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Abstract. We tackle the problem of defining a well-founded semantics (WFS)
for Datalog rules with existentially quantified variables in their heads and nega-
tions in their bodies. In particular, we provide a WFS for the recent Datalog±

family of ontology languages, which covers several important description logics
(DLs). To do so, we generalize Datalog± by non-stratified nonmonotonic nega-
tion in rule bodies, and we define a WFS for this generalization via guarded fixed
point logic. We refer to this approach as equality-friendly WFS, since it has the
advantage that it does not make the unique name assumption (UNA); this brings
it close to OWL and its profiles as well as typical DLs, which also do not make
the UNA. We prove that for guarded Datalog± with negation under the equality-
friendly WFS, conjunctive query answering is decidable, and we provide precise
complexity results for this problem. From these results, we obtain precise defi-
nitions of the standard WFS extensions of E L and of members of the DL-Lite
family, as well as corresponding complexity results for query answering.

1 Introduction

The recent Datalog± family of ontology languages [7] extends plain Datalog by the
possibility of existential quantification in rule heads and other features, and simultane-
ously restricts the rule syntax to achieve tractability. The following example illustrates
how description logic (DL) knowledge bases are expressed in Datalog±.

Example 1 (Literature) The knowledge that every conference paper is an article and
that every scientist is the author of at least one paper can be expressed in DL by
the TBox axioms ConferencePapervArticle and Scientistv∃isAuthorOf, respectively,
while the knowledge that John is a scientist can be expressed by the ABox axiom
Scientist(john). In Datalog±, the former are encoded as the rule ConferencePaper(X)→
Article(X) and the rule Scientist(X)→∃Y isAuthorOf(X ,Y ), respectively, and the latter
is encoded by an identical fact in the database. Furthermore, the TBox axiom that en-
codes that conference papers are not journal papers, can be expressed in Datalog± by
the negative constraint ConferencePaper∧ JournalPaper→⊥. A simple Boolean con-
junctive query (BCQ) asking whether John authors a paper is ∃X isAuthorOf(john,X).

The Datalog± languages bridge an apparent gap in expressive power between data-
base query languages and DLs as ontology languages, extending the well-known Dat-



alog language in order to embed DLs. They also allow for transferring important con-
cepts and proof techniques from database theory to DLs. For example, it was so far
not clear how to enrich tractable DLs by the feature of nonmonotonic negation. By the
results of [7], DLs can be enriched by stratified negation via mappings from DLs to
Datalog± with stratified negation, which is defined and studied in that paper. Given that
stratified negation is quite limited, we wondered whether the richer and more expres-
sive well-founded negation could be defined for Datalog±. The well-founded seman-
tics (WFS) for normal (logic) programs [25] is one of the most widely used semantics
for nonmonotonic normal programs, it is the standard semantics for such programs for
database applications, and it is thus especially under a data-oriented perspective of great
importance for the Web. Having many nice features, the WFS is defined for all normal
programs (i.e., logic programs with the possibility of negation in rule bodies), has a
polynomial data tractability, approximates the answer set semantics, and coincides with
the canonical model in case of stratified normal programs.

In this paper, we concentrate on the important problem of defining a WFS for (un-
restricted) normal Datalog±, i.e., Datalog with existentially quantified variables in rule
heads and negations in rule bodies. This new semantics is called the equality-friendly
WFS (EFWFS), since it has the crucial advantage that it does not make the unique name
assumption (UNA); this brings it close to OWL and its profiles as well as typical DLs,
which also do not make the UNA.

Since (unrestricted) normal Datalog± generalizes positive Datalog±, consistency
checking and query answering in it is in general undecidable. However, it turns out
that the guarded fragment of normal Datalog± can be translated to guarded fixed point
logic, which is a well-studied decidable formalism. Through this translation, we thus
obtain the decidability of consistency checking and query answering in guarded normal
Datalog±. Furthermore, we obtain upper complexity bounds, which are then also shown
to be tight. Guarded Datalog± covers in particular the DLs E L and DL-LiteR (which
is underlying the OWL 2 QL profile). Therefore, our decidability results and upper
complexity bounds carry over to these DLs. The following example illustrates how the
WFS can be extended to such DLs.

Example 2 (Holidays) Consider an ABox containing the three holiday destinations
Dest(d1), Dest(d2), and Dest(d3). Suppose that any destination that offers the oppor-
tunity to swim needs either direct access to the beach (Beach(x)) or a bus connection
to some beach (BeachBus(x,y)). That is, at destinations where swimming is possible,
we want to make sure that never both notBeach and not∃BeachBus hold. This can be
achieved by the following two rules:

DestuSwimmingunotBeachv ∃BeachBus; (1)
DestuSwimmingunot∃BeachBusv Beach. (2)

Observe also that notSwimming(d) would immediately imply the facts notBeach(d)
and not∃BeachBus(d), since it would make it impossible that either of the two axioms
could be applied to derive new facts about d.

The following example shows a case where not making the UNA is more appropri-
ate than making it under the WFS.



Example 3 (Company) Suppose we are given certain facts about employees and their
employers. The following two concept membership axioms state that John and Sam are
employees: Employee(John), Employee(Sam). To these axioms, we add a concept in-
clusion axiom that maintains that every employee must have an employer: Employeev
∃.hasEmployer. Finally, we would like to test whether or not John and Sam work
in the same company, which is expressed by the query ∃x(hasEmployer(John,x) u
nothasEmployer(Sam,x)). Then, under the UNA, equality between all individuals (in-
cluding new ones) is minimized, and we evaluate the query to true, which is not the case
without UNA, where different Skolem terms may be interpreted by the same object.

2 Preliminaries

In this section, we briefly recall some basics on Datalog± [7].

Databases and Queries. We assume (i) an infinite universe of (data) constants ∆ (which
constitute the “normal” domain of a database), and (ii) an infinite set of variables V
(used in queries and constraints). We denote by X sequences of variables X1, . . . ,Xk
with k > 0. We assume a relational schema R, which is a finite set of relation names (or
predicate symbols, or simply predicates). A term t is a constant or variable. An atomic
formula (or atom) a has the form P(t1, ..., tn), where P is an n-ary predicate, and t1, ..., tn
are terms. A conjunction of atoms is often identified with the set of all its atoms.

A database (instance) D for a relational schema R is a (possibly infinite) set of
atoms with predicates from R and arguments from ∆ . A conjunctive query (CQ) over R
has the form Q(X) = ∃YΦ(X,Y), where Φ(X,Y) is a conjunction of atoms with the
variables X and Y, and eventually constants. Note that Φ(X,Y) may also contain equal-
ities but no inequalities. A Boolean CQ (BCQ) over R is a CQ of the form Q(). We often
write a BCQ as the set of all its atoms, having constants and variables as arguments, and
omitting the quantifiers. Answers to CQs and BCQs are defined via homomorphisms,
which are mappings µ : ∆ ∪V → ∆ ∪V such that (i) c ∈ ∆ implies µ(c) = c, and
(ii) µ is naturally extended to atoms, sets of atoms, and conjunctions of atoms. The set
of all answers to a CQ Q(X)=∃YΦ(X,Y) over a database D, denoted Q(D), is the
set of all tuples t over ∆ for which there exists a homomorphism µ : X∪Y→∆ such
that µ(Φ(X,Y))⊆D and µ(X)= t. The answer to a BCQ Q() over a database D is Yes,
denoted D |=Q, iff Q(D) 6= /0.

Tuple-Generating Dependencies (TGDs). Tuple-generating dependencies (TGDs) de-
scribe constraints on databases in the form of generalized Datalog rules with existen-
tially quantified conjunctions of atoms in rule heads; their syntax and semantics are as
follows. Given a relational schema R, a tuple-generating dependency (TGD) σ is a first-
order formula of the form ∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X, Z)
are conjunctions of atoms over R, called the body and the head of σ , respectively.
Such σ is satisfied in a database D for R iff, whenever there is a homomorphism h that
maps the atoms of Φ(X,Y) to atoms of D, there is an extension h′ of h that maps the
atoms of Ψ(X,Z) to atoms of D. Since TGDs can be reduced to TGDs with only single
atoms in their heads, in the sequel, every TGD has w.l.o.g. a single atom in its head.
A TGD σ is guarded iff it contains an atom in its body that contains all universally
quantified variables of σ . The leftmost such atom is the guard of σ .



Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases
under a set of TGDs is defined as follows. For a database D for R, and a set of TGDs
Σ on R, the set of models of D and Σ , denoted mods(D,Σ), is the set of all (possibly
infinite) databases B such that (i) D⊆B and (ii) every σ ∈Σ is satisfied in B. The set
of answers for a CQ Q to D and Σ , denoted ans(Q,D,Σ), is the set of all tuples a
such that a ∈ Q(B) for all B∈mods(D,Σ). The answer for a BCQ Q to D and Σ is
Yes, denoted D∪Σ |=Q, iff ans(Q,D,Σ) 6= /0. Note that query answering under general
TGDs is undecidable [5], even with fixed schema and TGDs [6].

Negative Constraints. Another crucial ingredient of Datalog± for ontological modeling
are negative constraints (or simply constraints), which are first-order formulas of the
form ∀XΦ(X)→⊥, where Φ(X) is a conjunction of atoms (not necessarily guarded),
called its body. We usually omit the universal quantifiers, and we implicitly assume that
all sets of constraints are finite here.

Normal TGDs and BCQs. Normal TGDs are TGDs that may also contain (default-)
negated atoms in their bodies: Given a relational schema R, a normal TGD (NTGD) σ

has the form ∀X∀Y Φ(X,Y)→∃ZΨ(X, Z), where Φ(X,Y) is a conjunction of atoms
and negated atoms over R, and Ψ(X,Z) is a conjunction of atoms over R. We usually
omit the universal quantifiers. As for standard TGDs, w.l.o.g., Ψ(X,Z) is a singleton
atom. We say σ is satisfied in a database D for R iff, whenever there is a homomor-
phism h for all the variables and constants in the body of σ that maps (i) positive literals
of Φ(X,Y) to atoms of D and (ii) no negated atom of Φ(X,Y) to an atom of D, then
there is an extension h′ of h that maps the head atom to an atom of D. We call σ guarded
iff it contains a positive body atom that contains all universally quantified variables of σ .
W.l.o.g., constants in the body of guarded σ occur only in guards.

We next add negation to BCQs. A normal Boolean conjunctive query (NBCQ) Q
is an existentially closed conjunction of atoms and negated atoms ∃X p1(X)∧ ·· · ∧
pm(X)∧¬pm+1(X)∧ ·· ·∧¬pm+n(X), where m>1, n>0, and the variables of the pi’s
are among X. Q is covered if for every negative atom α in Q there is a positive atom in Q
containing every argument in α . In the sequel, w.l.o.g., NBCQs contain no constants.

3 Equality-Friendly WFS for Datalog±

In this section, we first recall the well-founded semantics (WFS) of normal programs.
As a central new contribution, we then introduce a WFS of normal Datalog± programs
without the UNA.

WFS of Normal Programs. The WFS [25] is the most widely used semantics for non-
monotonic programs, it is the standard semantics for such programs for database appli-
cations, and it is thus especially under a data-oriented perspective of great importance
for the Web. For our purposes, it is enough to recall the WFS of function-free ground
normal programs, and we refer to [25] for the general case.

We first give some preliminary definitions. A function-free normal program is a fi-
nite set of rules r of the form β1, . . . ,βn,¬βn+1, . . . ,¬βn+m→ α , where α,β1, . . . ,βn+m
are atoms and m,n > 0. We call α the head of r, denoted H(r), while the conjunc-
tion β1, . . . ,βn,¬βn+1, . . . ,¬βn+m constitutes its body. Let B(r)=B+(r)∪B−(r), where



B+(r)={β1, . . . ,βn}, and B−(r)={βn+1, . . . ,βn+m}. The program is ground if it con-
tains no variables. Let P be a function-free ground normal program. The Herbrand base
of P, denoted HBP, is the set of all atoms that can be constructed from the predicate
symbols and the constants appearing in P. For all S ⊆ HBP, we let ¬.S = {¬.a |a∈S}.
We denote by LitP=HBP ∪¬.HBP the set of all literals with predicate symbols and
constants from P. A (three-valued) interpretation relative to P is any set I⊆LitP that is
consistent (i.e., there is no atom a∈HBP with {a,¬a} ⊆ I).

The WFS has many different equivalent definitions (see also [4]). We here recall
the one based on unfounded sets, via the operators UP, TP, and WP. A set U ⊆ HBP is
an unfounded set of P relative to I⊆LitP iff for every a∈U and every rule r ∈ P with
H(r)=a, either (i) ¬b∈ I∪¬.U for some atom b∈B+(r), or (ii) b∈ I for some atom
b∈B−(r). There exists the greatest unfounded set of P relative to I, denoted UP(I).
Intuitively, it collects all those atoms that cannot become true when extending I with
further information. We are now ready to define the two operators TP and WP on inter-
pretations I⊆LitP relative to P by:

TP(I)={H(r) |r∈P, B+(r)∪¬.B−(r)⊆ I}; WP(I)=TP(I)∪¬.UP(I).

Since WP is monotonic, it has a least fixed point, denoted lfp(WP), which is the well-
founded semantics (WFS) of P, denoted WFS(P). Intuitively, starting with I= /0, rules
are applied to obtain new positive and negated facts (via TP(I) resp. ¬.UP(I)). This is
repeated until no longer possible.
EFWFS of Normal Datalog± Programs. We relate normal Datalog± programs to
sets of function-free ground normal programs, and define their equality-friendly WFS
(EFWFS) as the set of well-founded models of the associated normal programs.

The basic idea is as follows. If we do not make the UNA, different constants in a
normal Datalog± program P may represent the same value. Thus, P may turn out to be
any of the programs P′ obtained from P by identifying constants. Furthermore, in every
such program P′, existential quantifiers may introduce one or more value, which, since
we do not make the UNA, does not have to be “fresh”, but can be any constant. Hence,
without the UNA, the meaning of P may be captured by the set of all normal programs
P′′ obtained from P by identifying values, and replacing TGDs in P by arbitrary in-
stances, at least one for each possible variable assignment for its body. It is then natural
to consider the well-founded models of all those programs P′′ as the semantics of P.

More precisely, an instance of a normal TGD Φ(X,Y)→ ∃ZΨ(X,Z) is a rule of
the form Φ(a,b)→Ψ(a,c), where a,b,c are tuples of constants. Let P = D∪Σ be
a normal Datalog± program, where D is a database and Σ a set of normal TGDs. An
instance I of P is a normal program consisting of all facts in D, and instances of
TGDs in Σ such that for all TGDs Φ(X,Y)→ ∃ZΨ(X,Z) in Σ , and all interpreta-
tions a,b for X,Y, there is at least one c such that Φ(a,b)→Ψ(a,c) is in I . Let
I (P) be the set of all instances of P, and dom(P) the set of all constants in P. For
any µ : dom(P)→ ∆ , let Pµ be the program obtained from P by replacing all con-
stants c with µ(c). Then, the equality-friendly well-founded semantics of P, denoted
EFWFS(P), is the set {WFS(P′′) | µ : dom(P)→ ∆ ,P′′ ∈ I (Pµ)}. Query-answering
for an NBCQ Q is now defined by saying that Q evaluates to Yes in EFWFS(P) iff Q
evaluates to Yes in all elements of EFWFS(P). Here, an NBCQ Q evaluates to Yes in a



three-valued interpretation I iff there is a homomorphism that maps all elements of Q+

into atoms in I and all elements of Q− into negated atoms in I.

Example 4 Consider the following program P:

→ A(0); A(X)→ ∃Y1,Y2 (R(X ,Y1,Y2));
R(X1,X2,X3),¬A(X3)→ S(0); A(X),¬S(X)→ ∃Y1,Y2 (R(Y1,Y2,X)).

Obviously, A(0) is in the EFWFS of P. Furthermore, because of the second rule, every
possible well-founded model of P contains R(0,c1,c2). But we cannot assume c2 6=0. If
c2=0, all possible applications of the third rule are blocked, and thus ¬S(0) would be
derived (the last rule may then still add another atom R(d1,d2,0), but this does not affect
the overall result). Otherwise, in case c2 6=0, the third rule would yield S(0), because
clearly we have ¬A(c2). Therefore, neither S(0) nor its negation is in EFWFS(P) and
the only atoms that are always in EFWFS(P) are A(0) and R(0,c1,c2) for some con-
stants c1 and c2 (so, the query ∃X1,X2 (R(0,X1,X2)) would evaluate to true). The picture
changes, if we add the constraint R(X1,X2,X3), R(X3,X2,X1)→⊥. Then, c2 generated
by the second rule must be different from 0, and so we always obtain S(0), and we get
¬R(d1,d2,0), for all d1,d2, by the last rule.

4 Translation into Guarded Fixed Point Logic

The EFWFS can be characterized in terms of guarded fixed point logic. This charac-
terization turns out to be more convenient for reasoning about the EFWFS of guarded
normal Datalog± programs.

Guarded fixed point logic (GFP), introduced by Grädel and Walukiewicz [13], si-
multaneously restricts and extends first-order logic by enforcing a certain quantification
pattern, and allowing for inductively defining relations, while having a satisfiability
problem of moderate complexity.

Let R be a relational schema. The set of formulas of GFP over R is built from
atomic formulas over R (including equality atoms) using Boolean combinations, and
the following two additional formula formation rules:

I. If α is an atomic formula over R containing the variables in X, and ψ is a GFP
formula over R whose free variables occur in α , then ∃X(α ∧ψ) and ∀X(α→ψ)
are GFP formulas over R. The formula α is called guard.

II. Let R be a k-ary predicate, X a k-tuple of variables, and ψ(R,X) a GFP formula
over R∪{R} whose free variables occur in X, and where R appears only positively
(in the scope of an even number of negation symbols) and not in guards. Then,
[lfpR,X ψ](X) and [gfpR,X ψ](X) are GFP formulas over R with free variables X.

As for the semantics of the formulas in II, given a database D for R, ψ defines an oper-
ator F : P(dom(D)k)→P(dom(D)k) with F(S) := {a | D |= ψ(S,a)}. This operator
is monotone and thus has a least fixed point lfp(F) and a greatest fixed point gfp(F).
Then, D |= [lfpR,X ψ](a) iff a ∈ lfp(F), and D |= [gfpR,X ψ](a) iff a ∈ gfp(F).

Example 5 ([13]) The following GFP sentence says that the binary relation E is well-
founded (i.e., no element is the endpoint of an infinite E-path): ∀x,y(E(x,y)→ [lfpW,x
∀y(E(y,x)→W (y))](x)).



We are now ready to describe the translation of guarded normal Datalog± into GFP.
Let P = D∪Σ be a fixed guarded normal Datalog± program, where D is a database, and
Σ is a set of guarded NTGDs. Without loss of generality, we assume that P contains only
a single predicate R;4 let k be its arity. We construct a GFP sentence efwfs(P) whose
models closely correspond to the databases in EFWFS(P). The key is to “existentially
quantify” all the instances of NTGDs that we use to compute the WFS, and to mimic
the fixed-point definition of the WFS using those instances.

Technically, we represent instances of an NTGD σ ∈ Σ using a 2k-ary predicate
Sσ . If R(U) is the guard of σ , and R(V) is its head, then a tuple (a,b) in Sσ en-
codes the instance of σ obtained by substituting a and b for U and V, respectively.
For example, if σ is the NTGD R(X ,Y,0),¬R(X ,1,1)→ ∃Z R(Z,X ,2), then the atom
Sσ ((a,b,0),(c,a,2)) represents the instance R(a,b,0),¬R(a,1,1)→ R(c,a,2) of σ .

We also use k-ary predicates T ∗, C, T , F , and R, where T ∗ is intended to encode a
superset of all true atoms; C holds all permutations of tuples in T ∗; T and F respectively
hold the set of all true atoms and the set of all false atoms (the latter relativized to C);
and R corresponds to the predicate R of the initial database D. It is not hard to construct
GFP sentences that enforce the desired interpretation of the predicates Sσ , T ∗, C, and
R. Based on those GFP sentences, it is then possible to construct GFP sentences ψT
and ψF that enforce the desired interpretations of T and F . The sentence ψT basically
does nothing else than defining the (set of all positive literals of the) least fixed point of
WP′ , where P′ consists of all instances of NTGDs in Σ represented by the tuples in the
predicates Sσ , while ψF defines the greatest fixed point of a certain operator, yielding
the greatest unfounded set UP′(T ) (relativized to C).

For an NBCQ Q over {R}, let Q∗ be the BCQ obtained by replacing every positive
literal R(X) in Q with T (X), and every negative literal ¬R(X) in Q with F(X).

Lemma 6 For all covered NBCQs Q over the schema of P, we have EFWFS(P) |= Q
iff efwfs(P) |= Q∗.

5 Complexity
We now take a look at the complexity of answering covered NBCQs over guarded
normal Datalog± programs P = D∪Σ . More precisely, we consider the combined com-
plexity, measured in terms of the overall input, including P and the query.

In Section 4, we characterized the EFWFS of guarded normal Datalog± programs
via a translation into guarded fixed point logic GFP. From the fact that satisfiability for
GFP sentences is in 2-EXPTIME (and in EXPTIME in case of bounded arities) [13],
we obtain the following:

Theorem 7 Deciding EFWFS(P) |=Q, where P=D∪Σ is a guarded normal Datalog±

program and Q a covered NBCQ, is 2-EXPTIME-complete in the general case, and
EXPTIME-complete in the case of bounded arities and acyclic Q. Hardness holds even
with respect to atomic queries.

4 It is an easy task to transform a guarded normal Datalog± program into this form, since multi-
ple predicates can be simulated by constants and a single predicate. For example, A(x,y)∧B(x)
may be replaced by R(a,x,y)∧R(b,x,x), where a and b are extra constant symbols.



We remark that Theorem 7 carries over to unions of covered NBCQs, that is, queries
Q of the form

∨n
i=1 Qi, where each Qi is a covered NBCQ.

6 WFS for OWL 2 QL

All the DLs of the DL-Lite family in [8,22] and the DL E L [3] can be embedded into
Datalog± [7]. In particular, this holds for DL-LiteR , which forms the theoretical basis of
the QL profile of the Web ontology language OWL 2. Both our equality-friendly WFS
(EFWFS) for normal Datalog± and the OWL 2 QL profile do not make the UNA. Our
work in this paper thus paves the way for an extension of OWL 2 QL with nonmonotonic
negation under the EFWFS.

The following definition extends DL-LiteR
5 (underlying the OWL 2 QL profile) and

DL-LiteR,u [8,22], and E L [3] with nonmonotonic negation under the EFWFS.

Definition 8 Recall that a DL-LiteR,u knowledge base consists of a pair (T ,A ), where
the TBox T is a finite set of concept and role inclusion axioms U1u ·· ·uUn vV , and
the ABox A is a finite set of concept and role membership axioms C(a) and R(a,b), re-
spectively. A DL-LiteR,u,not knowledge base (T ,A ) consists of a finite set of inclusion
axioms T and a finite set of membership axioms A , where:

– Any DL-LiteR,u inclusion axiom is a DL-LiteR,u,not inclusion axiom.
– If U1 u ·· · uUn v V and U ′1 u ·· · uU ′m v V with n,m > 0 are both either concept

or role inclusion axioms in DL-LiteR,u, and V is positive (i.e., not of the form V =
¬V ′), then U1 u ·· · uUn u notU ′1 u ·· · u notU ′m v V is a DL-LiteR,u,not concept or
role inclusion axiom, respectively. Here, the Ui’s and U ′i ’s contain no conjunction,
and notU ′i is the negation as failure (as opposed to the classical “¬” in DL-Lite).

– For any concept A, any role R, and any individuals a,b, the expressions A(a) and
R(a,b) are concept and role membership axioms, respectively.

A DL-LiteR,u,not knowledge base (T ,A ) is a DL-LiteR,not knowledge base iff all in-
clusion axioms in T contain precisely one positive atom on the left-hand side.

Finally, we define E L not as the extension of E L that allows formulas of the form
notC for atomic concepts C=A and for concepts C=∃R.B to occur in top-level con-
junctions on the left-hand side of TBox-axioms.

The semantics of DL-LiteR,not (resp., DL-LiteR,u,not) is defined by translating a given
DL-LiteR,not (resp., DL-LiteR,u,not) knowledge base KB into a normal Datalog± pro-
gram PKB and by computing the well-founded semantics of PKB. The details of the
translation of DL-LiteR,not (resp., DL-LiteR,u,not) into Datalog± are an extension of
the translation of DL-LiteR (resp., DL-LiteR,u) given in [7]. Similarly, it is possible to
translate E L not into our formalism. Note that the sameAs(a,b) and differentFrom(a,b)
constraints (specifying that the two individuals a and b are the same and different, re-
spectively) that may be contained in a given knowledge base (over an ontology lan-
guage without UNA) can be easily enforced by adding appropriate equalities a=b and
inequalities ¬(a=b) to the guarded fixed point sentence efwfs(PKB).

5 Note that although DL-LiteR adopts the UNA, it actually does not require it, since making this
assumption would have no impact on the semantic consequences of a DL-LiteR ontology.



Example 9 (Holidays (cont’d)) Consider again Example 2. The two axioms (1) and
(2) are translated into the following normal Datalog± rules:

pDest(X), pSwimming(X),¬pBeach(X)→∃Y.pBB(X ,Y );

pDest(X), pSwimming(X),¬p∃BB(X)→ pBeach(X);

pBB(X ,Y )→ p∃BB(X),

where p∃BB(X) is a new predicate for ∃BeachBus.
Suppose next that we are additionally given a database with holiday destinations

Dest(d1), Dest(d2), and Dest(d3), which we want to be different, i.e., we assume that
differentFrom(d1,d2), differentFrom(d2,d3), and differentFrom(d1,d3). We want to for-
malize the idea that any destination where one can swim should have a beach or a bus
to a location with a beach — otherwise one has to take delight in walking. This can be
achieved by considering the rules (1) and (2) along with the additional rule

DestunotBeachunot∃BeachBusvWalkingOnly. (3)

Furthermore, we may assume that at any place where one is not confined to only walk-
ing, one can also swim:

DestunotWalkingOnlyv Swimming. (4)

Consider the following further facts: WalkingOnly(d1) and BeachBus(d2,d3). Clearly,
WalkingOnly(d1) implies that Swimming(d1) cannot be derived — because rule (4),
the only rule that can derive Swimming(d1), requires the negation of WalkingOnly(d1)
to be true. Thus, the WFS of the knowledge base includes notSwimming(d1). This is
in contrast to what would happen if we interpreted not as “classical” negation: in the
latter case, we could not derive anything from WalkingOnly(d1), as axiom (4) would
trivially be satisfied for d1. Other facts that are derived for d1 are notBeach(d1) and
not∃BeachBus(d1) (= notR(x,y) for any y), because the fact notSwimming(d1) im-
plies that rules (1) and (2) cannot be used to derive Beach(d1) or ∃BeachBus(d1) (note
that we use the fact that d1 has to be different from d2 and d3, because of our ABox
assumptions). Concerning the destination d2, the WFS contains the following atoms:
notBeach(d2), notWalkingOnly(d2), and Swimming(d2).

The complexity of answering covered NBCQs for any of our DL-Litenot logics and
for E L not can now be determined using Theorem 7. Note that Theorem 10 also yields
immediate bounds for the complexity of standard DL problems such as instance and
satisfiability checking.

Theorem 10 Let L be any of DL-LiteR,u,not, DL-LiteR,not or E L not. Then, given a
knowledge base KB = (T ,A ) and an acyclic (resp., general) covered NBCQ Q, decid-
ing whether Q is true under the EFWFS of KB is in EXPTIME (resp., 2-EXPTIME) for
combined complexity.



7 Related Work
There is already a substantial amount of work on combining rules and ontologies. The
main direction of research so far has been to combine rules and ontologies into dl-
programs consisting of a knowledge base together with a set of rules. This combination
can be carried out in a loose or tight fashion. Representatives of the former are in partic-
ular the dl-programs in [10]. The hybrid MKNF knowledge bases in [21] are also close
in spirit. Some representatives of tight integrations of rules and ontologies include the
works by Rosati [23] and Lukasiewicz [18]. SWRL [15] and WRL [2] also belong to
this category. For several of the above combinations of rules and ontologies, a well-
founded semantics has been defined: [11], [19], [17], and [9] define a well-founded
semantics for the loosely integrated dl-programs in [10], for the tightly integrated dl-
programs in [18], for the hybrid MKNF knowledge bases in [21], and for an integration
of rules and ontologies that is close in spirit to Rosati’s approach [23], respectively.

We achieve the combination of rules and ontologies by a reduction from descrip-
tion logics to logic programming formalisms. Obviously our work is based on the earlier
work on Datalog±. Based on the same idea of translating ontologies into logic program-
ming rules and hence closely related to our work are [1], [24], [14], and [16]. Probably
the closest relationship to our work has the paper on FDNC-rules by [12] where the sta-
ble semantics is used in order to obtain a rule-based formalism with negation-as-failure
that allows for the formulation of ontological knowledge.

8 Summary and Outlook
We have defined the equality-friendly WFS for Datalog with existentially quantified
variables in rule heads and negations in rule bodies. Via a translation of its guarded frag-
ment to guarded fixed point logic, we have then proved the decidability in the guarded
case, and obtained complexity results for this case. These are important contributions in
their own right. In addition, since the approach does not make the UNA, it can be read-
ily used to extend DLs by nonmonotonic negation under the WFS, as illustrated along
several DLs, including DL-LiteR , underlying the important OWL 2 QL profile.

Interesting topics for future research include to investigate the data complexity of
guarded normal Datalog± and to explore how the approach can be extended by keys
and to other ontology languages, including OWL 2 EL and OWL 2 RL.
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