cambridge University Press (1995)

8. Dignum, V.: The role of organization in agent systems. In: Dignum, V. (ed.) Hand-
book of Research on Multi-Agent Systems: Semantics and Dynamics of Organiza-
tional Models, pp. 1–16. Information Science Reference (2009)

9. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: An electronic institutions editor.
In: The First International Joint Conference on Autonomous Agents & Multiagent
Systems, AAMAS 2002, Proceedings. pp. 1045–1052. ACM (2002)

10. Girault, C., Valk, R. (eds.): Petri Nets for Systems Engineering: A Guide to Mod-
elling, Verification and Applications. Springer (2003)

11. Goltz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Information and
Control 57(2–3), 125–147 (1983)

12. Hübner, J.F., Sichman, J.S.a., Boissier, O.: Using the Moise+ for a cooperative
framework of MAS reorganisation. In: Bazzan, A., Labidi, S. (eds.) Advances in
Artificial Intelligence – SBIA 2004. Lecture Notes in Computer Science, vol. 3171,
pp. 481–517. Springer (2004)

M. Wester-E., M. Köhler-B.: Team-Oriented Process Management 107



13. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische prozessmodellierung auf der
grundlage „ereignisgesteuerter prozessketten (epk)“. In: Scheer, A.W. (ed.) Veröf-
fentlichungen des Instituts fü Wirtschaftsinformatik (IWi), Universitä des Saarlan-
des. Heft 89 (1992)

14. Köhler-Bußmeier, M., Moldt, D., Wester-Ebbinghaus, M.: A formal model for
organisational structures behind process-aware information systems. In: van der
Aalst, W., Jensen, K. (eds.) Transactions on Petri Nets and Other Models of Con-
currency II: Special Issue on Concurrency in Process-Aware Information Systems,
Lecture Notes in Computer Science, vol. 5460, pp. 98–115. Springer (2009)

15. Köhler-Bußmeier, M., Wester-Ebbinghaus, M., Moldt, D.: Generating executable
multi-agent system prototypes from SONAR specifications. In: de Vos, M., Fornara,
N., Pitt, J., Vouros, G. (eds.) Coordination, Organizations, Institutions and Norms
in Agent Systems VI. Lecture Notes in Artificial Intelligence, vol. 6541, pp. 21–38.
Springer (2010)

16. OMG: Business process modeling notation (BPMN) version 1.0. OMG Final
Adopted Specification, Object Management Group (2006)

17. Pynadath, D., Tambe, M.: An automated teamwork infrastructure for heteroge-
neous software agents and humans. Autonomous Agents and Multi-Agent Systems
7(1–2), 71–100 (2003)

18. Valk, R.: Object petri nets: Using the nets-within-nets paradigm. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets: Advances
in Petri Nets, Lecture Notes in Computer Science, vol. 3098, pp. 819–848. Springer
(2004)

19. Wester-Ebbinghaus, M.: Von Multiagentensystemen zu Multiorganisationssyste-
men – Modellierung auf Basis von Petrinetzen. Dissertation, Universität Hamburg,
Fachbereich Informatik. Elektronische Veröffentlichung im Bibliothekssystem der
Universität Hamburg: http://www.sub.uni-hamburg.de/opus/volltexte/2011/
4974/ (2010)

20. Wolf, K.: Does my service have partners? Transactions on Petri Nets and Other
Models of Concurrency II, Special Issue on Concurrency in Process-Aware Infor-
mation Systems 5460, 152–171 (2009)

108 PNSE’12 – Petri Nets and Software Engineering


