
Experiences in Mapping the Business
Intelligence Model to Description Logics, and

the Case for Parametric Concepts

Alexander Borgida1, Jennifer Horkoff2, John Mylopoulos2 and Riccardo Rosati3

1 Dept. of Computer Science, Rutgers University, NJ, USA
2 Dept. of Computer Science, Univ. of Toronto, Canada

3 DIS, Sapienza Università di Roma, Italy

1 Summary
BIM is a new language for capturing business models containing information
relevant for strategic analysis of business operations. It has been used in several
large case studies and is being pursued in industry.

The paper introduces the key notions of BIM, including goals, evidence,
and influence. It also outlines their translation into DL axioms, forming an
upper-level ontology. Specific BIM domain models then result from the addi-
tion of axioms to this. The result provides both a formal semantics of the BIM
language, and all the familiar advantages of decidable DL reasoning, including
consistency checking, defined-concept classification, and, in our case “What if”
scenario analysis. We focus on the parts of the translation which are most inter-
esting, including: i) modeling “evidence and pursuit propagation” about goals,
ii) dealing with “meta-properties”, which were introduced as a result of an on-
tological analysis of previous BI languages, and iii) the repeated need for too
many similar axioms.

For the last two, we sketch how parametrized concepts, together with
rules, would significantly help knowledge-base maintenance. This opens up a
new research area in hybrid DL+rule KBs, involving rules that generate new
axioms.

2 Introduction to BIM
Business intelligence (BI) offers considerable potential for gaining insights into
day-to-day business operations, as well as longer term opportunities and threats.
Most businesses have a significant investment in BI; however, much of the in-
formation is data oriented – mostly low-level values difficult to understand in
terms of business strategy. Instead, there is a need for analysis using terms like
strategic objectives, business models, processes, markets, trends and risks.

Several BI modeling techniques exist already: the Business Motivation Model
(BMM) [1], Strategy Maps (SM) [2], Balanced Scorecards (BSc) [3], Goal Mod-
eling frameworks (GM) [4, 5]. These languages introduce many concepts infor-
mally, making it difficult to distinguish between them; (except for GM), do not
support reasoning over models; and do not offer facilities for standard concep-
tual modeling of domain entities. The Business Intelligence Model (BIM) was
introduced [8, 7] to rationalize and extend notions in previous languages.

A portion of a realistic BIM schema for the credit card industry is shown in
in Fig. 1, using a (provisional) graphical notation based on the i* GM [4].

Offer
charge
cards

Offer
credit
cards

Offer
cards

Have a
worldwide
presence

Offer jointly
branded

international
currency cards

Provide
Range of
Services

Yearly
sales

Offer
internation
al banking

Increase
revenue

Acquire
other

companies

Weaker
US Dollar

Increase
Sales

Decrease
costs

+

Yearly
costs

Collect
Interest

Collect
Subscription

fee

Select
type of
card(s)

Facilitate
card

processing

Strong
economic

growth
Stay

competitive

Accurate
transactions

Data
entry
errors

Handle
transaction

volumes

+

+

Minimize
international
conversion

costs

International
conversion

costsCredit card
transaction

Make
agreements

with other credit
card companies

Translate
revenue and
costs across
currencies

State-of-the-
art transaction

systems

International
Development

+

International
development

program

+P
Legend

Goal

Indicator

Refinement

Influence
+P

AND

Task

Situation
(External)

Evaluates

Measures

Situation
(Internal)

OR

Figure 1: Fragment of BIM schema for banking industry

Generally, the model shows the decomposition of basic business services
(e.g., offer cards, offer international banking) into operational tasks, their ef-
fects on strategic goals, an assessment of influencing situations, and measure-
ment through indicators. So BIM focuses on four types of things: Situations,
Indicators, Tasks and Entities, which are subclasses of BIM Thing. (We
abbreviate this to Thing, using OWL:Thing, if we need, to talk about the top
DL concept.) Situations are partial descriptions of world state, which may affect
business objectives, and in BIM are specialized into Goals, OperationalSitu-
ations, and DomainAssumptions.

Goals are situations that may be desired by the modeling organization, such
as “Increase revenue”. Goals may or may not be actively pursued at any time,
and have an evidence value. As usual in GM, goals are refined until one finds
actions that help achieve them (Tasks), or domain assertions that are assumed
to hold in the real world.

Additional concepts found in other BI languages can be obtained in BIM by
providing values to meta-attributes (see Section 3.4). These provide an optional
richer subclass structure for BIM without over-complicating the initial model
design, and language learning.

BIM includes five different types of relationships between things: influences,
evaluates, refines , and measures, but their domains/ranges are restricted to
various subclasses of Thing.

We are only going to touch on those aspects of BIM that raise interesting
issues for DL modeling. Unfortunately, this excludes one of the most interesting
features of BIM: the notion of indicators, which measure the performance of
some business activity. These use heavily numeric functions [9], and we were
unable to model them in depth in OWL2.

3 The Translation of BIM to DL

3.1 Some BIM Classes and their Axioms

The DL axioms capturing the semantics4 of the subclass hierarchy under Thing
are standard, as is the specification of disjointness between sibling classes.

BIM allows accumulation of evidence for or against every thing in BIM. The
question “Evidence for . . . ?” is answered depending on the specific type of thing.
So BIM tracks evidence for the occurrence of situations, the satisfaction of goals
and domain assumptions, the performance of indicators, the execution of tasks,
and the existence of entities. In this way, we use BIM to monitor the state of
relevant business concepts. Following [6], we will accumulate various qualitative
kinds of evidence (for and against) from multiple sources, and combine them
using a multi-valued logic approach, so that the value of evidence can be zero
or more of StrongEvidenceFor (SF), WeakEvidenceFor (WF), StrongEvidenceA-
gainst (SA), and WeakEvidenceAgainst (WA). We therefore have

evidence vr Thing × {SF,WF,WA,SF}
Rather than constantly asking whether the evidence for something is strong by
checking subsumption by (evidence : SF) (a synonym for ∃ evidence.{SF}),
we will find it convenient to define four concepts like

SFThing ≡ Thing u (evidence : SF)

Such repetitions of axioms are frequent and annoying for BIM so we introduce
schemas for them, using the notation of programming language features such as
C++ templates and Java generics:

Thing〈?V〉 ≡ Thing u (evidence : ?V) for ?V ∈{SF,WF,WA,SF}
Note that in C++ and Java, parameters may be restricted to be subtypes of

other types; for example, a class SortedList〈?V〉 may require ?V to be a subtype
of Comparable to guarantee a lessThan operation. We will present parameter-
ized DL concepts using rules, whose body limits the parameter values using
P-facts (think of these as “parameter facts”), about individuals or “punned”
class identifiers. Thus after introducing P-predicate EvidV alues, with instances
SF, WF, WA and SF, we can write:

4 We have intentionally not chosen a particularly restrictive DL at this point, since a
lower bound on complexity of BIM reasoning can only be obtained directly. Since
we want to have off-the shelf reasoners, we have limited ourselves to OWL2, though
nominals, transitivity and even inverses are not strictly needed for reasoning.

Goal〈?V〉 ≡ Goal u (evidence : ?V) :- EvidV alues(?V)

For more complicated cases, and more uniform notation, we might prefer to
use rules extending the syntax of higher-order logics such as Hi(D) [11]:

DefineC(Goal〈?V〉, And(Goal, HasValue(evidence , ?V))) :-
InstanceOfC(?V , EvidValues)

Returning to BIM, we need to also say that strong implies weak evidence,
using axioms:

Thing〈SF〉 v Thing〈WF〉 Thing〈SA〉 v Thing〈WA〉
Information about the pursuit property can also come from multiple situa-

tions, so its value is a subset of {Pur,NegPur}.

3.2 BIM Relationships: Their Domains and Ranges

Influences. The influences relationship is used to represent the (transmission
of) (un)favorable effects on situations. As natural, we represent BIM relation-
ships by DL properties, so we have simply

influences vr Situation × Situation infBy ≡r influences−

Borrowing from GM [6], there are a variety of influence links: a ++ (resp. +)
represents strong (resp. partial) positive influence on evidence, and a −−/−
influence link represents strong/partial negative one. In Fig. 1, “Strong economic
growth” has a partial positive influence on “Increase sales”. Influence links also
can affect the pursuit of goals, using optional influence annotations P and !P,
representing pursuing and its denial respectively. The different kinds of labels
on influence will be encoded thru sub-properties of influences, with the original
labels as prefixes separated by an underscore. Thus “StayCompetitive” positively
influences “IncreaseSales” from Fig. 1, would be encoded, in part, by the axiom

IncreaseSales v ∃+ infBy.StayCompetitive

Refines. The refines relationship helps decompose concepts into other, often
more detailed, concepts of that type. Refines is also used to determine evidence
for/against a thing, based on the evidence for/against its refinements. Unlike
other relationships (or UML associations), refines is limited to different pairs
of sub-(domain,range) pairs. Thus a goal refines other goals (not other kinds of
situations), but goals can be refined into goals, domain assumptions (DA) or
tasks:

Goal v ∀ refines.Goal ∃ refines.Goal v (Goal t DA t Task)

Every other subclass of Situation, except Task, only has axioms like

Situation v ∀ refines.Situation ∃ refines.Situation v Situation

Refinements are by default interpreted disjunctively, but can also be marked as
explicitly AND-ed: e.g., both “Facilitate card processing” and “Select type of
card(s)” are required to satisfy “Offer cards”. Since on any particular node, we
want all refinements to be AND-ed or OR-ed, we add a subclass AND Thing of
Thing, and have axioms:

AND Thing v Thing OR Thing ≡ Thingu ¬AND Thing

These concepts will be used below to define the propagation of evidence values
for AND and OR refinements.

3.3 Evidence and Pursuit

Recall that each BIM thing has an evidence property, with value a subset of {SF,
WF, WA, SA} and pursuit property, with value a subset of {Pur, NegPur}. We
provide the precise rules for relating both evidence and pursuit values in the
presence of refines and influences relationships between nodes.

For refines, we use the rules for combining evidence on AND and OR nodes
inspired from [6]. Positive evidence values from the sources are propagated to
the target according to its node kind: on an OR node, it is enough to have one
refiner with V=SF,WF to get V; on an AND node, all refiners must have V:

OR Thing u ∃ refinedBy.Thing〈?V〉 v Thing〈?V〉 :- ?V ∈ {SF,WF}
AND Thing u ∀ refinedBy.Thing〈?V〉 v Thing〈?V〉 :- ?V ∈ {SF,WF}

For negative evidence, the converse holds:

OR Thing u ∀ refinedBy.Thing〈?V〉 v Thing〈?V〉 :- ?V ∈ {SA,WA}
AND Thing u ∃ refinedBy.Thing〈?V〉 v Thing〈?V〉 :- ?V ∈ {SA,WA}

Note that the presence of common DL concept constructors, such as qualified
number restrictions ≥ n R.C, immediately suggests extending BIM to support
AND(n) nodes, which require the satisfaction of at least n refinements.

For influences, ideally we would separate the evidence and pursuit aspects,
but the desired semantics sometimes requires knowing both aspects at the same
time. So we introduce a taxonomy of properties, starting with leafs like ++P InfBy.
These are then grouped in various ways as subproperties of others like InfByP
and infBy++; in turn, infBy++ and infBy+ are subproperties of infByPositively.
This allows us to later state some axioms once, for a higher property, rather than
repeat it for each subproperty.

The evidence values of the source are propagated to the target depending on
the strength of the source evidence and the influence label. The 12 rules from
[6] could then be written as 12 axioms, such as

∃ infBy++.Goal〈SF〉 v Goal〈SF〉

However, if we used parametrized classes and axioms, the following shows much
more intuitively what happens in the 6 axioms involving positive influence:

∃ infByPositively.Goal〈?V〉 v Goal〈?V〉 :- EvidV alues(?V)

The meaning of negative influences requires more complexity, because the “polar-
ity” of the evidence value must be switched. Using P-facts complement(SF,WF)
and complement(SF,WF), with symmetric complement, we encode the 6 other
axioms with the rule

∃ infByNegatively.Goal〈?V〉 v Goal〈?W〉 : − complement(?V,?W).

The propagation of pursuit along influence links from goals to goals is similar
to that of evidence with Pur,NotPur, P, !P playing the role of ++,−−, SF, SA
respectively. Again, we can choose 4 ordinary axioms, or 2 parameterized ones.

Reasoning with Missing Pursuit. Recall that only goals have a pursuit
attribute. This means complex special cases.

If the source does not have a pursuit attribute, e.g. a situation influencing a
goal, the satisfaction polarity of the source determines the pursuit of the target
in P and !P influence types. This is one of the 4 axioms for this:

∃ InfByP.(¬Goal u (Thing〈SF〉 t Thing〈WF〉)) v PurGoal

If the source has a pursuit attribute but the destination does not, e.g. a
goal influencing a situation, then the influence of the source evidence on the
destination evidence only occurs when the goal is pursued, in case P is on the
label, or not pursued, in the case of !P. For example, if the goal is satisfied and
pursued, and the label is +P, the target situation partially occurs. If the goal is
satisfied and not pursued, the situation has no incoming evidence from that goal.
This requires replacing each of the original 12 axioms for propagating evidence
by pairs such as

∃++P infBy . Goal u PurGoal v SFThing
∃++!P infBy . SFGoal u NotPurGoal v SFThing

which check the appropriate combination of edge and node labels. Again, these
could be stated much more succinctly by using parametric concepts and prop-
erties:

∃ infBy〈?S,?P〉. (EGoal〈?S〉 u PGoal〈?P〉) v EThing〈?S〉 :-
EvidV alue(?S),PursuitV alue(?P).

where we must now distinguish parameterizing concepts like Goal and Thing by
evidence or by pursuit

EGoal〈?V〉 ≡ Goal u (evidence : ?V)
PGoal〈?V〉 ≡ Goal u (pursuit : ?V)

Translating BIM Models to DL Given a specific model, such as the one
in Fig.1, we need to generate axioms that connect it to the generic terms of
BIM axiomatized above. For this, we make every node a class, and add axioms
describing its “BIM type”. For example, node “Offer International Banking”,
which is a goal, would generate:

OfferInternationBanking v Goal u AND Thing

We also add axioms declaring the disjointness of all nodes. Finally, every edge
is translated into DL axioms in a manner that respects the following intuition
of GM users: for every instance of a top-level goal, there is a separate set of
instances connected to it, which result in an isomorphic copy of the (concept
level) graph. This is assured by pairs of axioms, illustrated for the + influences
edge from StayCompetitive to IncreaseSales:

IncreaseSales v ∃+ infBy . StayCompetitive
StayCompetitive v (= 1 + influences . IncreaseSales)

CWA axioms such as OfferCards v (= 2 refinedBy . Thing) complete the
encoding of the graph.

“What if” Scenarios Frequently, business managers want to explore “What
if?” scenarios, such as “How is the evidence for/against any particular model

element affected if our organization offers cards but does not offer international
banking?”.

There are two approaches to such explorations. The first, more comfortable
for domain experts, who view element models as propositions, is carried out at
the class level. Thus, we would add:

OfferCards v EGoal〈SF〉 OfferInternationBanking v EGoal〈SA〉
and then check whether BroadRangeOfServices is classified as a subclass of
EGoal〈SF〉,. . . ,EGoal〈SA〉 respectively. One can similarly check the classifica-
tion of any other component, such as IncreaseRevenue, to see the effect of these
assumptions on it.

One might also want to answer a different question: “Is it possible to fully
satisfy BroadRangeOfServices?” At its simplest, this is just adding the axiom

BroadRangeOfServices v EGoal〈SF〉
and wait for the reasoner to detect any inconsistent concepts. Using the ability
of DLs to represent incomplete information, one could of course also explore less
precise scenarios (e.g., “What if we offer cards or international banking”).

A final variant of exploration, supported for goals in [6], is finding what
(minimal) set of tasks and domain assumptions must hold if some goal is to
be achieved. For this purpose one can add axioms corresponding to “predicate
completion”, which end up defining AND and OR nodes in terms of the classes
that refine them. Standard DL reasoning would then indicate what task must
be executed in all circumstances if OfferCards is to be fully supported. However,
one must use abduction to find a set of tasks that are sufficient to satisfy it.
Unfortunately, abduction for highly expressive languages such as OWL2 has
not been studied. (In [6], this is achieved using min-SAT algorithms for the
propositional encoding.)

The alternative approach to studying scenarios, more natural to those famil-
iar with DL modeling, would be to create an A-Box with individuals describing
the particular goals, etc. being considered. For example, it would contain A-Box
assertions such as BroadRangeOfServices(brs1) , OfferCards(oc1) and
refines(oc1,brs1). One can the then provide evidence for a scenario, such as
SFGoal(oc1) , and check for consequences on individuals.

The advantage of such an approach is that it does not require changing
the schema (enabling better run-time monitoring), as well as allowing the co-
existence of models for multiple businesses, with potentially overlapping indi-
viduals. The disadvantage is that for a single business, one essentially duplicates
the concept level axioms in the A-Box.

3.4 BIM Meta-properties

Rather than simply make BIM the union of all sorts of unrelated concepts found
in other business analysis languages (e.g., Vision, Mission, Strategy (BMM),
Softgoal, Hardgoal (GM), Initiative (BSc)), an ontological analysis was per-
formed on their underlying meaning. The result is a set of six meta-properties:
duration (long-term/short-term), likelihood of fulfillment (high/low), nature of

definition (formal/informal), scope (broad/narrow), number of instances (many/
few), and perspective (financial/ customer/ internal/ learning and growth).

New, more specialized, BIM subconcepts can now be obtained using values
for these metaproperties. For example, the BMM concept of a Vision is a “goal
with a long duration, broad scope, low chance of fulfillment, informal definition,
and few instances”. Examples of Visions from our credit card organization could
include “Stay competitive” or “Have a worldwide presence”.

Not all meta-properties must take on specific values in order to express a
more specialized BIM concept. Thus, Vision does not deal with perspectives.
And, Softgoals/Hardgoals from GM can just be goals with an informal/formal
definition, leaving the values of other metaproperties open.

The values of metaproperties at the class level do not constrain class in-
stances, but only say something about the nature of instances, that they are
likely or generally conform to the expressed metaproperties.

The representation of metaproperties in DLs is known to be problematic,
especially in our case, where we want the metaproperties to behave so that re-
stricting their possible values results in subclasses. However, this is exactly the
behavior one would get if the metaproperties were treated as ordinary (func-
tional) properties. So we could just add property axioms like

number of instances vr Thing × { few, many }
and then define classes

Vision≡ Goal u (numbear of instances : few) u . . .
u (nature of defintion : informal)

SoftGoal ≡ Goal u (nature of defintion : informal)

DL reasoning would then automatically classify Vision as a subclass of Soft-
Goal. The main difficulty with the above approach is that this conceptual model
no longer makes sense intuitively, since it associates with individual goal g, be-
longing to Vision, (which I might be pursuing tomorrow), the property num-
ber of instances, with value few. It would be much more desirable to be able to
have real meta-properties of classes, but then state that, for a group of such
metaproperties, value restrictions result in subclasses at the class (rather than
metaclass) level.

Ideally, one would be able to state rules dealing with meta-properties, like
duration, such as the following (namedC/1 is a predicate that is true of atomic
concept names used in DL axioms) :

?C v ?D :- namedC(?C), namedC(?D),not diff duration(?C, ?D).
diff duration(?C, ?D) :- duration(?C, ?X), duration(?D, ?Y), ?X 6=?Y .

Since duration is functional, this says that C is a subclass of D as long as D
has not been specified to have a different meta-property value than C (i.e., D’s
duration is unrestricted, or restricted to the same value as C’s). The idea is that
such rules are interpreted as in Logic Programming, with negation as failure.
(The precise semantics of such rules is given in Section 4.1.)

Since we want to do this for an entire set of meta-properties, we could try
to use the idea of HiLog [13] to allow variables ranging over named properties,
stating rules like

differ on some metaProp(?C,?D) : −
namedC(?C), namedC(?D), namedI(?V), namedI(?W),
?MP ∈ {duration, scope, . . .}, ?MP (?C, ?V), ?MP (?D, ?W),
?V 6=?W.

or simply use ternary P-assertions of the form hasV alue(?C, ?MP, ?V) in the
formula above.

4 More on Parametric Concepts and Rules
The Galen ontology of medical concepts [14] provides further evidence for the
utility of parametric concepts/axioms. Consider the pervasive use of so-called
Selectors. Here is one example of its use in the OWL translation of Galen
(shortened by eliminating ‘Object’ vs ‘Data’, and URIs):

Declaration(Class(#LeftEye))

EquivalentClasses(#LeftEye

IntersectionOf(SomeValuesFrom(#hasLeftRightSelector #leftSelection)

#Eye))

Declaration(Class(#RightEye))

EquivalentClasses(#RightEye

IntersectionOf(SomeValuesFrom(#hasLeftRightSelector #rightSelection)

#Eye))

The following parametric declaration

Declaration(Class(#Eye<?LR>), ?LR in {#leftSelection,#rightSelection}

EquivalentClasses(#Eye<?LR>

IntersectionOf(SomeValuesFrom(#hasLeftRightSelector ?LR) #Eye))

is meant to capture the two axioms, using an enumeration of possible concept
values for the variables. Instead of the name #LeftEye, we would then use
#Eye〈#leftSelection〉, or more likely abbreviate the values, and say #Eye〈#left〉.
Both #Eye〈#left〉 and #Eye〈?V〉 could then be used in axioms. If this was the
only example, the gain would not be much. But there are far more complex
definitions involving #hasLeftRightSelector. And the above kind of repetition
occurs for everything we have two in our body due to vertical symmetry. Also,
there are other selectors, including #hasPositionalSelector, #hasMedialLater-
alSelector, #hasAnteriorPosteriorSelector, some with more than 2 values, while
some concepts, such as #LeftInferiorPulmonaryVein, combine multiple selectors.

In fact a grep of the Galen OWL files revealed over 26,000 lines containing
Selector (and naming in Galen is very systematic). So our approach would not
only eliminate roughly half these axioms, but, more importantly would make
maintenance of the ontology much easier and likely to be correct, by lessening
the chance of errors when the definitions are modified later, since it is highly
likely that both definitions need to be changed the same way.

Note also that in BIM, the set of qualitative values such as StrongEvidenceFor
(SF), etc. might be extended to include more alternatives, such as VeryStrongEv-
idenceFor (VSF). For our above axiomatization of evidence propagation, this
could be handled by adding only three more P-assertions: EvidV alues(VSF),
EvidV alues(VSA), and complement(VSF,VSA) – clearly showing that we had
captured significant patterns in our rules.

4.1 Formal and Computational Aspects

The following is a sketch of the simplest formalization of the hybrid DL+rule
language we used to give the semantics of BIM. The set of primitive identifiers
is split into atomic ones and parametric ones. Then axioms are formed as usual,
except that parametric identifiers require atomic primitive constants or variables
as arguments, and variables may occur alone as identifiers in axioms. However,
any non-ground DL axiom must appear as the head of a rule, whose body binds
positively all the variables in the axiom. Rules have the form

γ(X) : − r1(Y1), ..., rk(Yk), not s1(Z1), ...,not sm(Zm)

where ri and sj are P-predicates (i.e., not in the signature of the DL), and all
variables in X and Zj appear among the variables in Yi for some i. The P-
atoms in the body are constructed using variables or constants, some of which
are atomic identifiers from the DL. γ is either another P-atom, or a DL axiom
with free parameters X. When k = m = 0, if γ is a P-atom then we have
a P-assertion, such as EvidV alues(SF); otherwise, it is an ordinary (ground)
DL-axiom.

The semantics of the resulting hybrid system obeys the desirable property of
“modularity of reasoning” [12], by (i) using the rules first to obtain a complete
set of variable-free DL axioms, and then (ii) using pure DL reasoning on the
result. The semantics of rules are the standard stable-model semantics of logic
programming with default negation (see [12] for a summary), with the Herbrand
universe of a set of rules consisting of constants appearing in P-assertions or
atomic primitive constants occurring in ground axioms. The semantics of DL
are also standard, except that names of the form C〈d1,...〉 receive interpretation
as atomic concepts, when there are no variables in the arguments.

In our case the rules are restricted to be non-recursive, so there are no prob-
lems with infinite Herbrand universes, decidability and complexity in part (i): one
can use bottom-up evaluation as for stratified Datalog¬; so the complexity will
likely reduce to that of part (ii), since we are using a fairly expressive DL. (The
precise details of this formalization can be found at http://www.cs.rutgers.edu/

~borgida/BIM/dl12.appendix.pdf.)
As usual, the semantics should not be taken as guide to preprocess the KB

and eliminate rules. First, if the benefits of parametric concepts for KB mainte-
nance are to be realized, then the rule format should be maintained for editing,
etc. Second, lightweight type-checking techniques used in Programming Lan-
guages can be used to detect certain errors in axioms without theorem proving.
Third, even for absorption in tableau implementations one can perform unifi-
cation to see if the parameterized axiom should be applied. Only experimental
evaluation can tell whether this would result in speed-ups in an ontology like
Galen, where thousands of axioms might be eliminated.

5 Summary

The presentation of BIM semantics as translation into DL provided several po-
tentially interesting observations for the DL community.

Foremost, it led us to consider parametric concepts, axioms and rules. We
have only scratched the surface of this area, and there remain lots of formal ques-
tions on how far one can push this in terms generalizing the syntax, semantics,
complexity, and implementations.

In addition, we provided a novel way to express so-called “goal reasoning”
using DL constructors. This translation makes possible the posting of goal mod-
els on the Semantic Web, and made evident the possibility of a useful “at least k
subgoals need to be satisfied” variant of AND decomposition. However, in order
to compete with [6], this requires more research in DL on abduction in languages
more expressive than ALC: the minimal language needed in our translation re-
quires the ability to state that attributes are functional.

Acknowledgments We are very grateful to Daniel Amyot, Daniele Barone, Lei
Jiang, and Eric Yu for co-developing and applying BIM.

References

1. Business motivation model, version 1.0. Object Management Group (2004).
2. Kaplan, R. S., Norton, D. P.: Strategy maps: converting intangible assets into

tangible outcomes. Harvard Business School Press (2004)
3. Kaplan, R. S., Norton, D. P.: Balanced scorecard: translating strategy into action.

Harvard Business School Press (1996).
4. Yu, E.: Towards modeling and reasoning support for early-phase requirements

engineering. In: Proc. IEEE Int. Symp. on Req. Eng. (1997).
5. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-

sition. Science of Computer Programming 20(1-2) (1993).
6. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal reasoning

techniques for goal models. Journal of Data Semantics (2004).
7. Barone, D., Yu, E., Won, J., Jiang, L., Mylopoulos, J.: Enterprise modeling for

business intelligence. In: Proc. PoEM’10 (2010).
8. Jiang, L., Barone, D., Amyot, D., Mylopoulos, J.: Strategic models for business

intelligence: reasoning about opportunities and threats. In Proc. ER’11 (2011)
9. Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Composite indicators for busi-

ness intelligence. In Proc. ER’11 (2011).
10. Berardi, D., Calvanese, D., de Giacomo, G.: Reasoning on UML class diagrams.

Artificial Intelligence (2005) .
11. de Giacomo, G., Lenzerini, M., Rosati, R.: Higher-order description logics for

domain metamodeling. In: Proc. AAAI-11 (2011)
12. Rosati, R.: Integrating ontologies and rules: semantic and computational issues.

In: Reasoning Web’06 (2006).
13. Chen, W., Kiffer, M., Warren, D. S.: HILOG: a foundation for higher-order logic

programming. J. Logic Programming 15(3) (1993).
14. OpenGALEN. http://www.opengalen.org/

