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1 Introduction

A key application of Description-Logic based ontologies is Ontology-Based Data
Access (OBDA) [9]. In such scenarios a TBox is used to describe the schema
of the application while answers to conjunctive queries reflect both the schema
and the data. Unfortunately, it is well-known that conjunctive query (CQ) an-
swering over expressive Description Logics (DLs) is of very high computational
complexity [7, 5].

The need for efficient query answering has motivated the development of
(families of) lightweight ontology languages, such as the DL-Lite family [3, 2].
Query answering in these languages is usually performed via a technique called
query rewriting. According to this technique, a query and a DL-Lite ontology are
transformed into a union of conjunctive queries (often called a UCQ rewriting)
such that, the answers of the union of conjunctive queries over the input data
and discarding the ontology are precisely the answers of the original query over
the data and the ontology.

In the last years a large number of different algorithms and systems for com-
puting rewritings for DL-Lite ontologies has been presented. Examples of such
systems are QuOnto [1], Requiem [8], Presto [10], Nyaya [6], and Rapid [4].
Roughly speaking, all systems apply a set of equivalence-preserving transforma-
tions over the input query and TBox producing new queries until a fix-point
is reached. In several previous approaches [3, 8, 6] this process is largely brute-
force, in the sense that the algorithm iterates over the currently computed set
of queries, over the atoms of the query and over the TBox axioms, and if some
of the rules of the algorithm applies then a new query is generated.

It was shown recently that given a query q, a TBox T and an atom α of q, a
UCQ rewriting for q, T can be computed by first computing a UCQ rewriting u−

for query q \{α} (i.e., q without the atom α) and then ‘extending’ this rewriting
with additional information from T that only regards α [11]. Using this idea
we present a novel algorithm for computing a UCQ rewriting for queries over
DL-LiteR-TBoxes1 incrementally. Roughly speaking, given a query q with atoms
α1, . . . , αn the algorithm first computes UCQ rewritings ui for ‘special’ queries
that contain only a single body atom αi. Finally, these UCQs are iteratively
‘combined’ until a UCQ rewriting for the input query has been computed.

Compared to several previous approaches our algorithm is significantly guided.
At each step all the knowledge of T that regards a single atom αi is ‘materialised’

1 DL-LiteR is a popular member of the DL-Lite family [3].



into ui and is used to extend the currently computed UCQ. Our approach also
shows that the process of rewriting (at least for DL-Lite) can be largely per-
formed in parallel by ‘decomposing’ q into parts and processing them separately,
which to the best of our knowledge, was previously unknown.

Furthermore, to further increase the efficiency of the algorithm, we addition-
ally present a list of optimisations which considerably decrease its computation
time. Many of the optimisations are intended to increase the efficiency of our
final backward-subsumption (redundancy elimination) algorithm.

Finally, we have implemented the proposed algorithm and optimisations and
we have compared them against several available state-of-the-art systems. Our
results show that computing a UCQ rewriting incrementally is in the vast major-
ity of cases more efficient than all systems. More precisely, our algorithm requires
less time and computes the smallest UCQ rewriting in nearly all ontologies. In-
terestingly, when compared to the original DL-Lite algorithm [3], which also uses
the same technique to compile knowledge from T , our algorithm is several orders
of a magnitude faster, which shows the benefits of the more guided approach.

An extended version of the paper with detailed proofs of correctness can be
found online.2

2 Preliminaries

Let C, R, and I be countable, pairwise disjoint sets of atomic concepts, atomic
roles, and individuals. A DL-LiteR-role is either an atomic role P or its inverse
P−. DL-LiteR-concepts are defined inductively by the grammar B := A | ∃R,
where A ∈ C and R is a DL-LiteR-role. A DL-LiteR-TBox is a finite set of
axioms of the form B1 v B2 or B1 uB2 v ⊥, with B(i) DL-LiteR-concepts and
⊥ the bottom concept that is empty in all interpretations, or of the form R1 v R2

with R(i) DL-LiteR-roles. An ABox is a finite set of assertions of the form A(c)
or P (c, d) for A ∈ C, P ∈ R and c, d ∈ I. A DL-LiteR-ontology O = T ∪ A
consists of a TBox and an ABox.

A conjunctive query (CQ) q is an expression of the form {~x | {α1, . . . , αm}}
where {α1, . . . , αm} is called the body of the query with αi a concept or role
atom of the form A(t) or R(t, t′) (for t, t′ function-free terms and A,R atomic)
and ~x = (x1, . . . , xn) is a tuple of variables called the distinguished (or answer)
variables, each appearing in at-least some atom αi. The remaining variables of q
are called undistinguished. We use var(q) to denote all the variables appearing in
q and avar(q) to denote all its distinguished variables. We often abuse notation
and use q to refer to the set of its atoms, i.e., {α1, . . . , αm}. Hence, for β an
atom and q a CQ, q ∪ {β} denotes a new CQ that consists of the atoms of q
plus β and the same distinguished variables as q. For the rest of the paper, and
without loss of generality, we will assume that queries are connected [5]. Finally,
a union of conjunctive queries (UCQ) is a set of CQs.

Given CQs q1, q2 with distinguished variables ~x and ~y, respectively, we say
that q2 subsumes q1, if there exists a substitution θ from the variables of q2 to the

2 http://image.ece.ntua.gr/~gstoil/main.pdf



variables of q1 such that the set [{Q(~y)}∪ q2]θ is a subset of the set {Q(~x)}∪ q1,
where Q is a predicate of the same arity as ~x and ~y that does not appear in q1
or q2. Finally, for a UCQ u and CQ q, we say that q is redundant in u if another
query in u exists that subsumes q; otherwise it is called non-redundant.

For a DL-LiteR-TBox, a UCQ rewriting u for q, T can be computed using the
perfect reformulation algorithm (PerfectRef) [3]. The algorithm applies exhaus-
tively a reformulation and a reduction step that generate new CQs; the process
terminates when no new CQ is generated. More precisely, in the reformulation
step the algorithm picks a CQ q, an atom α in the body of the CQ and an axiom
I in T and applies the axiom on α replacing it with a new atom. For example,
for the query q1 = {x | {R(x, y), A(y)}} and the axiom I1 = ∃R v A, applying
I1 on atom A(y) produces the new CQ q2 = {x | {R(x, y), R(z, y)}}, where z
is a ‘fresh’ variable. In the reduction step a new CQ is generated by applying
to some CQ q the most general unifier (mgu) of two of its atoms. For example,
applying reduction on query q2 above generates query q3 := {x | {R(x, y)}}.

Let G = 〈U,E〉 be a graph. For a, b ∈ U we say that b is reachable from
a, written a  G b, if c0, . . . , cn with n ≥ 0 exist where c0 = a, cn = b and
〈ci, ci+1〉 ∈ E for each 0 ≤ i < n. An element c ∈ U is called top in G if for each
c′ ∈ U we have c G c′.

3 Extending Query Rewritings

It has been shown in [11] that given a CQ q, a rewriting u for q, T and an
atom α, a UCQ rewriting for the query q′ = q ∪ {α}, T can be computed by
re-using the previously computed (given) information for q. Roughly speaking,
the algorithm computes a UCQ rewriting uα for a query qα that consists only
of the atom α and then extends the queries in u with atoms of the queries from
uα. The following example illustrates this idea.

Example 1. Consider the following DL-LiteR-TBox and CQ:

T = {Professor v ∃teaches, ∃teaches− v Student} q = {x | {teaches(x, y)}}

and the UCQ rewriting u = {q, q1} where q1 = {x | {Professor(x)}} for q, T
computed using PerfectRef. Assume now, that q is extended in order to retrieve
only those individuals that teach students—that is, q is extended to q′ = {x |
{teaches(x, y),Student(y)}}. In order to compute a UCQ rewriting for q′, T the
algorithm presented in [11] proceeds as follows.

First, it constructs the query qα = {y | {Student(y)}} that consists of the
single body atom α and its distinguished variables are the common variables
between α and q. Then, a UCQ rewriting uα = {qα, q′α} for qα, T is computed
using PerfectRef, where q′α = {y | {teaches(z, y)}} for z a fresh variable. Subse-
quently, the algorithm initialises an empty UCQ u′ and iterates over the sets u
and uα constructing and adding new queries to u′ as follows:

1. The atoms of qα are added to q; hence, query q′ is added to u′.



2. The atoms of q′α are added to q; hence, query q′1 = q ∪ {teaches(z, y)} is
added to u′.

3. The algorithm identifies that the body atom of q′α can be unified into the
body of q; the result (i.e., CQ q) is added to u′. Additionally, since after this
unification CQ q is part of the target UCQ u′ all queries that are produced
in u due to q also need to be added; hence, query q1 is also added to u′.

4. No query is generated from q1 and qα (or q′α) since q1 does not contain all
the distinguished variables of qα (or q′α), i.e., avar(qα) * var(q1).

It can be verified that the set u′ = {q′, q′1, q, q1} is a UCQ rewriting for q′, T . ♦

Intuitively, the above approach is possible because the process of rewriting is
to a large extend ‘local’ with respect to the atoms of a query. For example,
the application of reformulation on some query atom is independent from the
other atoms of the query, hence the information from T that regards α can be
materialised and then used to extend the queries in u. The only exception is the
reduction step where two different atoms are unified. This step was introduced
in [3] because an axiom might only be applicable to a reduction of some query—
that is, after reduction the reformulation procedure can continue. To tackle these
cases the algorithm in [11] checks whether a query from uα can be ‘absorbed’
(‘merged’) into a query qi from u. Note, however, that the algorithm does not
apply exhaustively all possible unifications as done in the original reduction step.
In contrast, it unifies a query qα into a query q in such a way that the queries
that are (possibly) produced in u due to q can still be produced. This is similar
to the factorisation optimisation [6]. Our algorithm uses the following function.

Function mergeCQs: Let q, q′ be two queries. Then, function mergeCQs(q′, q)
returns a substitution σ defined as follows: (i) if there exists α ∈ q′ ∩ q, then
σ is the identity substitution; (ii) if there exist R(z, y) ∈ q′, R(x, y) ∈ q or
R(y, z) ∈ q′, R(y, x) ∈ q and x, y, z are pair-wise different, then σ = {z 7→ x};
otherwise, σ = ∅.

In Example 1, for q′α and q we have mergeCQs(q′α, q) = {z 7→ x}, hence q as
well as all queries that are produced in u due to q (i.e., q1) are added to the
result. To accomplish the latter, however, the algorithm needs to be aware of
the dependencies of the queries in the given (pre-computed) UCQ u. To capture
this information, instead of a UCQ, the algorithm accepts as input a graph G of
queries which encodes the dependencies between the queries in u.

Definition 1. Let q be a CQ and let T be a DL-LiteR-TBox. A rewriting graph
for q, T is a directed graph G = 〈u,H,m〉, where u is a UCQ rewriting for q, T ,
H is a binary relation over u, and each node qi ∈ u is labelled with a substitution
m(qi). Moreover, G satisfies the following properties: (i) If 〈q1, q2〉 ∈ H, then
q2 is produced from q1 by the application of a reformulation or reduction step,
and (ii) for each 〈q1, q2〉 ∈ H if q2 is produced by a reformulation step, then
m(q2) = m(q1), while if it is produced by a reduction step with σ the mgu, then
m(q2) = m(q1) ◦ σ.



Algorithm 1 IncrementalRew(q, T )

input: A CQ q and a DL-LiteR-TBox T .

1: Let S be the set of body atoms in q
2: Remove an atom α from S s.t. var(α) ∩ avar(q) 6= ∅
3: Set av := var(α) ∩ avar(q) and cv := var(α)
4: Gi := ex-PerfectRef({av | {α}}, T )
5: while S 6= ∅ do
6: Remove an atom α′ from S s.t. var(α′) ∩ cv 6= ∅
7: jv := cv ∩ var(α′)
8: av := av ∪ (var(α′) ∩ avar(q))
9: Gα := ex-PerfectRef({jv | {α′}}, T )

10: G′ := 〈u′,H′,m′〉 for an empty UCQ u′, binary relation H′ and mapping m′

11: Let qi be a top CQ in Gi and qα a top CQ in Gα
12: joinGraphs(qi, qα,G′,Gi,Gα, av, jv)
13: cv := cv ∪ var(α′)
14: Gi := G′
15: return removeRedundant(G)

A rewriting graph for a query q over a DL-LiteR-TBox can be easily com-
puted by a straightforward extension of the PerfectRef algorithm, which we call
ex-PerfectRef. The details of the algorithm have been presented in [11].

4 An Incremental Query Rewriting Algorithm

The previous results show that a rewriting for a given (fixed) query over some
TBox can be computed incrementally by considering one of its atoms at a time.
For example, for query q′ = {x | {teaches(x, y),Student(y)}} of Example 1 we
can fist select atom α1 := teaches(x, y) compute a UCQ rewriting uα1 for qα1 =
{x | {teaches(x, y)}} (which consists of the set {q, q1} of the example) and then
pick the last atom, compute a UCQ uα2

for qα2
:= {y | {Student(y)}} and finally

extend uα1
with atoms of queries from uα2

as shown in Example 1. In general,
given a (fixed) query one can pick one of its atoms, compute a rewriting (graph)
for it, and then iteratively add the rest of its atoms by extending the previously
computed rewriting. When all the atoms have been processed a UCQ rewriting
for the given query would have been computed. In contrast to our previous work
[11], at each step this algorithm should produce a rewriting graph out of the
input rewriting graph instead of a UCQ in order to be able to iteratively process
all the atoms.

This idea is illustrated in Algorithm 1. The algorithm first selects some atom
α such that some of its variables appear as distinguished variables in q (line 2)
and computes a rewriting graph Gi for the query {var(α) ∩ avar(q) | {α}} (line
4). Hence, initially a rewriting graph for a query that contains only atom α of
q, variables cv := var(α) of q and distinguished variables av := var(α) ∩ avar(q)
of q have been computed. Then, the algorithm selects one-by-one the remaining
atoms and extends the previously computed rewriting graph (lines 5–14). More



Algorithm 2 joinGraphs(qh, qα,G′,G,Gα, av, jv)

input: Rewriting graphs G′ = 〈u′,H′,m′〉, G = 〈u,H,m〉 and Gα = 〈uα,Hα,mα〉
and two sets of variables jv and av.

1: κ := m(qh)
2: if canBeJoined(qh, κ, jv) then
3: Create CQ qc := {av | qh ∪ (qα)κ}, set m′(qc) := κ and add qc to u′

4: Set σ := mergeCQs(qα, qh)
5: if σ 6= ∅ then
6: Add 〈qc, (qh)σ〉 to G′
7: for all q′ s.t. qh  G q

′ do
8: Set m′({av | q′}σ) := κ ◦ σ
9: for all 〈q′, q′′〉 ∈ G do Add 〈{av | q′}σ, {av | q′′}σ〉 to G′

10: for all 〈qα, q′〉 ∈ Gα do
11: Create CQ q′c := {av | qh ∪ (q′)κ}, set m′(q′c) := κ and add 〈qc, q′c〉 to G′
12: joinGraphs(qh, q

′,G′,G,Gα, av, jv)
13: for all 〈qh, q′〉 ∈ G do
14: if canBeJoined(q′,m(q′), jv) then
15: Create CQ q′c := {av | q′ ∪ (qα)κ}, set m′(q′c) := κ and add 〈qc, q′c〉 to G′
16: joinGraphs(q′, qα,G′,G,Gα, av, jv)

precisely, at the beginning of the i-th iteration the algorithm has computed a
rewriting graph Gi for a query qi that contains i atoms of q, cv contains the
variables of q that appear in qi, while av the distinguished variables of q that
appear in qi. Hence, it picks another atom α′ such that some of its variables also
appear in cv (line 6), it adds the variables of α′ that are distinguished in q to
av (line 8), it computes a rewriting graph Gα for the query {var(α′) ∩ cv | {α′}}
(line 9) and then, it joins G with Gα′ using function joinGraphs (line 12) storing
the result to G′. Finally, after processing all atoms of the query it uses the
well-known redundancy elimination algorithm proposed in [8] to remove the
redundant (subsumed) queries (line 15).

Function joinGraphs is shown in Algorithm 2. Intuitively, this algorithm com-
putes the Cartesian product of the two input rewriting graphs (modulo cases
where queries should be merged). The intuition is that if 〈q, q′〉 ∈ G (i.e., q′

is produced by q) and qα is a vertex in Gα, then the same step would also be
applicable to query q ∪ qα—that is, q ∪ qα will produce the CQ q′ ∪ qα (for-loop
in line 13). Similarly, for q a vertex in G and 〈qα, q′α〉 ∈ Gα (for-loop in line 10).
In addition the algorithm also checks whether a CQ from Gα can be merged into
some CQ qh from G (line 4). If this is the case then the queries that have been
produced in G due to qh are copied to the new rewriting graph (see lines 7–9).

Note that the graphs can be cyclic but standard graph-traversal algorithms
can be used to guarantee termination.

Example 2. Consider the TBox T and CQ q′ = {x | {teaches(x, y),Student(y)}}
of Example 1. A run of Algorithm 1 is the following:

(1.) First, it selects atom α s.t. var(α) ∩ avar(q′) 6= ∅ (line 2). The only
atom that satisfies this condition is α = teaches(x, y). Subsequently, algorithm



ex-PerfectRef is executed for q = {x | {teaches(x, y)}} and T . This creates the
rewriting graph Gi = 〈u,H,m〉, where u = {q, q1} is as defined in Example 1,
H = {〈q, q1〉} and m(q) = m(q1) = ∅ (line 4). At this point cv = {x, y} and
av = {x}.

(2.) Next, the algorithm picks another atom α′ of q′ s.t. var(α′) ∩ cv 6= ∅.
One such atom is α′ = Student(y). Hence, using again algorithm ex-PerfectRef
it computes for qα = {y | {Student(y)}} and T (line 9) the rewriting graph
Gα = 〈uα,Hα,mα〉, where uα = {qα, q′α} is as defined in Example 1, H =
{〈qα, q′α〉} and m(qα) = m(q′α) = ∅. Subsequently, it calls algorithm joinGraphs
with parameters q, qα, G′, Gi (as computed in the previous step), Gα and the
variable sets av = {x} and jv = {y} in order for G′ to reflect the new graph.
This algorithm proceeds as follows: first, it selects q from Gi and qα from Gα and
creates the query q′ = {x | {teaches(x, y),Student(y)} (by adding atoms of qα to
q) (line 3). Then, it proceeds to the child of qα, (i.e., to q′α) and it creates the
CQ q′1 = {x | {teaches(x, y), teaches(z, y)}} (by adding atoms of q′α to q) (line
11). Moreover, it also adds the relation 〈q′, q′1〉 to G′. Subsequently, a recursive
call to joinGraphs is made with first two parameters q and q′α. In this call, in line
4, mergeCQs(q′α, q) returns {z 7→ x}, hence tuples 〈q′1, q〉 and 〈q, q1〉 are added
to G′, and m(q) = m(q1) = {z 7→ x}. (Note that qσ = q and q1σ = q1) Then, the
algorithm returns from the recursive call and proceeds in line 13 to the child of q
(i.e., q1) but canBeJoined(q1,m(q1), jv) returns false for the reasons explained in
Example 1 item 4. Hence, the algorithm terminates and we have G′ = 〈u′,H′,m′〉
where u′ = {q′, q′1, q, q1} (as defined in Example 1), H′ = {〈q′, q′1〉, 〈q′1, q〉〈q, q1〉}
and m(q′) = m(q′1) = ∅, m(q) = m(q1) = {z 7→ x}. ♦

5 Optimisations

5.1 Optimising the Last Iteration

As explained earlier, Algorithm 2 computes the cartesian product between two
rewriting graphs. The structure of the computed graph is important while pro-
cessing the atoms of the query, however, it is not important after processing the
last atom of the input query. Consequently, in the last iteration, Algorithm 1
can call a simplified version of Algorithm 2 that constructs a set of CQs rather
than a rewriting graph. Algorithm 3 depicts the simplified algorithm. Roughly
speaking, it is obtained from Algorithm 2 by, removing the for-loop starting in
line 13, computing for the last selected atom α a set uα rather than a rewriting
graph Gα, and adding the computed queries to a UCQ rather than a graph.

5.2 Optimising Redundancy Elimination

In line 15 Algorithm 1 applies the well-known redundancy elimination algorithm
from [8]. As it has been shown by several experimental evaluations [8, 4], this
method usually does not perform well in practice, because it consists of several
loops over the (potentially large) set of computed CQs. In order to improve the



Algorithm 3 OptimisedExtensionStep(G, uα, jv, av)

Input: A rewriting graph G = 〈u,H,m〉, a UCQ uα, and two sets of variables.

1: Initialise a queue Q with a top element in G
2: Initialise a UCQ U := ∅
3: while Q 6= ∅ do
4: Remove the head q of Q and let κ := m(q)
5: if canBeJoined(q, κ, jv) then
6: Add {av | q ∪ (qα)κ} to U
7: for all qα ∈ uα do
8: σ := mergeCQs(qα, q)
9: if σ 6= ∅ then

10: for all q′ s.t. q  G q
′ do Add {av | q′}σ to U

11: else Add each q′ such that 〈q, q′〉 ∈ G to Q
12: return U

performance of this method our algorithm uses the following two approaches.
First, it tries to identify queries that, if added to the final rewriting, they are
going to be redundant. Clearly, such queries need not be added, hence reducing
the size of the set over which algorithm removeRedundant would be executed.
Secondly, it also tries to identify queries that are going to be non-redundant.
Such queries can then be excluded from the final check. Our algorithm identifies
such queries as follows.

In the last iteration and before calling Algorithm 3 it executes the standard
subsumption checking algorithm over G and stores all subsumption relations.
Note that, the size of G at this point is expected to be significantly smaller than
that of the final UCQ, hence the algorithm should behave well in practice. Then,
when executing Algorithm 3 it identifies redundant queries as follows:

– In line 10, it adds a query {av | q′}σ to U only if for q the subsumer of q′

(if it exists) {av | q} is not already in U .
– Let q selected in line 4. If a subsumer q′ of q exists such that, either {av | q′} is

already in U , or q′ ⊆ q, m(q′) = m(q), and canBeJoined(q′,m(q′), jv) = true,
then the algorithm ‘skips’ q—that is, it adds each q′′ such that 〈q, q′′〉 ∈ G
to Q and it continues with the next CQ.

Also, Algorithm 3 is modified to identify non-redundant queries as follows:

– At the beginning it initialises an empty set NR of non-redundant queries.
– In line 10, if {av | q′}σ = {av | q′} and q′ is non-redundant in u it adds
{av | q′}σ to NR.

– In line 6, it adds {av | q ∪ (qα)m(q)} to NR if none of the predicates in qα
appear in any CQ in u and if for each q′α ∈ uα we have mergeCQs(q′α, q) = ∅.

– Finally, it returns both the UCQ U and the set NR.

Subsequently, the returned set NR is used by method removeRedundant as fol-
lows: All queries that are in the set NR are excluded from redundancy checking.



Table 1: Comparison between PerfectRef, Nyaya, Rapid, and versions of IQAROS

O Q
Size of UCQ UCQ Computation Time Overall Rewriting Time

PR Nyaya Rapid Inc1 Inc2 Inc3 PR Nyaya Rapid Inc1 Inc2 Inc3 PR Nyaya Rapid Inc1 Inc2 Inc3

P5

1 6 6 6 6 6 6 1 14 7 1 1 2 1 14 7 1 2 2
2 11 10 10 10 10 10 15 128 14 7 3 3 17 128 15 8 4 4
3 22 13 13 13 13 13 256 726 22 76 19 19 261 726 23 78 21 21
4 45 15 15 15 15 15 1828 1889 33 288 173 166 1830 1889 36 291 178 169
5 90 16 16 16 16 16 32255 16062 75 838 306 308 32270 16062 77 841 310 310

P5X

1 14 14 14 14 14 14 0 12 10 0 0 1 1 12 10 0 1 1
2 86 66 25 81 25 25 2 130 23 2 3 1 13 170 26 6 4 3
3 530 374 127 413 133 74 36 540 92 24 6 12 150 1415 135 95 19 36
4 3476 2475 636 2070 670 393 656 1672 343 187 46 122 5876 3842 1181 313 283 445
5 23744 17584 3180 10352 3352 2057 41454 15095 2061 828 214 371 326400 142580 5252 2817 1078 1233

S

1 6 6 6 6 6 6 0 15 6 0 0 0 0 15 6 0 0 0
2 202 3 2 204 12 2 12 11 9 12 4 3 34 12 9 12 4 3
3 1005 7 4 864 96 4 190 46 14 60 8 7 677 48 14 65 9 7
4 1548 5 4 1428 84 4 254 34 14 104 9 6 889 34 14 116 10 7
5 8693 13 8 6048 672 8 8216 159 36 1018 227 93 54252 163 37 1146 236 93

U

1 2 2 2 2 2 2 0 25 9 1 1 2 1 25 9 1 1 2
2 189 1 1 190 5 1 24 7 19 12 3 4 32 7 19 12 3 4
3 296 4 4 300 20 4 112 172 13 77 5 7 144 172 14 79 5 7
4 1763 2 2 1688 45 2 826 15 17 253 8 10 1500 15 17 258 8 10
5 3418 11 10 3375 90 10 2680 107 18 527 17 20 5083 108 19 582 18 20

UX

1 5 5 5 5 5 5 0 24 11 1 1 2 0 24 11 1 2 2
2 286 1 1 287 7 1 14 6 13 10 4 4 31 6 13 11 4 4
3 1248 12 12 1260 84 12 118 166 20 80 10 11 534 166 21 104 21 11
4 5385 5 5 5137 129 5 829 15 17 201 11 13 6354 15 17 243 15 13
5 9220 26 25 8955 225 25 2625 115 26 427 31 53 19622 120 30 593 67 53

A

1 402 248 27 357 77 77 24 1231 18 17 5 10 55 1304 18 18 11 14
2 103 93 54 103 54 54 124 4928 43 39 12 16 127 4967 45 39 43 17
3 104 105 104 104 104 104 656 35451 97 173 103 106 661 35491 97 177 328 107
4 492 455 333 471 320 320 1237 17121 170 170 58 52 1297 17511 208 197 130 55
5 624 - 624 624 624 624 355571 - 383 3412 258 620 355872 384 3667 491 637

AX

1 783 556 41 794 431 431 30 1282 26 18 4 10 135 1649 26 24 8 13
2 1812 1738 1546 1812 1653 1545 141 4493 649 57 26 30 892 5588 1191 752 772 92
3 4763 4742 4466 4763 4466 4466 707 34032 1694 186 48 125 8244 51352 2225 10018 8006 491
4 7251 6565 4497 7229 6639 4479 1282 16569 1247 192 37 45 12782 36460 2785 4891 3579 304
5 78885 - 32956 78885 74025 32960 319681 - 3810 4361 665 1276 - - 60006 - - 26770

Note that, some of the conditions above might seem rather strict. However, as
shown by our experimental evaluation these are usually satisfied in practice and
they can indeed be very effective. Moreover, their implementation overhead can
be noticeable in some cases, however, their benefits in several difficult scenarios
greatly outperforms it.

6 Evaluation

We have implemented Algorithms 1–3 in a prototype tool called IQAROS3 and
have compared it against PerfectRef [3], Nyaya [6], Requiem [8], and Rapid [4].4

Regarding IQAROS we included three versions; the first one (Inc1) implements
Algorithms 1 and 2 without any optimisations; the second one (Inc2) uses Al-
gorithm 3 instead of Algorithm 2 when it adds the last atom of the query; the

3 http://code.google.com/p/iqaros/
4 We were not able to obtain Presto as it is not publicly available. We also do not

present Requiem due to space limitations and since Rapid outperforms it.



third one (Inc3) refines Inc2 by also implementing the various optimisations de-
tailed in the previous section. For the evaluation we used the relatively standard
framework proposed in [8], however, we did not include results for ontologies V
and P1 since they are rather trivial for all systems. Experiments were conducted
on a MacBook Pro with a 2.66GHz processor and 4GB of RAM, with a time-out
of 600 seconds.

Table 1 presents the results for each system, where the columns annotated as
“Size of UCQ” present the size of the computed UCQ before the final redundancy
elimination (after redundancy elimination all systems return the same UCQ, as
the ones reported in [8]), while the rest present the computation time before and
after redundancy elimination (measured in milliseconds).

First we compare the different versions of IQAROS. We observe that the size
of the computed UCQs decreases from Inc1 to Inc3. The difference between Inc1
and Inc2 is justified by the fact that the latter uses the simpler algorithm (Al-
gorithm 3) which does not compute the Cartesian product between the graphs.
The benefits of using this algorithm are also reflected in the computation times
of Inc2 compared to Inc1. Inc3 computes the smallest UCQ of the three versions
due to its techniques for eliminating redundant queries. Regarding execution
time Inc3 performs similarly to Inc2 and sometimes slightly worse, due to the
overhead of implementing the various optimisations. However, when considering
the total time the benefits of the optimisations become apparent. Inc3 is signif-
icantly faster in ontologies A and AX and is actually the only configuration of
IQAROS that can process query 5 in AX in only 27 seconds. This is heavily due
to the optimisation of tracking non-redundant queries.

Compared to PerfectRef, and Nyaya, all versions of IQAROS (even Inc1) are
much faster, in some cases even for several orders of a magnitude. Moreover,
Inc2 and Inc3 compute significantly smaller UCQs. Since in their core all these
systems are based on the same approach for materialising knowledge from T , we
concluded that this improvement is due to the incremental rewriting strategy
that provides a much more guided and localised strategy compared to the blind
brute-force application of the reformulation and reduction steps. Also Nyaya
supports n-arry predicates and its factorisation step is significantly more involved
that our merge function.

Compared to Rapid, Inc3 (the fastest of the three configurations) computes
similarly small UCQs with some small exceptions (either against or in favor) in
queries 3–5 in ontology P5X, in queries 1 and 3 in ontology A and in queries 1, 2,
4 and 5 in ontology AX. Moreover, Rapid is notably faster5 only in queries 4 and
5 in P5 and 5 in S and A. However, even in these cases the difference between
the systems is rather marginal as it never exceeds 253 milliseconds. In all the
other cases Inc3 is faster with most notable cases queries 4 and 5 in P5X and
2–5 in AX. Moreover, we can also see that redundancy elimination algorithm of
Inc3 is much more efficient than that of Rapid with again notable case query 5
in ontology AX. Once more, this is justified by the optimisations used in Inc3.

5 We consider a system to be ‘notably faster’ if it is faster for more than 20 milliseconds.



7 Conclusion

In the current paper we presented a novel algorithm for query rewriting over
DL-LiteR ontologies. The algorithm is based on a novel approach that processes
each atom separately and then combines the results to compute a final UCQ
rewriting. It is significantly guided and our experimental evaluation showed that
it is generally faster than all available systems known to us.

We feel that our techniques have several important practical and theoretical
consequences and give opportunities for future work. First, we strongly feel that
this approach can be used in other First-Order rewritable languages, like Linear-
Datalog± [6], and there is strong evidence that the resulting system would exhibit
good performance. Even in non-First-Order rewritable languages one could per-
haps still exploit parts of this technique to increase the efficiency of the rewriting
algorithms. Moreover, our results show that the rewriting process (at-least for
DL-Lite) can largely be performed in parallel and such techniques can be further
investigated.
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