
Modular Combination of Reasoners for
Ontology Classification

Ana Armas Romero, Bernardo Cuenca Grau, Ian Horrocks

Department of Computer Science. University of Oxford

Abstract. Classification is a fundamental reasoning task in ontology
design, and there is currently a wide range of reasoners highly optimised
for classification of SROIQ ontologies. Existing reasoners, however, do
not exploit the fact that most of the axioms in many realistic SROIQ
ontologies are expressed in some lightweight DL, such as EL++. In this
paper, we propose a novel reasoning technique that allows us to com-
pletely classify a large subset of the signature of a SROIQ ontology
by relying only on a reasoner for a given lightweight DL. We also show
how this information can then be exploited by the fully-fledged SROIQ
reasoner HermiT to complete the classification of the ontology.

1 Introduction

Classification —the problem of identifying the subsumption relationships be-
tween all pairs of atomic concepts occurring in the input ontology— is a fun-
damental reasoning task in ontology design. The decision problems associated
to classification, however, have a very high worst-case complexity for expressive
DLs; in particular, subsumption w.r.t. an ontology is 2Nexptime-complete for
SROIQ [14] —the DL underlying the standard ontology language OWL 2 [5].

Despite these discouraging complexity results, considerable effort has been
devoted to making classification feasible in practice. As a result, many reasoning
algorithms and optimisation techniques have been developed, and there is cur-
rently a wide range of highly-optimised reasoners, such as Pellet [19], FaCT++
[20], RacerPro [9] and HermiT [6], that support classification of ontologies writ-
ten in expressive description logics.

Since individual subsumption tests performed during classification can be
computationally very expensive, most DL reasoners implement variants of the
well-known Enhanced Traversal Algorithm [2], which reduces the number of
required subsumption tests. Sophisticated optimisation techniques are also im-
plemented on top of these algorithms to further reduce the number of potentially
expensive subsumption tests [10].

A widely implemented technique is the told subsumptions optimisation [10],
which provides an inexpensive way of computing subsumption relationships that
hold in the input ontology. In typical ontologies, however, most candidate sub-
sumption relationships between atomic concepts will not hold; hence, efficiently
identifying and exploiting such non-subsumption relationships becomes critical

in practice, and several optimisation techniques have been developed with this
goal in mind. In particular, the completely defined concepts optimisation [21]
identifies a fragment of the ontology for which told subsumption provides com-
plete information; furthermore model-merging and other related techniques ex-
ploit the computations performed during individual concept satisfiability tests
to detect non-subsumptions [10, 8, 6]. However, although these techniques have
proved effective in practice, the classification of very large ontologies can still
require a large number of expensive subsumption tests.

In recent years, there has been a growing interest in so-called lightweight
DLs. The description logic EL++ [1], for example, can capture several promi-
nent ontologies, and allows classification to be performed in polynomial time.
Reasoners specifically designed for EL++, such as CEL [3] and ELK [15], can
classify ontologies as large as SNOMED CT in a few seconds.

Unfortunately, many ontologies fall outside the EL++ fragment, and so can-
not be classified using EL++ reasoners. In many cases, however, such ontologies
contain only a relatively small number of non EL++ axioms. For example, out of
the 219,224 axioms in the latest version of NCI, only 65 are non EL++. Being able
to use an EL++ reasoner to efficiently compute most of the subsumptions and
non-subsumptions required to classify these ontologies could lead to significant
improvements in both performance and scalability.

In this paper, we propose a technique where a reasoner for some DL L is
used as “black box” by a reasoner for a more expressive logic L′. We focus on
the case where L′ is SROIQ, and we present a classification algorithm that,
given a SROIQ ontology O, proceeds as follows:

1. It computes a signature ΣL ⊆ Sig(O) and a fragment ML ⊆ O written
in L such that the concepts in ΣL can be completely classified using only
the axioms in ML; more precisely, ΣL and ML will be such that, for each
atomic concept A ∈ ΣL and each B ∈ Sig(O)∪{>,⊥}, we have O |= A v B
iff ML |= A v B.

2. It classifies ML using an L-reasoner and feeds (in a compact way) the ob-
tained (non-)subsumptions to a SROIQ-reasoner, such as HermiT, that can
effectively exploit this information [6].

Step 1 involves two important technical challenges. First, ΣL should be as large
as possible; in particular, for ontologies with only a few non-L axioms, it is
reasonable to expect ΣL to contain most of the ontology’s signature. Second,
ML must be complete for ΣL. Although techniques such as the completely
defined concepts optimisation can be used to identify a complete fragment, these
techniques are very restricted; thus, we exploit module extraction techniques [4,
7], which, in addition to giving completeness guarantees, are more generally
applicable, more flexible, and more robust.

We believe that our results are interesting from both a theoretical and a
practical point of view. We show that given a SROIQ ontology O that is not
captured by any known polynomial fragment of SROIQ, it is often possible
to identify a large subset Σ of Sig(O) such that all subsumers of concepts in Σ
w.r.t. O can be computed using a polynomial time classification algorithm. From

a practical point of view, our first experiments with a prototype implementation
suggest the potential of this approach for optimising classification.

This paper is supplemented by an online Appendix containing additional
technical details.1

2 Preliminaries

We adopt standard DL notation, as well as standard notions of signature, in-
terpretations, entailment, satisfiability and subsumption. We also assume basic
familiarity with the description logics SROIQ [11] and EL++ [1]. When talking
about ontologies and axioms we will implicitly refer to SROIQ-ontologies and
SROIQ-axioms, respectively.

We denote with Sig(O) (respectively, Sig(α)) the signature of an ontology
O (respectively, of an axiom α). Furthermore, given an ontology O and a DL
L ⊆ SROIQ, we denote with OL the subset of L-axioms in O.

2.1 Module Extraction

Intuitively, a module M for an ontology O w.r.t. a signature Σ is an ontology
M⊆ O such that M entails the same axioms over Σ as O.

This intuition is typically formalised using different notions of a conservative
extension [16, 4]. In this paper, we define modules in terms of a model-theoretic
notion of conservative extension.

Definition 1 (Model Conservative Extension). Let O be an ontology and
let Σ ⊆ Sig(O). We say that O is a model conservative extension of M ⊆ O
w.r.t. Σ if, for every model I = (∆I , ·I) ofM, there exists a model J = (∆J , ·J)
of O such that ∆I = ∆J and XI = XJ for every symbol X ∈ Σ.

Definition 2 (Module). Let O be an ontology and let Σ be a signature. We
say thatM⊆ O is a module in O w.r.t. Σ if O is a model conservative extension
of M w.r.t. Σ.

In particular, if M is a module in O w.r.t. Σ, then the following condition
holds: for each axiom α with Sig(α) ⊆ Σ, we have M |= α iff O |= α.

The problem of checking whether M is a module in O w.r.t. Σ, however, is
already undecidable for EL++ [17], so approximations are typically needed in
practice. The following sufficient condition for model conservativity is known to
work well in practice [4].

Definition 3 (∅-locality). Let Σ be a signature and let O be an ontology. An
interpretation I is ∅-local for Σ if for every atomic concept A 6∈ Σ and every
atomic role R 6∈ Σ, we have AI = RI = ∅. An axiom α is ∅-local for Σ if I |= α
for each I that is ∅-local for Σ. An ontology O is ∅-local for Σ if every axiom
in O is ∅-local for Σ.
1 http://www.cs.ox.ac.uk/files/4770/ModClassDL12.pdf

Checking ∅-locality for SROIQ axioms is, however, a Pspace-complete
problem [4]. Since our goal is to optimise classification, checking ∅-locality might
still be too costly. Instead, we will use ⊥-locality — a well-known sufficient syn-
tactic condition for ∅-locality which has been successfully used for both ontology
reuse and reasoning problems [4, 12, 18, 7].

The precise grammar defining ⊥-locality for SROIQ is given for reference in
the Appendix, and can also be found in the literature [7, 4]. It suffices to consider
that, for each O and Σ, ⊥-locality implies ∅-locality and it can be checked in
polynomial time. Furthermore, the following property holds [7, 4]:

Proposition 1. If an axiom α is ⊥-local w.r.t. a signature Σ, then α is ⊥-local
w.r.t. Σ′ for any Σ′ ⊆ Σ.

We can use⊥-locality to define the notion of a⊥-module. The aforementioned
properties of ⊥-locality ensure that, ifM is a ⊥-module w.r.t. Σ in O as defined
next, then it is also a module w.r.t. Σ in O.

Definition 4 (⊥-module). An ontology M⊆ O is a ⊥-module in O w.r.t. Σ
if O \M is ⊥-local for Σ ∪ Sig(M).

Clearly, there is a unique smallest⊥-module for a givenO andΣ (the smallest
subsetM⊆ O s.t. O\M is ⊥-local for Σ∪Sig(M)). In what follows, we refer to
such smallest module as the ⊥-module in O w.r.t. Σ and we denote it M[O,Σ].

In addition to being modules as in Definition 2, ⊥-modules also enjoy an ad-
ditional property that makes them especially well-suited for optimising ontology
classification [7].

Proposition 2. Let O be an ontology, let A,B be concepts in Sig(O)∪ {>,⊥},
let Σ ⊆ Sig(O) with A ∈ Σ, and let M⊆ O be a ⊥-module in O w.r.t. Σ. Then
O |= A v B iff M |= A v B.

2.2 Ontology Classification in HermiT

The reasoner HermiT implements a classification algorithm [6] that differs sig-
nificantly from the standard Enhanced Traversal Algorithm [2] implemented in
most other DL reasoners. The key feature of HermiT’s classification algorithm
that makes it especially well-suited for our purposes is that it exploits sets K
and P of pairs 〈A,B〉 of atomic concepts representing known subsumptions and
possible subsumptions, respectively. These sets are used to reduce the number of
required tests during classification. Information about non-subsumptions is im-
plicitly stored in these sets (as it would be too costly to store it explicitly), i.e.,
if A = {〈A,B〉 | A,B are atomic concept names in Sig(O)}, then A \ (K∪P) is
the set of known non-subsumptions.

The algorithm works in two clearly distinct phases. In the initialisation phase,
sets K and P are given initial values using information obtained from satisfi-
ability tests performed on atomic concepts. In the classification phase, K is

augmented with pairs from P until K contains all the entailed subsumptions
and P is empty.

Additional technical details about HermiT’s classification algorithm are pro-
vided in the Appendix.

3 Modular Classification of Ontologies

Given a SROIQ ontology O and a description logic L ⊆ SROIQ, our first goal
is to identify a signature ΣL ⊆ Sig(O) such that M[O,ΣL] ⊆ OL. We call any
such subset of Sig(O) an L-signature for O. Section 3.1 addresses the problem
of identifying as large an L-signature as possible.

We can then use an L-reasoner to compute fromM[O,ΣL] complete classifica-
tion information about the atomic concepts in ΣL —by Proposition 2, given any
A ∈ ΣL and B ∈ Sig(O) ∪ {>,⊥} we have O |= A v B iff M[O,ΣL] |= A v B.

HermiT’s classification algorithm needs to be slightly modified in order to
exploit the information computed by the L-reasoner. In section 3.2 we show
how to adapt the initialisation phase to efficiently encode this information into
K and P. Additional technical information about our modification of HermiT’s
algorithm (including a proof of correctness) is given in the Appendix.

3.1 Computing an L-signature

The definition of ⊥-module immediately suggests a simple “guess and check”
algorithm for computing a (maximal) L-signature for O: consider all subsets
Σ ⊆ Sig(O) in decreasing size order and, for each of them, check whetherM[O,Σ]

is an L-ontology.
Our goal in practice, however, is to optimise classification; hence, we propose

a more practical algorithm. Although our algorithm is not guaranteed to compute
a maximal L-signature, it can be implemented very efficiently and, as shown in
the evaluation section, it typically computes large L-signatures, provided that
OL is a large enough fragment of O.

We will exploit the fact that every L-signature ΣL must satisfy the following
property (?). If (?) does not hold, thenM[O,ΣL] will contain some non L-axiom.

Property (?): O \ OL is ⊥-local w.r.t. ΣL

Example 1. Consider L = EL and the following ontology

Oex = {A v B, ∃R.C v D,E v ∀S.A, ∃R.D v ¬B}

Note that the set of L-axioms in Oex is Oex
L = {A v B, ∃R.C v D}. Further-

more, the signature of Oex
L , namely Σ1 = {A,B,C,D,R}, is not an L-signature

for Oex; indeed, the non L-axiom ∃R.D v ¬B is not ⊥-local w.r.t Σ1.
In contrast, we have that Oex \ Oex

L = {E v ∀S.A, ∃R.D v ¬B} is ⊥-local
w.r.t. Σ2 = (Sig(Oex) \ Sig(Oex

L)) = {C}. Furthermore,M[Oex,Σ2] = ∅; hence, Σ2

is an L-signature for Oex, and we can ensure that Oex 6|= C v X for each atomic
concept X ∈ Sig(Oex) different from C. ♦

Although Example 1 might suggest that property (?) is also a sufficient
condition for ΣL to be an L-signature in O, this is unfortunately not the case.

Example 2. Consider Σ3 = {A,C,D,R, S}; clearly, Oex \ Oex
L is ⊥-local w.r.t Σ3

and hence (?) holds for Σ3. However, Σ3 is not an L-signature for Oex.
By Definition 4, each axiom inOex\M[Oex,Σ3] must be ⊥-local w.r.t. signature

Σ3 ∪ Sig(M[Oex,Σ3]) (and not just w.r.t Σ3). Axiom α = A v B is not ⊥-local
w.r.t. Σ3, so we have α ∈ M[Oex,Σ3]. But then, we have B ∈ Sig(M[Oex,Σ3]) and
hence the non L-axiom β = ∃R.D v ¬B is not ⊥-local w.r.t. Σ3∪Sig(M[Oex,Σ3]).

We can address this problem by reducing Σ3 to Σ4 = Σ3 \ {A}. The corre-
sponding ⊥-module for Σ4 then becomes M[Oex,Σ4] = {∃R.C v D}, which is an
L-ontology; thus, Σ4 is an L-signature for Oex. ♦

Example 2 suggests an algorithm for computing an L-signature for O, which
can be intuitively described as follows.

1. Reduce Σ0 = Sig(O) to a subset Σ1 of Σ0 such that S0 = O \OL is ⊥-local
w.r.t. Σ1 (thus satisfying (?)).

2. Compute the axioms S1 in M[O,Σ1] containing symbols not in Σ1.
3. Reduce Σ1 to a subset Σ2 of Σ1 such that S1 is ⊥-local w.r.t. Σ2.
4. Repeat Steps [2-4] until the set of axioms computed in Step 2 is empty.

Note that there can be many ways to perform the signature reduction required in
Steps 1 and 4. For instance, Σ2 and Σ3 in Examples 1 and 2 are both possible re-
ductions of Sig(Oex) in Step 1. These acceptable reductions can be characterised
using a function

localise : P(Sig(O))× P(O)→ P(Sig(O))

such that, givenΣ ∈ P(Sig(O)) and S ∈ P(O) not⊥-local w.r.t.Σ, localise(Σ,S)
returns

– Σ if S = ∅.
– a subset Σ′ ⊂ Σ such that every axiom in S is ⊥-local w.r.t. Σ′ if S 6= ∅

and Σ′ exists.
– ∅ otherwise.

Given a particular localise function, Algorithm 1 accepts a SROIQ ontology
O and returns either the pair 〈false, ∅〉 or a pair 〈true, ΣL〉 with ΣL ⊆ Sig(O)
an L-signature for Oex. Termination and correctness are granted by Theorem 1.

Theorem 1. Let Si, Σi (i ≥ 0) be defined by the following construction:

(i = 0): Σ0 = Sig(O) S0 = O \ OL
(i ≥ 1) : Σi = localise(Σi−1,Si−1) Si = {α ∈M[O,Σi] | Sig(α) 6⊆ Σi}

Let ΣL :=
⋂
i≥0Σi. Then, the following properties hold:

1. There exists k < |Sig(O)| such that either Σk = ∅ or Sk = ∅.
2. Either ΣL = ∅ or M[O,ΣL] ⊆ OL.

Algorithm 1 L-signature(O)
Input: a SROIQ ontology O
1: Σ := Sig(O)
2: S := O \ OL
3: canLocalise = true
4: while S 6= ∅ and canLocalise do
5: Σ := localise(Σ,S)
6: if Σ = ∅ then
7: canLocalise := false
8: else
9: S := {α ∈M[O,Σ] | Sig(α) 6⊆ Σ}
10: return 〈canLocalise, Σ〉

Proof. We first show Claim 1. Suppose Σi 6= ∅ for each i ≥ 0. A straightforward
inductive argument would show that Σj ⊆ Σi for each j > i ≥ 0. Furthermore,
Σ0 = Sig(O), so it cannot be the case that Σj ⊂ Σi for each 0 ≤ i < j ≤ |Sig(O)|.
Therefore, there must be some k < |Sig(O)| such that Σk+1 = Σk; by the
definition of localise, this implies that Sk = ∅.

We finally show Claim 2. Suppose ΣL 6= ∅. It is enough to prove that each
α ∈ O \ OL is ⊥-local w.r.t. ΣL ∪ Sig(M[O,ΣL]).

First, we are going to see that Sig(M[O,ΣL]) ⊆ ΣL. According to Claim 1,
there exists k < |Sig(O)| such that Sk = ∅. This implies that, for each axiom
α ∈M[O,Σk], we have Sig(α) ⊆ Σk. It is easy to see that Sk = ∅ also implies that
Σj = Σk for each j > k. Together with the fact that Σj ⊆ Σi for each j > i ≥ 0,
this implies ΣL =

⋂
i≥0Σi = Σk. But then for each α ∈M[O,ΣL] =M[O,Σk] we

have Sig(α) ⊆ Σk = ΣL, and so Sig(M[O,ΣL]) ⊆ ΣL.
Now we can just prove that each α ∈ O \ OL is ⊥-local w.r.t. ΣL. Because

ΣL =
⋂
i≥0Σi 6= ∅, in particular it must be the case that Σ0 6= ∅. By definition of

localise, either O\OL = ∅—in which case it is immediate thatM[O,ΣL] ⊆ OL—
or every axiom in S0 = O \ OL is ⊥-local w.r.t. Σ1 = localise(Σ0,S0). Then, by
Proposition 1, each α ∈ O \ OL is ⊥-local w.r.t. ΣL ⊆ Σ1. ut

In practice, it is more convenient to use the L-reasoner to classify OL, instead
of M[O,ΣL]. Once ΣL has been computed, the following proposition shows that
OL provides as much information as M[O,ΣL] about the classification of O.
Furthermore, in generalM[O,ΣL] ⊂ OL so additional subsumption relationships
might be obtained by classifying OL.

Proposition 3. Let ΣL be an L-signature for an ontology O. Then for each
atomic concept A ∈ ΣL and each B ∈ Sig(O) ∪ {>,⊥} we have

O |= A v B iff OL |= A v B

Proof. Consider an atomic concept A ∈ ΣL and B ∈ Sig(O) ∪ {>,⊥}. By
monotonicity, because OL ⊆ O, we know that

O 6|= A v B implies OL 6|= A v B

Algorithm 2 L-ModularClassification(O)
Input: a SROIQ ontology O
1: OL := {α ∈ O | α is an L-axiom}
2: ΣL := L-signature(O) . See Algorithm 1
3: HOL := L-classification(OL)
4: H := HermiTclassification(OL, HOL , ΣL) . See Section 3.2 and Appendix
5: return H

By monotonicity, becauseM[O,ΣL] ⊆ OL (by Theorem 1), it is the case that
M[O,ΣL] |= A v B implies OL |= A v B. Now M[O,ΣL] is a ⊥-module in O
w.r.t. ΣL, so by Proposition 2, O |= A v B implies M[O,ΣL] |= A v B, and

O |= A v B implies OL |= A v B

Therefore, for each atomic concept A ∈ ΣL and B ∈ Sig(O) ∪ {>,⊥} we have
O |= A v B if and only if OL |= A v B, as required. ut

3.2 Adapting HermiT’s Initialisation Phase

As mentioned in Section 2.2, HermiT’s classification algorithm works with (dis-
joint) sets K and P of known and possible subsumptions, respectively. We next
discuss how we can use the information extracted from OL by the L-reasoner in
the initialisation of K and P.

Let K′ = {〈A,B〉 ∈ Sig(O) × (Sig(O) ∪ {>,⊥}) | OL |= A v B} be the
positive subsumptions extracted from OL by the L-reasoner. We can clearly
complement the initialisation of K by simply adding K′ to K.

To improve the initialisation of P, we can simply make sure that no pair
〈A,B〉 ∈ ΣL×Sig(O) is ever added to P. Indeed, by Proposition 3, if O |= A v B
then 〈A,B〉 must already be in K′; otherwise, we must have O 6|= A v B and
there is no need to consider the pair 〈A,B〉 as a possible subsumption.

We include in the Appendix a slightly modified version of the intialisation
algorithm in HermiT that is capable of exploiting the information extracted from
OL by the L-reasoner in the way just explained.

Algorithm 2 describes, at an abstract level, how the entire classification pro-
cess can be performed with our modular technique for a particular L ⊆ SROIQ
and a particular function localise.

4 Implementation and Experiments

We have implemented our algorithms in Java using the OWL API.2 Our im-
plementation of the localise function is based on the locality module extractor
described in [12], which is publicly available.3

2 http : //owlapi.sourceforge.net/
3 http : //www.cs.ox.ac.uk/isg/tools/ModuleExtractor

Table 1. Test ontologies

Number of axioms Signature
Ontology Total EL++ Size Concepts
SNOMEDt 582,364 582,362 291,207 291,145
NCI 219,224 219,159 91,497 91,225
FMA-SNOMED 385,146 385,142 159,415 159,328

Table 2. L-signature and classification times for L = EL++

ΣL Classification time(s)
Ontology Size Concepts Time (s) HermiT Modular
SNOMEDt 280,985 (96%) 280,923 15.3 2,016.5 189.9
NCI 85,411 (93%) 85,139 7.6 74.9 32.0
FMA-SNOMED 33,124 (21%) 33,046 14.3 876.5 790.6

In the implementation of localise, symbols required to make a set of axioms
⊥-local are selected greedily axiom by axiom. When selecting symbols, we rely on
heuristics that try to keep as many roles as possible within ΣL. This is because
ontologies contain many more concepts than roles, and each role typically occurs
in a large number of axioms; thus, having a role outside ΣL is likely to cause
many other symbols to be left outside ΣL.

In our experiments, we have used the ontologies given in Table 1:

– SNOMEDt is a modification of the well-known SNOMED ontology (v. Jan-
uary 2010), where two axioms containing disjunction have been added (using
feedback obtained from SNOMED’s developers).

– NCI is the latest version of the National Cancer Institute Thesaurus. This
ontology contains 65 non EL++ axioms.

– FMA-SNOMED is the ontology obtained from the integration of (a frag-
ment of) the Foundational Model of Anatomy (FMA) and (a fragment of)
SNOMED using ontology mappings [13]. In this case, all the non EL++

axioms come from FMA.

Our results are summarised in Table 2. The first two columns in the table
provide the total size and number of concepts in the EL++-signature. The third
column indicates the time required to compute the EL++-signature using the
algorithm described in Section 3.1. Finally, the last two columns provide the total
classification time using (the latest version of) HermiT, and the classification
time required to complete the classification of OL as described in Section 3.2.
For convenience of implementation, we have also classified OL using HermiT
(and this time has not been included in the table); however, the reasoner ELK
can classifyOL in all cases in just a few seconds (e.g., ELK can classify SNOMED
using concurrent classification techniques in about 5 seconds [15]).

We can observe that 96% of the symbols in SNOMEDt (and 93% of the sym-
bols in NCI) are included in the EL++-signature; thus, all subsumers of concepts

in this signature can be completely determined using an EL++-reasoner. Note,
however, that the size of the EL++-signature for FMA-SNOMED is compara-
tively much smaller. This is due to the structure of FMA, which contains several
non EL++ axioms about roles that are widely used in the ontology. For example,
the domain of the role hasMass is defined as a disjunction of very general con-
cepts, such as MaterialThing; since role hasMass is outside the EL++-signature, so
will be MaterialThing (and, as a consequence, also the many concepts subsumed
by MaterialThing).

Finally, concerning classification times, our results suggest the potential of
our techniques. Improvements are especially substantial for both SNOMEDt

and NCI, where the EL++-signature is very large.

5 Conclusion and Future Work

In this paper, we have proposed a technique for classifying a SROIQ ontology
O by exploiting a reasoner for a fragment L of SROIQ. Our technique allows
us to show that the subsumers of many concepts in O can be completely de-
termined using only the L-reasoner. Although our implementation is still at a
very prototypical stage, our preliminary experiments show the potential of our
approach in practice.

Our work is only very preliminary, and there are many interesting possibilities
for future work.

– Our heuristics for computing an L-signature ΣL are rather naive and there is
plenty of room for improvement. For example, it might be possible to explore
modular decomposition techniques to compute larger L-signatures [22].

– HermiT’s initialisation phase could be further improved to make better use
of the information obtained from the L-reasoner.

– We are using ⊥-modules, which provide very strong preservation guarantees
(they preserve even models). It would be interesting to devise novel tech-
niques for extracting modules that are more “permissive”, in the sense that
they only provide preservation guarantees for atomic subsumptions.

– Our technique could also be applied to a different notion of locality, as long
as it satisfied a result analogous to Proposition 2.

– It would be interesting to explore ontology rewriting techniques that comple-
ment module extraction. For example, we could rewrite O into an L-ontology
O′ such that O′ |= O, in which case the classification of O′ would provide
an “upper bound” to the classification of O.

Acknowledgements. This work was supported by the Royal Society, the EU
FP7 project SEALS and the EPSRC projects ConDOR, ExODA, and LogMap.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI (2005)

2. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.: An empirical anal-
ysis of optimization techniques for terminological representation systems. Applied
Intelligence 4(2), 109–132 (1994)

3. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL - a polynomial-time reasoner for
life science ontologies. In: Proc. of IJCAR. pp. 287–291 (2006)

4. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. JAIR 31, 273–318 (2008)

5. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler,
U.: OWL 2: The next step for OWL. J. Web Semantics (JWS) 6(4), 309–322 (2008)

6. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to
ontology classification. J. of Web Semantics 10(1) (2011)

7. Grau, B.C., Halaschek-Wiener, C., Kazakov, Y., Suntisrivaraporn, B.: Incremental
classification of description logics ontologies. JAR 44(4), 337–369 (2010)

8. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge
bases: A practical case study. In: Proc. IJCAI. pp. 161–168 (2001)

9. Haarslev, V., Möller, R.: Racer system description. In: Proc. of IJCAR. pp. 701–705
(2001)

10. Horrocks, I.: Implementation and optimisation techniques. In: The Description
Logic Handbook: Theory, Implementation, and Applications, chap. 9, pp. 306–346
(2003)

11. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
of KR. pp. 57–67 (2006)

12. Jimenez-Ruiz, E., Cuenca Grau, B., Schneider, T., Sattler, U., Berlanga, R.: Safe
and economic re-use of ontologies: a logic-based methodology and tool support. In:
Proc. of ESWC (2008)

13. Jiménez-Ruiz, E., Grau, B.C.: Logmap: Logic-based and scalable ontology match-
ing. In: Proc. of ISWC (2011)

14. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Proc. of KR. pp.
274–284 (2008)

15. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: Concurrent classification of EL ontolo-
gies. In: Proc. of ISWC. vol. 7032 (2011)

16. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Proc. of IJCAI. pp. 453–458 (2007)

17. Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic
EL. In: Proc. of CADE-21. vol. 4603 (2007)

18. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Proc. of DL (2009)

19. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL DL reasoner. J. of Web Semantics 5(2), 51–53 (2007)

20. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proc. of IJCAR. vol. 4130, pp. 292–297 (2006)

21. Tsarkov, D., Horrocks, I., Patel-Schneider, P.: Optimizing terminological reasoning
for expressive description logics. JAR 39(3), 277–316 (2007)

22. Vescovo, C.D., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an
ontology: Atomic decomposition. In: Proc. of IJCAI. pp. 2232–2237 (2011)

