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Abstract. Organizations often do not want to reveal the way a product
is created or a service is delivered. As a consequence, if two organizations
want to cooperate, they contact a trusted third party. Each specifies how
it wants to communicate with the other party. The trusted third party
then needs to assure that the two organizations cooperate correctly. In
this paper, we study requirements on trusted third parties to ensure
correct cooperation between the different organizations.

1 Introduction

Organizations need to anticipate on the increasing dynamicity and complexity
of business markets. Therefore, organizations focus more and more on their core
activities. As a result, organizations need to cooperate in large networks. The
organizations in the network have as common goal the delivery of their services.
Such a network is called a virtual enterprise [11].

Communication between the organizations is asynchronous by nature: an
organization sends some data, like an inquiry, to some other organization, and
eventually the latter organization sends a response. Therefore, we use Petri nets
to model organizations using components. Components can be composed into
networks of components. Such a network is again a component. A component
has an initial state and a desired final state. We say that a component, or a
network of components communicates correctly if it is sound, i.e., if in all its
reachable states the component is always able to eventually reach the desired
final state.

Trust is an important property in a network of cooperating organizations:
organizations share business knowledge and intellectual property with other or-
ganizations within the network in order to organize the component network
properly and achieve desired goals. At the same time, organizations often want
to keep some intellectual property within their organization and avoid sharing
it for clear reasons. A common approach used in non-virtual life is the use of
trusted third parties. It becomes nowadays also quite common in the virtual
world. In this paper, we consider the use of a third party, also called a notary,
that is trusted by all the organizations in the network. By using a notary, each
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Fig. 1. If the notary N communicates correctly with A and B individually, we want
to conclude correctness of the network of A, B and N

.

of the organizations explains to the notary the way it wants to conduct business,
and the notary will assure that the organizations can do business together. This
requires the notary to ensure that it communicates correctly with each of the
organizations, i.e., that the notary with each of the individual organizations can
reach the common goals, and secondly, that the complete network with all the
organizations together can reach its common goals. If this is the case, we call
the notary trusted.

In this paper we limit ourselves to the cooperation between two organizations
using a notary. Rather than to use verification to check whether the communi-
cation between the notary and the two organizations is correct, we search for
conditions such that if the communication between the notary and each of the
individual organizations is correct, we can automatically conclude that the com-
munication between the three parties is correct, as depicted in Fig. 1.

This paper is structured as follows. Sec. 2 introduces the basic notions needed
throughout the paper. Sec. 3 explains the concept of components and their com-
position. In Sec. 4 we study the conditions under which the notary is guaranteed
to ensure soundness of the composition of the three parties. Sec. 5 concludes the
paper.
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2 Preliminaries

Let S be a set. The powerset of S is denoted by P(S) = {S′ | S′ ⊆ S}. We use
|S| for the number of elements in S. Two sets S and T are disjoint if S ∩ T = ∅.

A bag m over S is a function m : S → N, where N = {0, 1, . . .} denotes the
set of natural numbers. We denote e.g. the bag m with an element a occurring
once, b occurring three times and c occurring twice by m = [a, b3, c2]. The set
of all bags over S is denoted by NS . Sets can be seen as a special kind of bag
where all elements occur only once; we interpret sets in this way whenever we
use them in operations on bags. We use + and − for the sum and difference of
two bags, and =, <, >, ≤, ≥ for the comparison of two bags, which are defined
in a standard way. The projection of a bag m ∈ NS on some set U is a bag
defined by m|U (s) = m(s) if s ∈ U and m|U (s) = 0 otherwise.

A sequence over S of length n ∈ N is a function σ : {1, . . . , n} → S. If
n > 0 and σ(i) = ai for i ∈ {1, . . . , n}, we write σ = ⟨a1, . . . , an⟩. The length
of a sequence is denoted by |σ|. The sequence of length 0 is called the empty
sequence, and is denoted by ϵ. The set of all finite sequences over S is denoted
by S∗. We write a ∈ σ if σ(i) = a for some 1 ≤ i ≤ |σ|. Concatenation of
two sequences ν, γ ∈ S∗, denoted by σ = ν; γ, is a sequence defined by σ :
{1, . . . , |ν|+ |γ|} → S, such that σ(i) = ν(i) for 1 ≤ i ≤ |ν|, and σ(i) = γ(i−|ν|)
for |ν| + 1 ≤ i ≤ |ν| + |γ|. We inductively define the projection of σ ∈ S∗ on
some set U by a; σ′

|U = ⟨a⟩; σ′|U if a ∈ U and a; σ′
|U = σ′|U otherwise.

Definition 1 (Petri net [13]). A Petri net N is a tuple (P, T, F ) where (1)
P and T are two disjoint sets of places and transitions respectively, we call an
element of the set (P ∪ T ) a node of N ; and (2) F ⊆ (P × T ) ∪ (T × P ) is the
flow relation. An element of F is called an arc.

Let N = (P, T, F ) be a Petri net. Given a node n ∈ (P ∪ T ), we define its
preset by •

N n = {x | (x, n) ∈ F}, and its postset by n•
N = {x | (n, x) ∈ F}. We

omit the subscript if the context is clear.
Let N = (P, T, F ) be a Petri net. A path from a node n ∈ P ∪ T to a node

m ∈ P ∪ T is a sequence π ∈ (P ∪ T )∗ such that (π(i), π(i + 1)) ∈ F for all
1 ≤ i < n. The set of all paths from n to m is denoted by Π(n,m). A path is
called cyclic if there exists a path π of length n > 0 such that π(1) = π(n). If
N has a cyclic path, the net is called cyclic. If no such cycle exists, it is called
acyclic.

To describe the semantics of a Petri net, we use markings. A marking of N
is a bag m ∈ NP , where m(p) denotes the number of tokens in place p ∈ P . If
m(p) > 0, place p is called marked in marking m. A Petri net N with a marking
m is written as (N, m) and is called a marked Petri net.

Given a marked Petri net (N,m) with N = (P, T, F ), a transition t ∈ T is

enabled, denoted by (N : m
t−→), if •t ≤ m. If a transition is enabled in (N,m),

it can fire. A transition firing, denoted by (N : m
t−→ m′), results in a new

marking m′ = m − •t + t•. We lift the firing to sequences of transitions in the
standard way. A sequence σ ∈ T ∗ of length n is a firing sequence from m0 to
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mn, if there exist markings mi,mi+1 ∈ NP such that (N : mi
σ(i)−→ mi+1) for all

1 ≤ i < |σ|. The set of reachable markings from a given marking m is denoted

as R(N, m) = {m′ | ∃σ ∈ T ∗ : (N : m
σ−→ m′)}. We lift the set of reachable

markings from a single marking to a set of markings in a standard way, i.e.,
given a set M ⊆ NP , R(N, M) =

∪
m∈M R(N,m).

Given a marked Petri net (N,m0) with N = (P, T, F ), a place p ∈ P is called
k-bounded for some k ∈ N if m(p) ≤ k for all markings m ∈ R(N, m0). If all
places are k-bounded, we call (N, m0) k-bounded. A transition t ∈ T is called
live if for all markings m ∈ R(N, m0) there exist a firing sequence σ ∈ T ∗ and

a marking m′ ∈ R(N, m) such that (N : m
σ−→ m′ t−→). If all transitions of

(N, m0) are live, (N, m0) is called live. A transition t ∈ T is called quasi-live if

there exists a marking m ∈ R(N, m0) such that (N : m
t−→). If all transitions

of (N, m0) are quasi-live, the marked Petri net is called quasi-live. A marking
m ∈ R(N,m0) is called a home marking if m ∈ R(N,m′) for all m′ ∈ R(N,m0).
A reachable marking m ∈ R(N,m0) is called a deadlock of (N,m0) if there is

no transition t ∈ T with (N : m
t−→). Given a desired marking f ∈ R(N,m0),

a non-empty subset of markings L ⊆ R(N,m0) is called a live-lock w.r.t f if
f ̸∈ R(N, L) and L = R(N,L), i.e., from L the desired marking is not reachable,
and no other marking then a marking in L can be reached from L.

On Petri nets, we define two classes based on their structure: S-Nets, also
called state machines, and workflow nets. A Petri net N = (P, T, F ) is a S-net
if |•t| ≤ 1 and |t•| ≤ 1 for all transitions t ∈ T .

Definition 2 (Workflow net, closure). Let N = (P, T, F ) be a Petri net. It is
a workflow net (WFN) if there exist two places i ∈ P and f ∈ P , called the initial
place and final place respectively, such that •i = f• = ∅, and all nodes of N are
on a path from i to f . Its closure is the net N∗ = (P, T ∪{t∗}, F ∪{(t∗, i), (f, t∗)},
where t∗ ̸∈ T .

A workflow net is called sound if (1) it is weakly terminating, i.e., it always
has the option to reach the final marking in which only the final place is marked,
(2) it is properly completing, i.e., if in a marking the final place is marked, it
is the only place marked, and (3) all transitions have a function, i.e., for every
transition a reachable marking exists that enables the transition. Note that we
use the classical soundness definition [1, 2].

Definition 3 (Soundness). A workflow net N = (P, T, F ) with initial place i
and final place f is called sound if (1) [f ] is a home marking of (N, [i]), (2) for
any reachable marking m ∈ R(N, [i]), if m ≥ [f ] then m = [f ], and (3) (N, [i])
is quasi live.

A WFN N = (P, T, F ) with initial place i is sound if and only if the marked
Petri net (N∗, [i]) is live and bounded [1].

If we give a tuple a name, we subscript the elements with the name of the
tuple, e.g. for N = (A,B,C) we refer to its elements by AN , BN , and CN . If the
context is clear, we omit the subscript.
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3 Components and their Composition

In this paper, we use asynchronously communicating components [5,7]. We there-
fore model our components using Petri nets with interface places, called open
Petri nets (OPNs) [10,14]. An OPN has two types of places: internal places for
the inner control of the component, and interface places to communicate with
its environment. An interface place is either an output place, i.e., it sends a mes-
sage to the environment, or an input place, i.e., it requires a message from the
environment. Further, a component has an initial and a final marking, defining
the desired begin and end markings of the component.

Definition 4 (Open Petri net, skeleton, open workflow net [3]). An open
Petri net (OPN) is an 6-tuple (P, I, O, T, F, i, f) where

– ((P ∪ I ∪ O, T, F ), i) is a marked Petri net;
– P is a set of internal places;
– I is a set of input places, and •I = ∅;
– O is a set of output places, and O• = ∅;
– P , I and O are pairwise disjoint;
– ∀t ∈ T : |(•t ∪ t•) ∩ (I ∪ O)| ≤ 1; and
– i ∈ NP is the initial marking; and
– f ∈ NP is the final marking.

We call the set I ∪ O the interface places of the OPN. Two OPNs N and M
are called disjoint if (PN ∪ IN ∪ ON ∪ TN ) ∩ (PM ∪ IM ∪ OM ∪ TM ) = ∅. An
OPN N is called closed if IN = ON = ∅. We write R(N,m) for R((PN ∪ IN ∪
ON , TN , FN ),m) for m ∈ NPN ∪IN ∪ON .

The skeleton of N is defined as the Petri net S(N) = (PN , TN , F ) with
F = FN ∩ ((PN × TN ) ∪ (TN × PN )). For nodes n ∈ (PN ∪ TN ), we write ◦

N n
and t◦N as a shorthand for •

S(N)t and t•S(N), respectively.

If S(N) is a workflow net with initial place s and final place o, i = [s] and
f = [o], N is called an open workflow net.

OPNs are composed with each other to build networks of communicating
components. As a network of components can be used as a component again, the
result of the composition is a component too. We say two OPNs are composable
if the only elements shared between the two OPNs are their interface places,
such that input places of the one are output places of the other and vice versa.
Composition is then defined as the union of the two OPNs.

Definition 5 (Composition of OPNs [3]). Two OPNs A and B are compos-
able, denoted by A⊕B, if and only if (PA∪IA∪OA∪TA)∩(PB ∪IB ∪OB ∪TB) =
(OA ∩ IB) ∪ (IA ∩ OB).

If A and B are composable, their composition results in an OPN A ⊕ B =
(PA ∪ PB ∪ H, (IA ∪ IB) \ H, (OA ∪ OB) \ H,TA ∪ TB , FA ∪ FB , iA + iB) with
H = (OA ∩ IB) ∪ (IA ∩ OB).
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Note that two disjoint OPNs are composable by definition. Two important
properties of composition are commutativity and projection, as shown in [14].

Corollary 6 (Commutativity, projection property [14]). Let A and B be

two composable OPNs. Then N = A⊕B = B⊕A, and (S(A) : m|PA

σ|TA−→ m′|PA
)

for all firing sequences σ ∈ T ∗
n and markings m,m′ ∈ NPN such that (S(N) :

m
σ−→ m′).

The composition operator allows to create arbitrary networks of communicat-
ing components. As long as the interface places match, it is allowed to compose
the components. However, it does not guarantee that the components commu-
nicate correctly. Composition is thus a syntactic check whether components are
able to communicate.

Components communicate correctly if all components in the network are able
to reach their desired final marking, and no messages are pending in one of the
interface places. Further, we do not want to have transitions that are unreachable
in the composition. To express this property, we use the notion of soundness for
components: a component is sound if, ignoring the communication with other
components in the network, all components can reach their final marking, no
tokens are left in the network, and for each transition in the network, a marking
should be reachable in which the transition is enabled.

Definition 7 (Soundness). An OPN N is sound if:

1. ∀m ∈ R(S(N), iN ) : fN ∈ R(S(N),m) (weak termination);

2. ∀m ∈ R(S(N), iN ) : m ≥ fN =⇒ m = fN (proper completion); and

3. ∀t ∈ TN : ∃m ∈ R(S(N), iN ) : ◦t ≤ m (quasi liveness).

Note that this soundness definition is stronger than the soundness notion used
in [3], where soundness has been defined as the combination of weak termination
and proper completion.

A direct consequence of the projection property and soundness is that if in
a composition between A, B and C, such that A and C are disjoint, and A and
B are composable, as well as B and C, and B is in its final marking, then the
other two components can reach their final marking as well.

Lemma 8. Let A, B and C be three pairwise composable OPNs such that A
and C are disjoint, and A ⊕ B and B ⊕ C are sound. Define L = A ⊕ B ⊕ C.
Then fL ∈ R(S(L),m) for all markings m ∈ R(S(L), iL) such that fB ≤ m.

Proof. Define K = A ⊕ B. By the projection property, (S(K) : iK
σ|TK−→ m|PK

).
Since fB ≤ m, and K is sound, there exists a firing sequence µ ∈ T ∗

A such that

(S(K) : m|PK

µ−→ fK), and hence (S(L) : m
µ−→ m′) for some m′ ∈ NPL with

fK ≤ m′. Applying the same argument for B ⊕ C, there exists a firing sequence
ν ∈ T ∗

B such that (S(L) : m′ ν−→ fL), which proves the statement. ⊓⊔
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4 Soundness Using Trusted Third Parties

Organizations have to cooperate more and more in order to do their business.
However, they often do not want to share the way they operate, for example
to hide internal business knowledge or intellectual property. An often proposed
solution is a third party that is trusted by all organizations within the network.
This third party, the notary, needs to ensure that it knows how the organizations
within the network want to operate. On the one hand the notary needs to ensure
that it works correctly with each individual organization, and on the other hand,
that the network of all organizations, including the notary, is correct.

As the main purpose of a notary is to ensure correct behavior of the commu-
nication between the two organizations that want to cooperate, we model the
notary by an OWN. The main actions of the notary are the sending and receiv-
ing of messages of the different components. Therefore, each transition that is
communicating is labeled with the sending or receiving of a message, or as silent
if the transition represents an internal step of the notary. We restrict the notary
to state machines, i.e., each notary is sound by its structure [9].

Definition 9 (Notary). Let A and B be two disjoint components. A notary,
between A and B is an OWN N such that (1) A and N , as well as B and N are
composable, (2) S(N) is an S-net, (3) each transition is connected to at most
one interface place, i.e., |(•t ∪ t•) ∩ (I ∪ O)| ≤ 1 for all t ∈ T , and, (4) each
interface place to exactly one transition, i.e., |•x ∪ x•| = 1 for all x ∈ I ∪ O.

As each transition is connected to at most one component, we introduce the
communication function CN : T → {A,B, τ} such that CN (t) = X if •t∩OX ̸= ∅
for X ∈ {A,B} and CN (t) = τ otherwise.

4.1 Acyclic Notaries

We first consider the case of an acyclic notary. If a notary is acyclic, then its
set of possible firing sequences is finite. For acyclic notaries, soundness can be
guaranteed, as shown in this section.

t u

Component A Component B

Notary

p

(a) Incorrect control

Component A Component B

Notary

t

u

p

(b) Correct control

Fig. 2. Conflicts in a notary
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One source of possible erroneous behavior lies in the control of conflicts: if in
a notary two transitions share a place in their presets, then the transitions should
either be both controlled by the same component, or by the notary. Consider the
examples of Fig. 2. Taking the composition A ⊕ N of Fig. 2(a), then transition
u is always enabled if transition t is enabled, whereas in Fig. 2(b), component A
controls the conflict in the composition of A and N . If the composition is sound,
then the example of Fig. 2(a) is not possible, as shown in the next lemma.

Lemma 10 (Conflict control). Let A and B be two components such that A
and C are disjoint, and let N be an acyclic notary between A and B. If A ⊕ N
and N ⊕ B are sound, then for all places p ∈ P and transitions t, u ∈ p• we have
CN (t) = CN (u).

Proof. Let p ∈ P and t, u ∈ p•. Suppose CN (t) ̸= CN (u). This implies that
at least one of the transitions t and u is controlled by a component (otherwise
we would have CN (t) = CN (u) = τ). Without loss of generality, assume this
transition to be t and component to be A, i.e., CN (t) = A. Then there exists a
place q ∈ IN ∩ OA, with q ∈ •t.

Define M = A ⊕ N . Since N is an S-net, ◦
Mu ⊂ ◦

M t. Since M is sound,

there exists a reachable marking m ∈ R(S(M), iM ) with (S(M) : m
t−→), and

thus m(q) > 0. Note that transition u is also enabled in m. Hence, we can

fire transition u and obtain a marking m′ ∈ NPM : (S(M) : m
u−→ m′), where

m′ = m − ◦
Mu + u◦

M and m′(q) = m(q) (since q ̸∈ ◦
Mu).

As N is acyclic and t is the only transition consuming from q, the token from
q will never be consumed by any sequence firing from m′. Thus, M is not sound,
which is a contradiction. Hence, the lemma holds. ⊓⊔

The lemma shows that conflicts (choices) in the notary component are always
controlled correctly, either by a single component or the notary itself. Conse-
quently, if the composition of the components of A and B with N individually
is sound, the composition of the three is sound as well, as proven in the next
theorem.

Theorem 11. Let A and B be two OPNs such that A and B are disjoint. Let
N be an acyclic notary between A and B. If A ⊕ N and N ⊕ B are sound, then
A ⊕ N ⊕ B is sound.

Proof. Define M = A ⊕ N ⊕ B. Suppose M is not sound. Then there exist a
marking m ∈ R(S(M), iM ) and a firing sequence σ ∈ T ∗

M such that (S(M) :

iM
σ−→ m), fM ̸∈ R(S(M),m). Moreover, since N is acyclic, there exists such

an m, and, additionally γ|TN
= ∅ for all firing sequences γ ∈ T ∗

M such that

(S(M) : m
γ−→). Now consider the following two possible cases:

1. Notary N is in its final place in this marking m, i.e. m ≥ fN , but A or B
are not in their final markings;

2. Notary N is not in its final place in marking m, i.e. m ̸≥ fN .

54 PNSE’12 – Petri Nets and Software Engineering



p

(a)

D

A

C

B E

F
i

o

(b)

D

A

C

B E

F
i

o

(c)

Fig. 3. An acyclic S-net (a), a single-entry-single-exit loop (b), and the refinement of
place p in (a) with loop (b)

The first case contradicts Lm. 8. Consider the second case. No transitions of N
will be enabled in (S(M),m), and N is not in its final marking. As fN ̸̸= m|PN

and S(N) is an S-net, there exist a place p ∈ PN of the notary such that
m(p) > 0. p• cannot contain any transition t with CN (t) = τ , since this transition
would be enabled in m. Due to Lm. 10, all transitions t from p• have the same
value for CN (t). Without the loss of generality, we suppose it to be A. Since
A ⊕ N is sound, there is a firing sequence σ; t from marking m|A⊕N in A ⊕ N
such that σ ∈ T ∗

A and t ∈ TN . This firing sequence is then also a firing sequence
of M , but this contradicts the statement that no transition from TN can fire
starting from m in M .

Therefore, A ⊕ N ⊕ B is sound. ⊓⊔

4.2 Simple Cyclic Notaries

Acyclic notaries ensure the correctness of the composition of two components if
these components communicate correctly with the notary. Often, cyclic behavior
between components is needed. For example, in order to agree on some quote,
several cycles may be involved. In this section, we extend acyclic nets with single-
entry-single-exit (SESE) loops.

A SESE loop consists of an entry place and an exit place, not being the same,
and all nodes inside the loop are on a path from entry to exit or vice versa, on a
path from exit to entry. Furthermore, we require each place in the loop to have
exactly one transition in its preset and one in its postset, except for the entry
and exit place. An example of a SESE loop is depicted in Fig. 3(b).

An S-net is a Simple Cyclic S-net (SCS-net) if all loops in the net are disjoint,
i.e., each place and transition of the net belongs to at most one loop. In simple
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t u

p

Component A Component B

Notary N

Fig. 4. Controlling conflicts in a simple-cyclic notary

cyclic nets, each loop can be replaced by a place, which results in an acyclic
S-net (see Fig. 3).

Definition 12 (SESE Loop, simple-cyclic S-net). Let (P, T, F ) be an S-
net. A set L ⊆ P ∪T is a called a single-entry-single-exit loop (SESE loop) with
entry place e ∈ L ∩ P and exit place o ∈ L ∩ P if all nodes n ∈ L are on a path
from e to o or on a path from o to e, •e \L ̸= ∅, e• ⊆ L, o• \L ̸= ∅, and •o ⊆ L,
and for all places p ∈ L ∩ P , if |•p| > 1 then p = e and if |p•| > 1 then p = o.

Let (P, T, F ) be an S-net. It is called a simple-cyclic S-net (SCS-net) if all
loops are SESE loops and pairwise disjoint, i.e., for all loops L1, L2 ⊆ P ∪ T if
L1 ∩ L2 ̸= ∅ then L1 = L2.

Note that in the definition of SCS-nets, we require each node to be in at most
one loop. By the definition of the SESE loop, we have that if a node contains
multiple elements in its preset or postset, it is either the entry or the exit of the
loop. As a consequence, all SESE loops are simple: there is one path from entry
to exit and one path from exit to entry. The basis of an SCS-net is an acyclic
S-net. Consequently, each loops will be entered at most once.

Whereas in an acyclic notary every conflict is controlled by a single compo-
nent, this is not the case in the simple-cycled case, as shown in Fig. 4. Choices
still need to be controlled by a single component, but silent loops, i.e., no tran-
sition in the loop is connected with an interface places, are allowed.

Similarly to the acyclic case, if the skeleton of a notary is a simple-cyclic S-
net, soundness of the three parties is assured if the notary composed with each
of the organizations individually is sound. Whereas in the acyclic case every
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conflict is controlled by a single component, if the notary is cyclic, the moment
of control can be postponed. As a consequence, we need to also consider the
possibility of live-locks in which the notary is involved.

Theorem 13. Let A and B be two disjoint OPNs and let N be an simple-cyclic
notary such that A ⊕ N and N ⊕ B are sound. Then A ⊕ N ⊕ B is sound.

Proof. Define K = A ⊕ N , L = N ⊕ B and M = A ⊕ N ⊕ B. Suppose M
is not sound. Then there exists a marking m ∈ R(S(M), iM ) such that fM ̸∈
R(S(M),m).

1. Notary N is in its final marking, but A or B cannot reach its final marking,
or tokens are left in the interface places;

2. Notary N reaches a deadlock different from the final marking;
3. Notary N reaches a live lock with respect to the final marking;

The first case contradicts with Lm. 8.
Next, consider the second case. Suppose a marking m ∈ R(S(M), iM ) not

being the final marking exists that is a deadlock. Then, a place p ∈ PN exists
with p ̸= fN , m(p) = 1 and •t ̸≤ m for all transitions t ∈ p•. Let t ∈ p•. Then
CN (t) ̸= τ . If CN (t) = CN (u) for all t, u ∈ p•, then either A ⊕ N or N ⊕ B
would not be sound. Hence, transitions t, u ∈ p• exist such that CN (t) ̸= CN (u).
Without loss of generality assume CN (t) = A and CN (u) = B.

Since S(N) is an SCS-net, place p is either an entry or exit point of a loop,
or outside a loop. Suppose place p is not the exit of a loop. Then in K, transition
u is enabled in m|PA⊕N

. Since K is sound, it must be possible to fire transition

t. Thus, a marking m′ ∈ R(S(K), iL) exists such that (S(K) : m′ t−→). As
transition u is also enabled in m′, u has to be in a loop, since otherwise K the
token from the places q ∈ •t∩OA would never be consumed. Similarly, transition
t has to be in a loop, since otherwise the token from the places q ∈ •u ∩ OB

would never be consumed. Hence, a deadlock cannot occur.
Last, consider the case in which N reaches a live-lock, i.e, it entered a loop

L with entry i and exit o such that it cannot leave the loop. Hence, CN (t) ̸= τ
for all transitions t ∈ o• \ L. If CN (t) = CN (u) for all t, u ∈ p•, then either
A⊕ N or N ⊕ B would not be sound. Hence, transitions t, u ∈ p• exist such that
CN (t) ̸= CN (u). Without loss of generality assume CN (t) = A and CN (u) = B.
Again due to liveness of K and L, this is not possible.

As all cases lead to a contradiction, A ⊕ N ⊕ B is sound. ⊓⊔

5 Conclusions

We studied in this paper the problem of ensuring correctness of networks of co-
operating organizations. By introducing a trusted third party, called a notary,
organizations do not need to share their knowledge with the other organizations
within the network. The notary needs to ensure that firstly it works correctly
with each of the organizations individually, and secondly that all organizations
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in the network, including the notary itself, work correctly together. In this paper,
we showed for two organizations and a notary that if the notary is an acyclic
state machine, or it contains only single-entry-single-exit (SESE) loops, then the
notary ensures soundness if it is sound with each of the organizations individu-
ally.

In literature, different approaches exist. For example, in the approach of [4],
the authors use contracts, implemented as public views. Organizations then need
to implement their public views as a private view. If each of the private views
agrees on the public view, the network is guaranteed to be correct. In [8], an
interactive Petri net is designed, modeling the communication between different
organizations.

The disadvantage of these approaches is that each of the organizations need
to implement a private view, whereas often organizations already have existing
components. In these approaches, the organizations have to re-engineer the ex-
isting components, and prove that these re-engineered components adhere to the
views defined in the contract using e.g. accordance [12] or contract theory [6]. In
the approach described in this paper, organizations can reuse existing compo-
nents, as the approach requires an organization to cooperate correctly with the
notary.

The setting in this paper is comparable with the more general setting of
decentralized controllability [15], which is shown to be undecidable [16]. We
limited ourselves to two organizations with a notary which is either acyclic or
only contains SESE loops. Although these requirements are quite strong, they
are needed to ensure soundness. Future work will be to search for more liberal
notaries and to extend the results to service trees [3]. As shown in [14], soundness
is not compositional, and additional requirements are needed.
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