
Näıve ABox abduction in ALC using a DL
tableau

Ken Halland12 and Katarina Britz2

1 School of Computing, University of South Africa, Pretoria, South Africa
2 Centre for Artificial Intelligence Research: UKZN and CSIR Meraka Institute,

South Africa

hallakj@unisa.ac.za and arina.britz@meraka.org.za

Abstract. The formal definition of abduction asks what needs to be
added to a knowledge base to enable an observation to be entailed by the
knowledge base. An observation which is not entailed by the knowledge
base will result in open branches in a complete semantic tableau for the
entailment. The statements required to close these branches therefore
represent a solution to the abductive problem.
In this paper we describe how this idea can be implemented for ABox
abduction in the description logic ALC. We analyse the limitations of
our algorithm and propose refinements to improve the quality of results.

1 Introduction

Abduction is a form of non-standard reasoning where explanations are generated
for certain observations in the context of some background knowledge. This is
as opposed to deduction – the standard form of reasoning where the logical
consequences of some knowledge are determined.

A typical use of abduction is in the process of medical diagnosis. Say a pa-
tient displays some symptoms. A doctor uses abductive reasoning to generate
hypotheses about the possible ailment(s) causing the symptoms. These hypothe-
ses can then be tested by collecting corroborating evidence so that deduction can
be used to make a correct diagnosis.

Abductive reasoning is non-monotonic in that the solutions derived from
some background knowledge and an observation may no longer hold if we add
new statements to the background knowledge.

Different forms of abduction have been formally defined in different logics. In
their programmatic paper, Elsenbroich et al [6] define and describe various forms
of abduction in description logics (DLs). A number of researchers have taken up
the challenge and developed algorithms for some of these forms of abduction in
selected DLs ([4, 5]).

In particular, Klarman et al [8] have provided a resolution-based algorithm
and a tableau-based algorithm for performing ABox abduction in ALC. The

tableau-based algorithm involves translating the knowledge base and the obser-
vation for an abductive problem from its DL specification to first-order logic
(FOL), then constructing a FOL connection tableau and harvesting abductive
solutions from open branches. These solutions are then translated back to a DL
notation.

In this paper, we describe a glass box algorithm for doing this directly by
means of a DL semantic tableau. We then show that this is a näıve algorithm
in that it fails to generate a number of solutions which could be desirable in
certain circumstances. We propose strategies to adapt the algorithm to address
these deficiencies. We also define the notion of semantic minimality as a means
to compare or rank solutions.

A potential advantage of this approach over Klarman’s is that it can utilise
optimisation techniques used in DL tableaux.

Section 2 highlights the relevant aspects of the syntax and semantics of ALC,
Section 3 includes a definition of ABox abduction in ALC (slightly more general
than Klarman et al [8]), and Section 4 gives a description of the standard seman-
tic tableau algorithm for ALC. Section 5 then describes how this algorithm can
be adapted to perform ABox abduction. Section 6 explains why the proposed
abduction algorithm is näıve and how this can be addressed. Finally, Section 7
discusses the prospects for future work.

2 The Description Logic ALC

Description Logics (DLs) are a family of fragments of first-order logic, suitable
as knowledge representation formalisms and amenable to the implementation of
efficient reasoners [1]. There is a trade-off between the expressivity of different
DLs and the efficiency of the algorithms that have been defined to reason over
them. ALC is a DL of medium expressivity.

Syntax: The reader is referred to the Description Logic Handbook [1] for the
syntax of ALC. We highlight the following terminology for our current purposes:

A knowledge base is a set of statements partitioned into an ABox and a TBox.
ABox assertions are statements of the form C(I) and R(I, J) (called concept
assertions and role assertions, respectively), and TBox axioms are statements
of the form C v D (sometimes called general concept inclusions, or GCIs).3

The following serves as a running example. Admittedly it is not very good knowl-
edge representation, but we have chosen the given formulation for the sake of
illustration.

Example 1: The following knowledge base is intended to express the ideas that
Influenza A is a form of influenza, Malaria vivax is a form of malaria (caused

3 In this and the following specifications, C and D represent arbitrary concept de-
scriptions, R represents an arbitrary role name, and I and J represent arbitrary
individual names.

by Plasmodium vivax), and someone infected with influenza or malaria will be
feverish:

Influenza(FLU A)
Malaria(MAL V)
∃infectedWith.Influenza t ∃infectedWith.Malaria v Feverish

Semantics: Once again, the reader is referred to the DL Handbook [1] for the
semantics of ALC. We highlight the following terminology for our purposes:

An interpretation I is a model of a knowledge base K if all the statements
of K are true in I. A concept description C is satisfiable with respect to a
knowledge base K if there is some model of K such that the interpretation of C
is not empty. A statement φ is entailed by a knowledge base K if φ is true in all
models of K, in which case we write K |= φ. In an abuse of notation, we often
write K |= Φ where Φ is a set of statements. By this we mean that K |= φ for all
φ ∈ Φ. A knowledge base K is consistent if it admits a model.

3 Abduction

An abduction problem is normally defined in terms of an observation (in the
form of one or more statements) which is not entailed by a theory (i.e. a set
of statements), and asks what needs to be added to the theory to entail the
observation.

Example 2: Using the knowledge base given in Example 1, say we observe that
John is feverish. An abduction problem would be to ask what should be added
to the knowledge base to allow us to infer Feverish(JOHN).

We expect abduction to allow us to hypothesize that John is infected with
influenza or he is infected with malaria, i.e. ∃infectedWith.Influenza(JOHN) or
∃infectedWith.Malaria(JOHN). In fact, more specific hypotheses would be that
he is infected with Influenza A, i.e. infectedWith(JOHN,FLU A), or that he is
infected with Malaria vivax, i.e. infectedWith(JOHN,MAL V). The reader might
like to check that adding any of these assertions to the knowledge base will allow
us to infer Feverish(JOHN).

One problem with a formal definition of abduction is how to narrow down the
possibly infinite number of solutions to an abduction problem. Various criteria
have been defined for this purpose. Like other authors [6, 8], we restrict our
attention to the following three:

i. Consistency: A solution should not create a contradiction with the back-
ground knowledge.

ii. Relevance: A solution should be expressed in terms of the background knowl-
edge; it shouldn’t introduce an independent theory.

iii. Minimality: A solution should not hypothesize more than necessary.

Example 3: The solutions given in Example 2 are consistent, relevant and min-
imal (i.e. minimal at least in a syntactic sense). The following solutions do not
comply with these criteria:

i. {¬Malaria(MAL V)}. If this assertion were added to the knowledge base, it
would cause a contradiction, and would allow us to infer anything. But this
would not be a helpful solution.

ii. {∃infectedWith.ScarletFever v Feverish,∃infectedWith.ScarletFever(JOHN)}.
This is an abductive solution, since if both these statements were added to
the knowledge base, it would allow us to infer Feverish(JOHN). However, it
would also allow us to make this inference independently of the knowledge
base and is therefore not a relevant solution. (Incidentally, the observation
itself, in this case {Feverish(JOHN)}, is also always a non-relevant solution,
since adding it to the knowledge base would allow the observation to be
trivially inferred.)

iii. {∃infectedWith.Influenza(JOHN),∃infectedWith.Malaria(JOHN)}.
Although this is a valid solution, it is not minimal because it hypothesizes
too much, namely that John is infected with both influenza and malaria.

3.1 ABox Abduction in ALC

As stated in the introduction, attempts have been made to define abduction
and implement reasoners that can make abductive inferences in many logics,
including description logics. ABox abduction (as opposed to general or so-called
knowledge base abduction [6]) asks what ABox assertions need to be added to a
DL knowledge base to allow an observation (also in the form of ABox assertions)
to be inferred.

The astute reader will note that apart from not being relevant, Example 3 ii
is also not an ABox abduction solution, since it contains a TBox axiom.

Definition 1. Given a knowledge base K and a set of ABox assertions Φ (both
in ALC) such that K does not entail Φ and K ∪ Φ is consistent, then a set of
ABox assertions Θ is an abductive solution for (K, Φ) if K ∪Θ |= Φ.

We can narrow down the solutions in three ways:

i. Consistency : K ∪Θ is consistent.
ii. Relevance: Φ is not entailed by Θ.
iii. Minimality : We distinguish two kinds of minimality:

(a) Syntactic: No proper subset of Θ is a solution.
(b) Semantic: There is no non-equivalent solution Θ′ such that K ∪ Θ |=
K ∪Θ′.

Note that our definition of semantic minimality induces a partial ordering on the
set of solutions, and that there can be a number of semantically minimal (non-
equivalent) solutions to a particular abductive problem. We say that a solution
Θ is closer to semantic minimality than a solution Θ′ if K ∪ Θ′ |= K ∪ Θ and
K ∪Θ 6|= K ∪Θ′.

4 The Semantic Tableau Algorithm for ALC

For a more detailed description of the semantic tableau algorithm for ALC,
the reader is referred to the Handbook of Knowledge Representation [2]. We
highlight the following terminology for our current purposes:

The standard semantic tableau algorithm for description logics (and for ALC
in particular) tries to find (i.e. construct) a model of the knowledge base by
applying so-called expansion rules to its statements.

The expansion rules only apply to ABox assertions, so before the algorithm
can commence, the TBox axioms in the knowledge base must be converted to
concept assertions by a process called internalisation.

In ALC, it is possible to specify a knowledge base that has infinite models
(by means of a so-called cyclic TBox). This issue is dealt with by a technique
called blocking, which essentially detects when more than one individual has the
same labelling in the current model.

If the algorithm detects a contradiction (or clash), i.e. the current set of as-
sertions contains a concept assertion and its negation, it backtracks and tries
another branch of its search. If it gets to a point where the current set of as-
sertions are saturated, i.e. no more expansion rules can be applied and there is
no contradiction, then a model has been found, the algorithm terminates and
reports that the original knowledge base is consistent.

The algorithm described above performs consistency checking of a knowledge
base. It can easily be adapted to perform the related reasoning task of instance
checking, i.e. deciding whether a concept assertion is entailed by a knowledge
base, as follows: The negation of the concept assertion being tested is added
to the knowledge base and the algorithm described above is executed. If the
resulting knowledge base is consistent, we conclude that the assertion is not
entailed by the knowledge base (and vice versa).

5 Adaption of the Semantic Tableau Algorithm for ABox
Abduction

For the purpose of ABox abduction, we perform instance checking of an obser-
vation by means of a so-called extended (or complete) semantic tableau, i.e. a
tableau that doesn’t terminate when the first open branch is attained. Every
time an open branch is attained, the current set of assertions (representing a
model of the original set of assertions) is stored, the algorithm backtracks and
continues its search. Reiter’s minimal hitting set algorithm [10] is then used to
generate abductive solutions from these models. Simply put, one unexpanded
concept assertion (involving a non-dummy individual) is chosen from each (ter-
minal) open branch. (Dummy individuals are introduced by the ∃-expansion
rule.) Each combination of the complements of such assertions forms an abduc-
tive solution. Finally the algorithm outputs all solutions that are consistent with
the knowledge base and that are relevant.

Input : ABox, TBox and Obs
Output: Näıve abduction solutions

1 A ← negNF(ABox) ∪ negNF(¬Obs);
2 internalise(TBox, U, A);
3 M ← {};
4 SSet ← {};
5 extendedST(A, U, M);
6 if M = {} then
7 print "The observation follows from the knowledge base";
8 return SSet

9 minimalHS(M, H);
10 foreach S in H do
11 if consistentST(A ∪ S, U) and relevantST(S, Obs) then
12 SSet ← SSet ∪ {S}

13 return SSet

Algorithm 1: Näıve ABox abduction algorithm for ALC

Function negNF transforms a set of concept assertions to negation normal form.
Procedure internalise takes a set of TBox axioms and transforms them into a
set of universal concepts U, each in negation normal form. (Note that in some
implementations of the tableau algorithm, all the TBox axioms are converted
into one long universal concept. We rather store them as separate concepts –
one per TBox axiom – to save having to repeatedly expand the long concept.)
The algorithm then applies each of these universal concepts to all the individual
names mentioned in the ABox, adding the assertions to A. U is returned via pa-
rameter to be used in extendedST whenever a dummy variable is created for the
∃-rule. M is a set of models (where each model is a set of unexpanded assertions
obtained from an open branch). Procedure extendedST performs the extended
semantic tableau algorithm explained above. Whenever an open branch is at-
tained, it adds the current set of unexpanded assertions to M and backtracks. If
the observation is entailed by the knowledge base, then all branches will close
and M will be empty. This means that we are not dealing with a proper ab-
duction problem. M is sent to procedure minimalHS to generate the minimal
hitting sets and store them in H. minimalHS ensures the syntactic minimality of
solutions. Functions consistentST and relevantST are like calls to the semantic
tableau procedure (described in Section 4). They determine whether the solution
is consistent with the original knowledge base, and whether the observation is
not entailed by the solution, respectively.

Although extendedST implements blocking, this is not used in any way for
the generation of solutions. The argument is as follows: Since ALC has the finite
model property [1], every knowledge base that has an infinite model (handled
by blocking) also has at least one finite model (represented by an open branch
of the tableau). Since our algorithm closes all open branches and so removes all
finite models, the infinite models will also be removed.

5.1 Complexity

The complexity of the standard semantic tableau algorithm for consistency
checking with general TBoxes in ALC is ExpTime [2]. In our extended semantic
tableau (in procedure extendedST), the worst case involves maximal branching
where every branch is open, since we have to store all the assertion sets of all
open branches. Nevertheless, the maximum number of branches is linear in the
size of the initial assertion set, and the number of assertions in each such branch
is also linear in the size of the initial assertion set. This means that the space
required to store all the assertion sets in all the open branches is polynomial in
the size of the initial assertion set. This at least means that the space require-
ments don’t blow up to ExpSpace, which means that the extended semantic
tableau algorithm is at worst in ExpTime.

Reiter’s minimal hitting set algorithm (in general) is NP-complete [11]. In our
case (in procedure minimalHS), the number of sets and their size is polynomial
in the size of the initial assertion set. This means that the time required in our
case is also in NP.

Finally, the algorithm invokes the functions consistentST and relevantST twice
for each candidate solution. Although the space required for relevantST is only
polynomial (because it does not deal with the TBox), consistentST is in ExpTime
in the worst case because it must deal with the TBox. Since the number of
hitting sets is polynomial in the size of the initial assertion set, the total space
requirement for this process is in ExpTime.

The entire algorithm is therefore in ExpTime.

5.2 Soundness and Completeness

Taking Definition 1 as the standard for ABox abduction in ALC, Algorithm 1 is
sound but not complete.

It is sound because all solutions that it generates are proper abduction solu-
tions according to the definition. Consider the following argument: Each solution
is a set comprised of the complements of assertions in the open branches of the
extended semantic tableau, such that each open branch has a representative in
the solution. So if the assertions of such a solution were to be added to the knowl-
edge base (and the satisfiability test were to be performed again), all branches
would close, indicating that the observation is now entailed by the knowledge
base. This is precisely the definition of an abduction solution.

It is not complete due to the problems detailed in Section 6. One should not
be surprised at this because abductive inference is notoriously incomplete due to
the often infinite number of solutions to an abduction problem. Narrowing down
the spectrum of solutions by means of criteria such as consistency, relevance
and minimality only partially addresses this issue. Many solutions within these
criteria are difficult to obtain, particularly by means of the techniques described
here. In Section 6 we propose workarounds to make the algorithm more complete.

6 Näıvety

The algorithm described in Section 5 is “näıve” in that it doesn’t deal with
all observations and it doesn’t generate all possible solutions allowed by our
definition. In particular, the algorithm has the following weaknesses:

1. The observation can only consist of a single concept assertion.
2. Solutions containing disjunctions are not generated.
3. Solutions involving role assertions are not generated.
4. Semantically minimal solutions are not always generated.

We discuss each of these problems in turn:

6.1 Single Concept Assertions

Contrary to Definition 1, our algorithm does not allow more than one concept
assertion in the observation. This is because an observation consisting of multiple
assertions is really a conjunction of assertions, and the first step of the algorithm
is to add the negation of the observation, which is in effect a disjunction of the
negations of its individual assertions. We cannot express such a disjunction of
assertions in DL syntax when the assertions involve different individuals. (This
is not a problem for multiple concept assertions about the same individual, e.g.
C(I) and D(I) can be negated as ¬C t ¬D(I).)

Furthermore, the observation may not contain any role assertions, because
ALC syntax doesn’t allow negated role assertions. So we cannot deal with obser-
vations such as hasSymptom(JOHN, INTERMITTENT FEVER). (It is true that
in many cases this situation could be handled by alternative modelling, e.g.
∃hasSymptom.IntermittentFever(JOHN), but there might be situations where this
is not practical or desirable.)

Neither of these situations are a problem for Klarman et al [8], since their
translation to FOL syntax allows disjunctions of concept assertions as well as
negated role assertions.

Proposed Workaround: A brute-force method of dealing with multiple asser-
tions in the observation would be to execute the algorithm once for each such
assertion, harvest all the models from all open branches of all executions, and
then process them as normal. This, however, would involve a lot of duplication
(processing the rest of the assertions repeatedly). One way to avoid such du-
plication would be to keep the complemented assertions of the observation in
a separate list from the other assertions. (The set of complemented assertions
would represent a disjunction of assertions, whereas the other set would repre-
sent a conjunction of assertions – as normal.) Then when no other expansion
rules can be applied to the normal set, the algorithm can branch for one of the
complemented assertions.

The negation of a role assertion R(I, J) can be accounted for by two asser-
tions: ∀R.A(I) and ¬A(J), where A is a dummy concept name not occurring in

the knowledge base. Adding these two assertions to the initial set of assertions
will have the same effect as adding the negation of the role assertion. Assertions
involving such dummy concept names will need to be ignored for the purposes
of determining abductive solutions.

6.2 Disjunctions

Our algorithm suffers from the same problem as Klarman’s [8], namely that the
abductive solutions do not contain disjunctions, i.e. assertions of the form C t
D(I). For example, it does not generate the following solution to the problem de-
scribed in Example 2: (∃infectedWith.Influenza) t (∃infectedWith.Malaria)(JOHN).
Note that a solution with such a disjunction is closer to semantic minimality than
the corresponding two solutions with the individual disjuncts.

Proposed Workaround: One reason for this problem is that our algorithm only
considers unexpanded concept assertions for forming solutions. Allowing expand-
able concept assertions to be selected for solutions would allow some disjunctions,
but not all. For example, say we replaced the axiom of Example 1 with the two
axioms ∃infectedWith.Influenza v Feverish and ∃infectedWith.Malaria v Feverish.
In this case, the solution with the disjunction above would be a valid solution,
but would not be generated.

One could construct some such solutions from their constituent parts, e.g.
C tD(I) could be constructed from C(I) and D(I), but more complex solutions
involving disjunctions inside quantifiers would be more difficult, e.g. ∃R.(C t
D)(I) will not be generated when ∃R.C(I) and ∃R.D(I) are.

Klarman et al [8] get around the problem by defining it away. They define
ABox abduction in ALC as only providing solutions in ALE (a less expressive
DL than ALC, i.e. without disjunction and full negation).

6.3 Role Assertions

A more serious weakness is that the algorithm will never generate solutions
involving role assertions. So the more specific solutions mentioned in Exam-
ple 2, namely infectedWith(JOHN,FLU A) and infectedWith(JOHN,MAL V), are
unattainable with our algorithm.

Stated more generically: Consider a knowledge base containing the ABox
assertion ∀R.A(I), and say we want an abductive explanation of the observation
A(J). An obvious solution is R(I, J). But our abductive solutions are always
the complements of assertions needed to close the open branches of a semantic
tableau. Since the tableau algorithm does not infer negated role assertions, this
solution will not be generated.

Proposed Workaround: One way would be to add the assertion R(I, J) to
a solution whenever the “pattern” {∀R.A(I),¬A(J)} occurs in a open terminal
branch. However, although this will enable some role assertions to be included
in solutions, it will not generate all: Adding the role assertion R(I, J) to a

knowledge base will cause an open branch containing {∀R.C(I),¬D(J)}, where
C is disjoint from D, to close, so it should form part of an abductive solution
whenever this pattern occurs. Such a pattern could be difficult to recognise, and
the easiest way to deal with this would probably be to allow nominals in the
language, since a negated role assertion ¬R(I, J) can then be expressed as a
concept assertion, namely ∀R.¬{J}(I) [7].

6.4 Semantic Minimality

This problem is best explained by means of an example. Say we add the axiom
∃bloodTestIndicates.Plasmodium v ∃infectedWith.Malaria to the knowledge base
of Example 1.

Using the observation of Example 2, the algorithm now generates the solu-
tions ∃infectedWith.Influenza(JOHN) and ∃bloodTestIndicates.Plasmodium(JOHN).
One of the solutions we got previously, namely ∃infectedWith.Malaria(JOHN) has
gone! In fact, a solution that is closer to semantic minimality has been lost.

Proposed Workaround: Many such solutions that are closer to semantic min-
imality can be obtained by allowing expanded concept assertions as part of so-
lutions (including the above example). However, this will not solve all problems:
Consider the knowledge base consisting of TBox = {A1tA2 v A3,∃R.A3 v A4}
and ABox = {R(I, J)}, and say we want abductive solutions for the observation
{A4(I)}. If we apply the algorithm to this problem, three solutions are gener-
ated: {A1(J)}, {A2(J)} and {A3(J)}. If we allow expandable assertions, we get
{A1 tA2(J)} and {∃R.A3(I)} as solutions, but not {∃R.A1(I)} or {∃R.A2(I)}.
These are closer to semantic minimality than {∃R.A3(I)}.

Whether we manage to find a way of generating all semantically minimal
solutions, or just those attainable by allowing expandable assertions, we imagine
that the user of a system implementing an abduction algorithm would want to
be able to explore a range of such solutions.

The notion of semantic minimality is related to the notion of weakest suffi-
cient conditions [9], although this work is restricted to propositional logic. It is
also reminiscent of work on least common subsumers [3], and we plan to inves-
tigate the possibility of applying those ideas to this situation.

7 Future Work

Algorithm 1 does not implement many of the optimizations (e.g. back-jumping
and caching) commonly used in DL tableau algorithms. Incorporating these into
our algorithm promises to give a real efficiency advantage over the FOL connec-
tion tableau used in Klarman’s algorithm [8].

This work also promises to be transferable to other more expressive DLs. As
stated in Section 6.3, the problem of dealing with role assertions will disappear
in languages that allow nominals.

Languages that do not have the finite model property will need some means
of dealing with infinite models. (We imagine that the current assertion set at
the point of blocking could simply be added to the set of models collected by
extendedST so that it will be closed by all solutions.)

As stated in Section 6.4, we also intend to investigate the work on weak-
est sufficient conditions and least common subsumers for their applicability to
ranking solutions.

Acknowledgements

This work was partially funded by a European Union international research staff
exchange scheme – Project number 247601, Net2: Network for Enabling Net-
worked Knowledge, from the FP7-PEOPLE-2009-IRSES call. Thanks to Tommie
Meyer of the CSIR Meraka Institute (in South Africa) and Enrico Franconi of
the Free University of Bozen/Bolzano (in Italy) for infrastructure and support.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook, Cambridge University Press (2003)

2. Baader, F., Horrocks, I. Sattler, U.: Chapter 3: Description Logics. In: van Harme-
len, F., Lifschitz, V., Porter, B., editors: Handbook of Knowledge Representation,
Elsevier (2007)

3. Baader, F., Sertkaya, B., Turhan, A.: Computing the least common subsumer w.r.t.
a background terminology, Journal of Applied Logic, Springer (2004)

4. Di Noia, T., Di Sciascio, E., Donini, F.M.: Computing information minimal match
explanations for logic-based matchmaking, in Proc. of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technol-
ogy, vol 02, IEEE Computer Society (2009)

5. Du, J., Qi, G., Shen, Y-D., Pan, J.Z.: Towards practical ABox abduction in large
OWL DL ontologies, in Proc. of the 25th AAAI Conference (2011)

6. Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over ontolo-
gies, in Proc. of the OWLED’06 Workshop, vol 216 (2006)

7. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ, in Proc. of
KR2006, pp 57-67 (2006)

8. Klarman, S., Endriss, U., Schlobach, S.: ABox abduction in the description logic
ALC, Journal of Automated Reasoning, vol 46:1 (2011)

9. Lin, F.: On strongest necessary and weakest sufficient conditions, in Proc. of
KR2000, pp 167-175 (2000)

10. Reiter, R.: A theory of diagnosis from first principles, Artificial Intelligence, vol 32
(1987)

11. Wotawa, F.: A variant of Reiter’s hitting-set algorithm, Information Processing
Letters, vol 79 (2001)

