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1 Introduction

An ontology language L is said to enjoy FO-rewritability if any conjunctive
query (CQ) q over any ontology T , given in L, can be transformed into an FO-
formula q′ such that, for any data A, all answers to q over the knowledge base
(T ,A) can be found by querying q′ over A using a standard relational database
management system (RDBMS). Ontology languages with this property include
the OWL2QL profile of OWL2, which is based on description logics of the
DL-Lite family [7, 16, 2], and fragments of Datalog± such as linear or sticky
TGDs [5, 6]. Various rewriting techniques have been implemented in the systems
QuOnto [1], REQUIEM [15], Presto [22], Nyaya [8], IQAROS3 and Quest.4

The idea of using languages with FO-rewritability for ontology-based data ac-
cess (OBDA) relies on the empirical fact that RDBMSs are usually very efficient
in practice. However, the first rewritings of CQs over OWL2QL ontologies [7, 15]
turned out to be too lengthy even for modern RDBMSs. The attempts to employ
various optimisation techniques still produced rewritings of exponential size in
the worst case: O((|T | · |q|)|q|) [22, 8, 20, 21]. The alternative two-step combined
approach [14, 13]—first expand the data by applying the ontology axioms to the
data and introducing (some of) the missing individuals, and only then rewrite the
query over the expanded data—resulted in a simple polynomial rewriting only
for the fragment of OWL2QL without role inclusions; for the full language, the
rewriting remained exponential. Two seemingly contradictory results, presented
at DL 2011, added more spice to the quest for short rewritings: [9] showed that
one can construct, in polynomial time, a nonrecursive Datalog (NDL) rewriting
for some fragments of Datalog± containing OWL2QL, while [11] argued that
no FO-rewriting for OWL2QL can be constructed in polynomial time.

The aim of this paper is twofold. First, we investigate the worst-case size
of FO- and NDL-rewritings for CQs over OWL2QL ontologies. We distinguish
between ‘pure’ rewritings, which can use the signature of the original query and
ontology as well as =, 6= (cf. [7]), and ‘impure’ rewritings, where other means
such as new constants are allowed. Here is a summary of the obtained results:

3 http://code.google.com/p/iqaros/
4 http://obda.inf.unibz.it/protege-plugin/quest/quest.html



(1) An exponential blow-up is unavoidable for pure positive existential (PE)
rewritings and pure NDL-rewritings; pure FO-rewritings can blow-up super-
polynomially unless NP ⊆ P/poly.

(2) Pure NDL-rewritings are in general exponentially more succinct than pure
PE-rewritings.

(3) Pure FO-rewritings can be superpolynomially more succinct than pure PE-
rewritings.

(4) Impure PE- and NDL-rewritings can always be made polynomial, and so
they are exponentially more succinct than pure PE- and NDL-rewritings,
respectively.

(1)–(3) are proved by establishing connections between pure rewritings for CQs
over OWL2QL ontologies and circuits for monotone Boolean functions. In a
nutshell, we show that CQs and OWL2QL ontologies can encode such problems
as the existence of a k-clique in a graph with n vertices whose edges are given
by a single-element ABox. The polynomial PE-rewriting in (4) is similar to the
NDL-rewriting of [9]: using two extra constants, = and polynomially many new
existentially quantified variables, one can guess a relevant part of the canonical
model of T in the rewritten query. The difference between the resulting impure
PE-rewritings and exponential-size pure PE-rewritings is of the same kind as
the difference between deterministic and nondeterministic Boolean circuits.

Our second aim is to analyse the causes behind long rewritings and whether
they occur in real-world queries and ontologies. As a result, we suggest some
short rewritings that cover most practical cases.

Omitted proofs can be found in [10] and the full version of [12].

2 Queries over OWL2QL Ontologies

The language of OWL2QL is defined by the following grammar:5

R ::= Pi | P−i ,

B ::= ⊥ | Ai | ∃R,
C ::= B | ∃R.B,

where the Ai are concept names and the Pi are role names. An OWL2QL TBox,
T , is a finite set of inclusions of the form B v C, R1 v R2, B1 u B2 v ⊥ and
R1 uR2 v ⊥. Note that concepts of the form ∃R.B can only occur in the right-
hand side of concept inclusions. An ABox, A, is a finite set of assertions of
the form Ak(ai) and Pk(ai, aj), where ai, aj are individual names. T and A
together form the knowledge base (KB) K = (T ,A). The semantics is defined
in the usual way, based on interpretations I = (∆I , ·I) with domain ∆I and
interpretation function ·I . The set of individuals in A is denoted by ind(A); IA
is the interpretation with domain ind(A) such that, for any concept or role E
and any a ⊆ ind(A), we have IA |= E(a) iff E(a) ∈ A. We write E1 vT E2 if
T |= E1 v E2; and we set [E] = {E′ | E vT E′ and E′ vT E}.
5 We do not consider data properties, attributes and role (ir)reflexivity constraints.



A conjunctive query (CQ) q(x) is a formula ∃y ϕ(x,y), where ϕ is a con-
junction of atoms of the form Ak(t1) and Pk(t1, t2), and each ti is a term (an
individual or a variable from x, y). A tuple a ⊆ ind(A) is a certain answer to
q(x) over K = (T ,A) if I |= q(a) for all I |= K; then we write K |= q(a).

Query answering over OWL2QL KBs is based on the fact that, for any
consistent KB K = (T ,A), there is an interpretation CK such that, for all CQs
q(x) and a ⊆ ind(A), we have K |= q(a) iff CK |= q(a). The interpretation
CK, called the canonical model of K, can be constructed as follows. For each
pair [R], [B] with ∃R.B in T (we assume ∃R is just a shorthand for ∃R.>),
we introduce a fresh symbol w[RB] and call it the witness for ∃R.B. We write
K |= C(w[RB]) if ∃R− vT C or B vT C. Define a generating relation, ;, on the
set of these witnesses together with ind(A) by taking:

– a; w[RB] if a ∈ ind(A), [R] and [B] are vT -minimal such that K |= ∃R.B(a)
and there is no b ∈ ind(A) with K |= R(a, b) ∧B(b);

– w[R′B′] ; w[RB] if u; w[R′B′], for some u, [R] and [B] are vT -minimal with
K |= ∃R.B(w[R′B′]) and it is not the case that R′ vT R− and K |= B(u).

If a ; w[R1B1] ; · · · ; w[RnBn], n ≥ 0, then we say that a generates the path
aw[R1B1] · · ·w[RnBn]. Denote by pathK(a) the set of paths generated by a, and
by tail(π) the last element in π ∈ pathK(a). CK is defined by taking:

∆CK =
⋃

a∈ind(A)
pathK(a), aCK = a, for a ∈ ind(A),

ACK = {π ∈ ∆CK | K |= A(tail(π))},
P CK = {(a, b) ∈ ind(A)× ind(A) | K |= P (a, b)} ∪

{(π, π · w[RB]) | tail(π) ; w[RB], R vT P} ∪
{(π · w[RB], π) | tail(π) ; w[RB], R vT P−}.

Theorem 1 ([7, 13]). For every OWL2QL KB K = (T ,A), every CQ q(x)
and every a ⊆ ind(A), K |= q(a) iff CK |= q(a).

Given a CQ q(x) and a TBox T , a first-order formula q′(x), possibly with
= and 6=, is called an FO-rewriting for q(x) and T if, for any ABox A and any
a ⊆ ind(A), we have (T ,A) |= q(a) iff IA |= q′(a). If q′ is an FO-rewriting of
the form ∃y ϕ(x,y), where ϕ is built from atoms using only ∧ and ∨, then we
call q′(x) a positive existential rewriting for q(x) and T (or a PE-rewriting, for
short). We say that q′ is pure if it does not contain constants that do not occur
in q (such constants are interpreted by fresh individuals added to IA). The size
|q′| of q′ is the number of symbols in q′.

We also consider rewritings in the form of nonrecursive Datalog queries. We
remind the reader that a Datalog program, Π, is a finite set of Horn clauses
∀x (A1 ∧ · · · ∧ Am → A0), where each Ai is an atom of the form P (t1, . . . , tl)
and each tj is either a variable from x or a constant. A0 is called the head of the
clause, and A1, . . . , Am its body. All variables occurring in the head must also
occur in the body. A predicate P depends on a predicate Q in Π if Π contains a
clause whose head is P and whose body contains Q. Π is called nonrecursive if



this dependence relation for Π is acyclic. A nonrecursive Datalog query consists
of a nonrecursive Datalog program Π and a goal G, which is just a predicate.
A tuple a ⊆ ind(A) is a certain answer to (Π,G) over A if Π,A |= G(a). The
size |Π| of Π is the number of symbols in it. We distinguish between pure and
impure Datalog queries [3]. In a pure query (Π,G), the clauses in Π do not
contain constant symbols in their heads. One reason for considering only pure
queries in OBDA is that impure ones can add new facts to the database that do
not follow from the background ontology. Impure queries are known to be more
succinct than pure ones.

Given a CQ q(x) and an OWL2QL TBox T , a pure nonrecursive Datalog
query (Π,G) is called a nonrecursive Datalog rewriting for q(x) and T (or an
NDL-rewriting, for short) if, for any ABox A and any a ⊆ ind(A), we have
(T ,A) |= q(a) iff Π,A |= G(a). If Π does not contain constants that do not
occur in q then we say that the NDL-rewriting (Π,G) is pure.

3 Query Rewritings and Boolean Circuits

To establish results (1)–(3) on the size of rewritings mentioned in the introduc-
tion, we show how the problem of constructing circuits that compute monotone
Boolean functions can be reduced to the problem of finding pure FO- and NDL-
rewritings for CQs over OWL2QL ontologies.

Our reduction proceeds in three steps. First, we take any family f1, f2, . . . of
monotone Boolean functions in NP, where fn : {0, 1}n → {0, 1}, a polynomial
p and a family C1,C2, . . . of polynomial-size circuits such that fn(α) = 1 iff
Cn(α,β) = 1, for some β ∈ {0, 1}p(n). Using the Tseitin transformation [23], we
construct a polynomial-size CNF θfn that computes fn in the following sense:

Lemma 1. If fn is monotone then ϕαfn =
(∧

αj=0 ¬xj
)
∧ θfn is satisfiable iff

fn(α) = 1, for all α = (α1, . . . , αn) ∈ {0, 1}n.

Let ϕfn be ϕαfn for α = (0, . . . , 0). It should be clear that ϕαfn is obtained
from ϕfn by removing the clauses ¬xj for which the jth component of α is 1.

The second step is to encode the ϕfn by means of TBoxes Tfn and CQs qfn .
Let p1, . . . , pN be the propositional variables and C1, . . . , Cd the clauses in ϕfn .
Then Tfn contains the following concept inclusions, for 1 ≤ i ≤ N , 1 ≤ j ≤ d:

Ai−1 v ∃P−.X`
i , X`

i v Ai, for ` = 0, 1, X0
i v Zi,j if ¬pi ∈ Cj ,

Zi,j v ∃P.Zi−1,j , X1
i v Zi,j if pi ∈ Cj ,

A0 uAi v ⊥, A0 u ∃P v ⊥, A0 u Zi,j v ⊥, if (i, j) /∈ {(0, 1), . . . , (0, n)},

and the CQ is defined as follows:

qfn = ∃y ∃z
[
A0(y0) ∧

N∧
i=1

P (yi, yi−1) ∧
d∧
j=1

(
P (yN , zN−1,j) ∧

N−1∧
i=1

P (zi,j , zi−1,j) ∧ Z0,j(z0,j)
)]
,



where y = (y0, . . . , yN ) and z = (z0,1, . . . , zN−1,1, . . . , z0,d, . . . , zN−1,d). The size
of Tfn and qfn is O(|Cn|2). Note that Tfn is acyclic and qfn is tree-shaped and
has no answer variables. The canonical model C(Tfn ,{A0(a)}) of (Tfn , {A0(a)})
and the query qfn are illustrated below.

C(Tfn ,{A0(a)}) a
A0

X1
1 , A1

X0
1 , A1

X1
2 , A2, Z2,1

X0
2 , A2

X1
2 , A2

X0
2 , A2

X1
3 , A3

X0
3 , A3

X1
3 , A3

X0
3 , A3

X1
3 , A3

X0
3 , A3

X1
3 , A3

X0
3 , A3, Z3,2

Z1,1Z0,1

Z2,2Z1,2Z0,2

qfn

y0
A0

y1 y2 y3

z2,1

z2,2

z1,1

z1,2

z0,1

z0,2

Z0,1
Z0,2

For each α = (α1, . . . , αn) ∈ {0, 1}n, we define the following ABox:

Aα =
{
A0(a)

}
∪
{
Z0,j(a) | 1 ≤ j ≤ n and αj = 1

}
.

Lemma 2. (Tfn ,Aα) |= qfn iff ϕαfn is satisfiable, for α ∈ {0, 1}n.

To complete our reduction, we show that rewritings for qfn and Tfn can be
turned into Boolean circuits computing fn.

Lemma 3. (i) Suppose q′fn is a pure FO- (PE-) rewriting for Tfn and qfn . Then
there is a (monotone) Boolean formula ψfn computing fn with |ψfn | ≤ |q′fn |.

(ii) Suppose (Πfn , G) is a pure NDL-rewriting for Tfn and qfn . Then there
is a monotone Boolean circuit Cfn computing fn with |Cfn | ≤ |Πfn |.

The proof proceeds by eliminating quantifiers in the rewriting and replacing
its predicates with propositional variables using the fact that, in ABoxes Aα,
these predicates can only be true on the individual a. Lemmas 1 and 2 ensure
that the resulting Boolean formula or circuit computes fn. The next lemma
shows that circuits computing fn can be turned into pure rewritings for qfn and
Tfn .

Lemma 4. (i) Suppose qn is an FO-sentence such that (Tfn ,Aα) |= qfn iff
IAα |= qn, for all α ∈ {0, 1}n. Then there exists a pure FO-rewriting q′n for qfn
and Tfn with |q′n| ≤ |qn|+ p(n), for a polynomial p.

(ii) Suppose (Πn, G) is a pure NDL-query with a propositional goal G such
that (Tfn ,Aα) |= qfn iff Πn,Aα |= G, for α ∈ {0, 1}n. Then there is a pure
NDL-rewriting (Π ′n, G

′) for qfn and Tfn with |Π ′n| ≤ |Πn|+p(n), p a polynomial.

Now, results (1)–(3) formulated in the introduction can be obtained by ap-
plying Lemmas 1–4 to three concrete Boolean functions. For (1), we use the



function Cliquen,k of n(n − 1)/2 variables eij , 1 ≤ i < j ≤ n, which returns
1 iff the graph with vertices {1, . . . , n} and edges {{i, j} | eij = 1} contains
a k-clique. A series of papers, started by Razborov’s [19], gave an exponential

lower bound for the size of monotone circuits computing Cliquen,k: 2Ω(
√
k) for

k ≤ 1
4 (n/ log n)2/3. For monotone formulas, an even better lower bound is known:

2Ω(k) for k = 2n/3 [18]. The question whether Cliquen,k can be computed by
a polynomial-size circuit is equivalent to whether NP ⊆ P/poly.

To show (2), we use the function Genn3 of n3 variables xijk, 1 ≤ i, j, k ≤ n,
defined as follows. We say that 1 generates k ≤ n if either k = 1 or, for some
i and j such that xijk = 1, 1 generates both i and j. Genn3(x111, . . . , xnnn)
returns 1 iff 1 generates n. It is clearly a monotone function computable by
polynomial-size monotone circuits. On the other hand, any monotone formula
computing Genn3 is of size at least 2n

ε

, for some ε > 0 [17].
For (3), we use the function Matching2n of n2 variables eij , 1 ≤ i, j ≤

n, which returns 1 iff there is a perfect matching in a bipartite graph G with
vertices {v11 , . . . , v1n, v21 , . . . , v2n} and edges {{v1i , v2j } | eij = 1}, i.e., a subset E of
edges in G such that every node in G occurs exactly once in E. An exponential
lower bound 2Ω(n) for the size of monotone formulas computing this function
was obtained in [18]. However, Matching2n is computable by non-monotone
formulas of size nO(logn) [4].

The exponential bounds for the size of rewritings can be reduced to polyno-
mial by using two extra constants, say 0 and 1, which are included in the domain
of every IA (see [9] and [10] for polynomial-size NDL- and PE-rewritings, re-
spectively). As these constants may not occur in the original query and intended
ABoxes, we call such rewritings impure (in [9] and [10], 0, 1, = and polynomially-
many fresh existentially quantified variables are used to guess some part of the
canonical model). The difference between pure and impure rewritings is simi-
lar to the difference between deterministic circuits and nondeterministic circuits
with additional existentially quantified input variables. For example, Cliquen,k
is computed by a polynomial-size monotone nondeterministic circuit, but not by
a monotone deterministic circuit of polynomial size [19].

4 Why are Pure Rewritings so Long?

Let q(x) = ∃y ϕ(x,y) be a connected CQ and T a TBox. Let term q be the
set of terms in q. Denote by CT the disjoint union of the canonical models
for consistent (T , {R(aRB , bRB), B(bRB)}), in which the generating relation is
extended with aRB ; bRB . The RB-subtree of CT has root aRB and consists
of the full subtree of CT with root bRB extended with the edge (aRB , bRB). We
also need the formulas

extC(x) =
∨

AvT C

A(x) ∨
∨

∃RvT C

∃y R(x, y), extP (x, y) =
∨

RvT P

R(x, y),

for concepts C and role names P . Suppose CK |=a ϕ, K = (T ,A), where a is an
assignment of elements of ∆CK to the variables in ϕ under which a(x) ∈ ind(A)



for all x ∈ x. Consider an atom P (t, t′) ∈ q with bound variables t, t′ and assume
that a(t0) ∈ ind(A), for some t0 ∈ term q. The assignment a can send t and t′

to four different locations in CK: (A) a(t), a(t′) ∈ ind(A); (B) a(t) ∈ ind(A),
a(t′) /∈ ind(A); (B−) a(t) /∈ ind(A), a(t′) ∈ ind(A); (O) a(t), a(t′) /∈ ind(A). Let
us see how these alternatives can be reflected in a rewriting. In case (A) we have
CK |=a P (t, t′) iff A |=a extP (t, t′). Case (B) is possible only if, for some concept
∃R.B, we have a(t) ; w[RB], R vT P and the atoms of q ‘linked to’ t′ can be
mapped into the RB-subtree of CT . To illustrate, consider an example.

Example 1. Let T and q be as in the picture below. The answer variable x must
be mapped by a to an ABox element. However, y can be mapped either to an
ABox element or to the point a(x) · w[S−B] provided that a(x) is an instance
of ∃S−.B. In the latter case, we have two ways of mapping z: either to a(x) ·
w[S−B]w[SA′], in which case we must set a(v) = a(x) · w[S−B]w[SA′]w[T>], or to
a(x), provided that a(x) is an instance of ∃T . Thus we have two (partial) maps
f and g from q into the S−B-subtree of CT shown below.

T = { A v ∃S−.B, B v ∃S.A′,
A′ v ∃T }

q(x) = {S(y, x), S(y, z), T (z, v)}

x

y

z

v

S

S

T

aS−B

B

A′

S−

S

T

x

y

z

v

S

S

T

f

f

f

f

g

g

g

q q

These observations motivate our key definition. Given a pair (t, t′) of adjacent
terms in q, a tree witness6 for (t, t′) is a homomorphism f from the query
qf =

{
E(s) ∈ q | s ⊆ dom f, s 6⊆ [t]f

}
to the RB-subtree of CT , for some

∃R.B, such that f(t) = aRB , dom f is the smallest set containing t, t′ for which
s′ ∈ dom f whenever S(s, s′) ∈ q with s ∈ dom f \ [t]f , and all s ∈ dom f \ [t]f
are bound variables in q. Here ∼f denotes the equivalence relation on dom f
defined by taking s ∼f s′ iff f(s) = f(s′) and [t]f the equivalence class of t. In
Example 1, f and g are two tree witnesses for (x, y). Returning back to case (B),
we can say now that there must exist a tree witness f for (t, t′) such that a(t)
satisfies the following tree-witness formula twf for f with f(t) = aRB :

twf = ext∃R.B(t) ∧
∧
s∈[t]f

(t = s) ∧
∧

E(s)∈q, s⊆[t]f

extE(s).

Case (B−) is symmetric, and in case (O) there must exist S(s, s′) ∈ q for which
(B) holds, with P (t, t′) being ‘covered’ by the tree witness for (s, s′).

This analysis suggests the following idea for a rewriting. We guess pairs of
adjacent terms (t, t′) in q that will be mapped to edges of the tree part of CK
6 A different notion of tree witness was used for DL-LiteNhorn [13], where the structure

of the canonical models ensured uniqueness of every tree witness.



and the tree witnesses that will cover them, as in cases (B), (B−) and (O). The
part of q that is not covered by these tree witnesses will be mapped to ind(A),
as in case (A). The query representing the guesses is then evaluated over IA.
The following example shows, however, that this idea needs a refinement.

Example 2. Let q(x1, x4) = {R(x1, y2), R(y3, y2), R(y3, x4)}, shown below on the
left, and T = {A v ∃R, A v ∃R−}.

x1

y2

y3

x4

R R Rf

g
A

a

aw[R>] aw[R−>]

R−R

C(T ,{A(a)})

Clearly, there is a tree witness f for (x1, y2) with dom f = {x1, y2, y3} and
[x1]f = {x1, y3}, and a tree witness g for (x4, y3) with dom g = {x4, y3, y2} and
[x4]g = {x4, y2}. Although these tree witnesses cover the whole query q, they
are only ‘realised,’ say, in the canonical model C(T ,{A(a)}) (shown above on the
right) under conflicting maps: f sends x1, y3 to a and y2 to aw[R>], while g
sends x4, y2 to a and y3 to aw[R−>]; in fact, (T , {A(a)}) 6|= q(a, a).

Tree witnesses f and g, for (t, t′) and (s, s′), respectively, are compatible if
dom f∩dom g ⊆ [t]f∩[s]g. If f and g are incompatible and neither dom f ⊆ dom g
nor dom g ⊆ dom f , then we call f and g conflicting (e.g., f and g in Example 2).
A set Ξ of tree witnesses is called consistent if all pairs of tree witnesses in Ξ
are compatible. Let

qe(x) = detachedq ∨
∨

Ξ consistent

∃y
( ∧
f∈Ξ

twf ∧
∧

E(s)∈q
s 6⊆dom f, for all f∈Ξ

extE(s)
)
,

where detachedq = ⊥ if x 6= ∅; otherwise it is a disjunction of the sentences
∃x ext∃R.B(x) such that there is a homomorphism from q to the RB-subtree of
CT . The next theorem shows that qe is a pure PE-rewriting for q and T :

Theorem 2. For all A and a ⊆ ind(A), we have (T ,A) |= q(a) iff IA |= qe(a).

Example 3. Let q(x) = {Ri(x, yi) | i ≤ n} and T = {Ai v ∃Ri | i ≤ n}. Each
pair (x, yi) gives rise to one tree witness fi with twfi = Ai(x) ∨ ∃y Ri(x, y), and
qe =

∨
N⊆[0,n] ∃y (

∧
i∈N twfi ∧

∧
j /∈N Rj(x, yj)).

The size of qe is O((nT ,q + 1)|q| · |T | · |q|2), where nT ,q is the number of
distinct tree witnesses. Now, we observe that if

(conf) there are no conflicting tree witnesses for q and T
then qe can be transformed to the query

qc(x) = detachedq ∨ ∃y
∧
{t,t′}

t,t′ adjacent

[ ∧
E(s)∈q, s⊆{t,t′}

extE(s) ∨
∨

f is a tree witness
t,t′∈dom f

twf
]

(if q has no binary predicates then qc = qe).



Theorem 3. If T and q satisfy (conf) then, for any ABox A and a ⊆ ind(A),
we have (T ,A) |= q(a) iff IA |= qc(a).

The size of qc is O(nT ,q · |T |·|q|2). So, if (conf) holds and nT ,q is polynomial
then qc is a polynomial pure PE-rewriting of q and T . For instance, the expo-
nential qe of Example 3 reduces to polynomial qc = ∃y

∧
i≤n(Ri(x, yi) ∨ twfi).

Note, however, that the CQs and TBoxes used in Section 3 generate exponentially
many distinct tree witnesses.

We show now that, for a large class of CQs q and TBoxes T , all tree witnesses
f for each (t, t′) in q (even if there are exponentially many of them) can be
represented by a polynomial formula. Observe that each twf is determined by
a concept ∃R.B (such that the RB-subtree of CT contains the range of f) and
the equivalence relation ∼f on dom f . As the number of concepts ∃R.B is linear
in |T |, the rewriting qc may be regarded polynomial if we show that all tree
witnesses for each (t, t′) have the same equivalence relation. For example, let
q(x) = {S(x, y), R(y, zi) | 1 ≤ i ≤ n} and T = {A v ∃S, ∃S− v ∃R.B1, ∃S− v
∃R.B2}. There are 2n tree witnesses for (x, y), as each zi can be mapped either to
a B1- or a B2-point in CT , and yet they all define the same equivalence relation
and the same tree-witness formula ext∃S(x).

We formalise this intuition in the following definition. For a pair (t, t′) of
adjacent terms in q, we call f = (domf ,∼f ) a universal tree witness for (t, t′) if
domf is a subset of term q with t, t′ ∈ domf and ∼f is an equivalence relation
on domf such that qf =

{
E(s) ∈ q | s ⊆ domf , s 6⊆ [t]f

}
/∼f is a tree-shaped

query with root [t]f and, for every tree witness g for (t, t′),

– dom g = domf and there exists a homomorphism h : qf → CT that preserves
the distance from the root and g(s) = h([s]f ), for every s ∈ domf .

A universal tree witness f for (t, t′) is not a tree witness in the sense of our orig-
inal definition, but rather a convenient structure representing all tree witnesses
for (t, t′): we can merge the tree-witness formulas for (t, t′) into one formula

twf =
[ ∨
∃R.B∈Φf

ext∃R.B(t)
]
∧
∧
s∈[t]f

(t = s) ∧
∧

E(s)∈q, s⊆[t]f

extE(s),

where Φf is the set of concepts ∃R.B such there is a homomorphism h from qf
to the RB-subtree of CT with h([t]f ) = aRB .

We now identify a class of CQs and TBoxes for which a universal tree witness
is unique (if exists) and can be constructed in time polynomial in |q| and |T |.
Intuitively, for each tree witness f , we disallow situations in which CT and the
quotient qf/∼f

of qf simultaneously contain fragments of the form

T S
T

S

T S

qf/∼f CT



We say that a role S is forward if u ; v for all (u, v) ∈ SCT . If neither S nor
its inverse S− is forward then S is said to be a twisty role. A tree witness f for
(t, t′) is called perfect if, for all T (s1, s2), S(s2, s3) ∈ qf/∼f

such that s2 6= [t]f
and S is twisty, we have CT 6|= inv(T, S) ∧ suc(T, S), where

suc(T, S) = ∃x, y, z (T (x, y) ∧ S(y, z) ∧ (x 6= z)),

inv(T, S) = ∃x, y (T (x, y) ∧ S(y, x)).

Lemma 5. There is a polynomial-time algorithm which, given q, T and a pair
(t, t′), checks whether all tree witnesses for (t, t′) are perfect, and if this is the
case, returns a unique universal tree witness f t,t′ for (t, t′).

Note that even though there may be exponentially many tree witnesses for
(t, t′), the algorithm checks whether they all are perfect in polynomial time. We
are now in a position to define our polynomial PE-rewriting qp for q and T :

qp(x) = detachedq ∨ ∃y
∧
{t,t′}

t,t′ adjacent

[ ∧
E(s)∈q, s⊆{t,t′}

extE(s) ∨
∨

s,s′ adjacent
t,t′∈dom fs,s′

twfs,s′

]
.

Theorem 4. If all tree witnesses for q and T are perfect and condition (conf)
is satisfied then, for any ABox A and any a ⊆ ind(A), we have (T ,A) |= q(a)
iff IA |= qp(a). Moreover, qp is constructed in time polynomial in |q| and |T |.

If T does not contain any twisty roles, then all tree witnesses in any CQ q
over T are perfect. On the other hand, all examples of conflicting tree witnesses
above involve twisty roles. The following theorem shows that this is no accident:

Theorem 5. Let T be an OWL2QL ontology without twisty roles. Then, for
any CQ q, there are no conflicting tree witnesses for q and T . Thus, qp is a
pure PE-rewriting for q and T and it can be constructed in polynomial time.

Note that OWL2EL ontologies satisfy this condition, and so a polynomial
rewriting similar to qp can also be used for CQ answering over such ontologies
provided that the ABoxes are complete with respect to the ontologies [12].

5 Conclusions

As we saw in Section 3, pure PE- and NDL-rewritings of CQs over OWL2QL
ontologies are of exponential size in the worst case. The analysis in Section 4
showed that the length of a rewriting is related to the number of tree witnesses in
the query, which reflect how various parts of the query can be homomorphically
mapped to the intensional tree part of the canonical model. Thus, a rewriting
can be lengthy if the original query is sufficiently long and the intensional part of
the canonical model for the ontology is sufficiently complex. We proved that by
restricting the interaction between inverse roles and role inclusions in ontologies
and queries, we can guarantee transparent polynomial rewritings. Moreover, as
shown by a series of experiments [12], real-world ontologies and CQs contain
very few tree witnesses, which are never in conflict, satisfy the above mentioned
restrictions, and so enjoy pure, polynomial PE-rewritings.
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15. Pérez-Urbina, H., Motik, B., Horrocks, I.: A comparison of query rewriting tech-
niques for DL-Lite. In: Proc. of DL. vol. 477. CEUR-WS.org (2009)

16. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. on Data Semantics X, 133–173 (2008)

17. Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. In: Proc. of
FOCS. pp. 234–243 (1997)

18. Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth.
J. ACM 39(3), 736–744 (1992)

19. Razborov, A.: Lower bounds for the monotone complexity of some Boolean func-
tions. Dokl. Akad. Nauk SSSR 281(4), 798–801 (1985)
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