
Probabilistic Datalog+/- under the Distribution
Semantics

Fabrizio Riguzzi, Elena Bellodi, and Evelina Lamma

ENDIF – University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy
{fabrizio.riguzzi,elena.bellodi,evelina.lamma}@unife.it

Abstract. We apply the distribution semantics for probabilistic ontolo-
gies (named DISPONTE) to the Datalog+/- language. In DISPONTE
the formulas of a probabilistic ontology can be annotated with an epis-
temic or a statistical probability. The epistemic probability represents a
degree of confidence in the formula, while the statistical probability con-
siders the populations to which the formula is applied. The probability of
a query is defined in terms of finite set of finite explanations for the query,
where an explanation is a set of possibly instantiated formulas that is
sufficient for entailing the query. The probability of a query is computed
from the set of explanations by making them mutually exclusive.
We also compare the DISPONTE approach for Datalog+/- ontologies
with that of Probabilistic Datalog+/-, where an ontology is composed of
a Datalog+/- theory whose formulas are associated to an assignment of
values for the random variables of a companion Markov Logic Network.

1 Introduction

Many authors recognize that representing uncertain information is important
for the Semantic Web [18, 12] and recently this was also the topic for a series
of workshops [6]. Ontologies are a fundamental component of the Semantic Web
and Description Logics (DLs) are often the languages of choice for modeling
ontologies. Lately much work has focused on developing tractable DLs, such as
the DL-Lite family [5], for which answering conjunctive queries is in AC0 in data
complexity.

In a related research direction Cal̀ı et al. [3] proposed Datalog+/-, a variant
of Datalog for defining ontologies. Datalog+/- is able to express the languages
of the DL-Lite family [2]. Probabilistic Datalog+/- [9, 8] has been proposed for
representing uncertainty in Datalog+/-. In this approach an ontology is com-
posed of a Datalog+/- theory and a Markov Logic Network (MLN) [15] and
each Datalog+/- formula is associated to an assignment of values to (a subset
of) the random variables that are modeled by the MLN. This assignment, called
scenario, controls the activation of the formulas: they hold only in worlds where
the scenario is satisfied.

In the field of logic programming, the distribution semantics [17] has emerged
as one of the most effective approaches for integrating logic and probability and
underlies many languages such as PRISM [17], ICL [14], Logic Programs with

Annotated Disjunctions [19] and ProbLog [7]. In this semantics the clauses of a
probabilistic logic program contain alternative choices annotated with probabil-
ities. Each grounding of a probabilistic clause represents a random variable that
can assume a value from the finite set of alternatives. In order to compute the
probability of a query, its explanations have to be found, where an explanation is
a set of choices that ensure the entailment of the query. The set of explanations
must be covering, i.e., it must represent all possible ways of entailing the query.
The probability is computed from a covering set of explanations by solving a
disjoint sum problem, either using an iterative splitting algorithm [14] or Binary
Decision Diagrams [11, 16].

In this paper we apply the distribution semantics to ontological languages
and, in particular, to Datalog+/-. We call the approach DISPONTE for “DIs-
tribution Semantics for Probabilistic ONTologiEs” (Spanish for “get ready”).
The idea is to annotate formulas of a theory with a probability. We consider two
types of probabilistic annotation, an epistemic type, that represents a degree
of belief in the formula as a whole, and a statistical type, that considers the
populations to which the formula is applied. While in the first case the choice
is whether to include or not a formula in an explanation, in the latter case the
choice is whether to include instantiations of the formula for specific individuals.
The probability of a query is again computed from a covering set of explanations
by solving the disjoint sum problem.

The paper is organized as follows. Section 2 provides some preliminaries on
Datalog+/-. Section 3 presents DISPONTE while Section 4 describes related
work. Section 5 concludes the paper.

2 Datalog+/-

Let us assume (i) an infinite set of data constants ∆, (ii) an infinite set of labeled
nulls ∆N (used as “fresh” Skolem terms) and (iii) an infinite set of variables ∆V .
Different constants represent different values (unique name assumption), while
different nulls may represent the same value. We assume a lexicographic order
on ∆∪∆N , with every symbol in ∆N following all symbols in ∆. We denote by
X vectors of variables X1, . . . , Xk with k ≥ 0. A relational schema R is a finite
set of relation names (or predicates). A term t is a constant, null or variable. An
atomic formula (or atom) has the form p(t1, . . . , tn), where p is an n-ary predicate
and t1, . . . , tn are terms. A database D for R is a possibly infinite set of atoms
with predicates from R and arguments from ∆∪∆N . A conjunctive query (CQ)
over R has the form q(X) = ∃YΦ(X,Y), where Φ(X,Y) is a conjunction of
atoms having as arguments variables X and Y and constants (but no nulls). A
Boolean CQ (BCQ) over R is a CQ having head predicate q of arity 0 (i.e., no
variables in X).

We often write a BCQ omitting the quantifiers. Answers to CQs and BCQs
are defined via homomorphisms, which are mappings µ : ∆ ∪∆N ∪∆V → ∆ ∪
∆N∪∆V such that (i) c ∈ ∆ implies µ(c) = c, (ii) c ∈ ∆N implies µ(c) ∈ ∆∪∆N ,
and (iii) µ is naturally extended to term vectors, atoms, sets of atoms, and

conjunctions of atoms. The set of all answers to a CQ q(X) = ∃YΦ(X,Y) over
a database D, denoted q(D), is the set of all tuples t over ∆ for which there
exists a homomorphism µ : X ∪Y → ∆ ∪∆N such that µ(Φ(X,Y)) ⊆ D and
µ(X) = t. The answer to a BCQ q over a database D is Yes, denoted D |= q, iff
q(D) 6= ∅.

A tuple-generating dependency (or TGD) F is a first-order formula of the form
∀X∀YΦ(X,Y) → ∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X,Z) are conjunctions of
atoms over R, called the body and the head of F , respectively. Such F is satisfied
in a database D for R iff, whenever there exists a homomorphism h such that
h(Φ(X,Y)) ⊆ D, there exists an extension h′ of h such that h′(Ψ(X,Z)) ⊆ D.
We usually omit the universal quantifiers in TGDs. A TGD is guarded iff it
contains an atom in its body that involves all variables appearing in the body.

Query answering under TGDs is defined as follows. For a set of TGDs T on
R and a database D for R, the set of models of D given T , denoted mods(D,T),
is the set of all (possibly infinite) databases B such that D ⊆ B and every
F ∈ T is satisfied in B. The set of answers to a CQ q on D given T , denoted
ans(q,D, T), is the set of all tuples t such that t ∈ q(B) for all B ∈ mods(D,T).
The answer to a BCQ q over D given T is Yes, denoted D ∪ T |= q, iff B |= q
for all B ∈ mods(D,T).

A Datalog+/- theory may contain also negative constraints (or NC), which
are first-order formulas of the form ∀XΦ(X)→ ⊥, where Φ(X) is a conjunction
of atoms (not necessarily guarded). The universal quantifiers are usually left
implicit.

Equality-generating dependencies (or EGDs) are the third component of a
Datalog+/- theory. An EGD F is a first-order formula of the form ∀XΦ(X) →
Xi = Xj , where Φ(X), called the body of F and denoted body(F), is a conjunction
of atoms, and Xi and Xj are variables from X. We call Xi = Xj the head of F ,
denoted head(F). Such F is satisfied in a database D for R iff, whenever there
exists a homomorphism h such that h(Φ(X)) ⊆ D, it holds that h(Xi) = h(Xj).
We usually omit the universal quantifiers in EGDs. An EGD F on R of the
form Φ(X) → Xi = Xj is applicable to a database D for R iff there exists a
homomorphism η : Φ(X)→ D such that η(Xi) and η(Xj) are different and not
both constants. If η(Xi) and η(Xj) are different constants in ∆, then there is
a hard violation of F . Otherwise, the result of the application of F to D is the
database h(D) obtained from D by replacing every occurrence of a non-constant
element e ∈ {η(Xi), η(Xj)} in D by the other element e′ (if e and e′ are both
nulls, then e precedes e′ in the lexicographic order).

Example 1. Let us consider the following ontology for a real estate information
extraction system, a slight modification of the one presented in [9]:

F1 = ann(X, label), ann(X, price), visible(X)→ priceElem(X)
If X is annotated as a label, as a price, and is visible, then it is a price element.

F2 = ann(X, label), ann(X, priceRange), visible(X)→ priceElem(X)
If X is annotated as a label, as a price range, and is visible, then it is a price
element.

F3 = priceElem(E), group(E,X)→ forSale(X)

If E is a price element and is grouped with X, then X is for sale.

F4 = forSale(X)→ ∃Pprice(X,P)

If X is for sale, then there exists a price for X.

F5 = hasCode(X,C), codeLoc(C,L)→ loc(X,L)

If X has postal code C, and C’s location is L, then X’s location is L.

F6 = hasCode(X,C)→ ∃LcodeLoc(C,L), loc(X,L)

If X has postal code C, then there exists L such that C has location L and so
does X.

F7 = loc(X,L1), loc(X,L2)→ L1 = L2

If X has the locations L1 and L2, then L1 and L2 are the same.

F8 = loc(X,L)→ advertised(X)

If X has a location L then X is advertised.

Suppose we are given the database

codeLoc(ox1, central), codeLoc(ox1, south), codeLoc(ox2, summertown)

hasCode(prop1, ox2), ann(e1, price), ann(e1, label), visible(e1),

group(e1, prop1)

The atomic BCQs priceElem(e1), forSale(prop1) and advertised(prop1) eval-
uate to true, while the CQ loc(prop1, L) has answers q(L) = {summertown}.
In fact, even if loc(prop1, z1) with z1 ∈ ∆N is entailed by formula F5, for-
mula F7 imposes that summertown = z1. If F7 were absent, then q(L) =
{summertown, z1}.

The chase is a bottom-up procedure for repairing a database relative to a
Datalog+/- theory and can be used for deriving atoms entailed by the database
and the theory. If such a theory contains only TGDs, the chase consists of an
exhaustive application of the TGD chase rule in a breadth-first fashion. The
TGD chase rule consists in adding to the database the head of a TGD if there is
an homomorphism between the body and the current database. In order to fill
the arguments of the head occupied by existentially quantified variables, “fresh”
null values are used.

A BCQ can be answered by performing the chase and checking whether the
query is entailed by the extended database that is obtained.

Answering BCQs q over databases, guarded TGDs and NC can be done by, for
each constraint ∀XΦ(X) → ⊥, checking that the BCQ Φ(X) evaluates to false;
if one of these checks fails, then the answer to the original BCQ q is positive,
otherwise the negative constraints can be simply ignored when answering the
original BCQ q.

The chase in the presence of both TGDs and EGDs is computed by itera-
tively applying (1) a single TGD once and (2) the EGDs, as long as they are
applicable (i.e., until a fix point is reached). EGDs are assumed to be separable
[4]. Intuitively, separability holds whenever: (i) if there is a hard violation of an
EGD in the chase, then there is also one on the database w.r.t. the set of EGDs
alone (i.e., without considering the TGDs); and (ii) if there is no hard violation,

then the answers to a BCQ w.r.t. the entire set of dependencies equals those
w.r.t. the TGDs alone (i.e., without the EGDs).

A guarded Datalog+/- ontology consists of a database D, a finite set of
guarded TGDs TT , a finite set of negative constraints TC and a finite set of
EGDs TE that are separable from TT . The data complexity (i.e., the complexity
where both the query and the theory are fixed) of evaluating BCQs relative to
a guarded Datalog+/- theory is polynomial [1].

3 The DISPONTE Semantics for Probabilistic Ontologies

A probabilistic ontology (D,T) consists of a database D and a set T of certain
formulas, that take the form of a Datalog+/- TGD, NC or EGD, of epistemic
probabilistic formulas of the form

pi ::e Fi (1)

where pi is a real number in [0, 1] and Fi is a TGD, NC or EGD, and of statistical
probabilistic formulas of the form

pi ::s Fi (2)

where pi is a real number in [0, 1] and Fi is a TGD.
In formulas of the form (1), pi is interpreted as an epistemic probability,

i.e., as the degree of our belief in formula Fi, while in formulas of the form
(2), pi is interpreted as a statistical probability, i.e., as information regarding
random individuals from certain populations. These two types of statements
can be related to the work of Halpern [10]: an epistemic statement is a Type 2
statement and a statistical statement is a Type 1 statement.

For example, an epistemic probabilistic concept inclusion TGD of the form

p ::e c(X)→ d(X) (3)

represents the fact that we believe in the truth of c ⊆ d, where c and d are
interpreted as sets of individuals, with probability p. A statistical probabilistic
concept inclusion TGD of the form

p ::s c(X)→ d(X) (4)

instead means that a random individual of class c has probability p of belonging
to d, thus representing the statistical information that a fraction p of the indi-
viduals of c belongs to d. In this way, the overlap between c and d is quantified.
The difference between the two formulas is that, if two individuals belong to
class c, the probability that they both belong to d according to (3) is p while
according to (4) is p× p.

The idea of DISPONTE is to associate independent Boolean random vari-
ables to (instantiations of) the formulas. By assigning values to every random
variable we obtain a world, the set of logic formulas whose random variable is

assigned to 1. Note that the assumption of independence of the random variables
does not limit the set of distributions over the ground logical atoms that can
be represented: by possibly introducing extra atoms, any distribution over the
atoms that can be represented with a Bayesian network can be represented with
a probabilistic ontology.

To clarify what we mean by instantiations, we now define substitutions. Given
a formula F , a substitution θ is a set of couples X/x where X is a variable
universally quantified in the outermost quantifier in F and x ∈ ∆ ∪ ∆N . The
application of θ to F , indicated by Fθ, is obtained by replacing X with x in F
and by removing X from the external quantification for every couple X/x in θ.
An instantiation of a formula F is the result of applying a substitution to F .

To obtain a world w of a probabilistic ontology T , we include every certain
formula in w. For each axiom of the form (1), we decide whether or not to
include it in w. For each axiom of the form (2), we generate all the substitutions
for the variables universally quantified in the outermost quantifier and for each
instantiation we decide whether or not to include it in w.

There may be an infinite number of instantiations. For each instantiated
formula, we decide whether or not to include it in w. In this way we obtain a
Datalog+/- theory which can be assigned a semantics as seen in Section 2.

To formally define the semantics of a probabilistic ontology we follow the
approach of Poole [14]. An atomic choice in this context is a triple (Fi, θj , k)
where Fi is the i-th formula, θj is a substitution and k ∈ {0, 1}. If Fi is obtained
from a certain formula, then θj = ∅ and k = 1. If Fi is obtained from a formula of
the form (1), then θj = ∅. If Fi is obtained from a formula of the form (2), then
θj instantiates the variables universally quantified in the outermost quantifier.

A composite choice κ is a consistent set of atomic choices, i.e., (Fi, θj , k) ∈
κ, (Fi, θj ,m) ∈ κ⇒ k = m (only one decision for each formula). The probability
of composite choice κ is P (κ) =

∏
(Fi,θj ,1)∈κ pi

∏
(Fi,θj ,0)∈κ(1 − pi). A selection

σ is a total composite choice, i.e., it contains one atomic choice (Fi, θj , k) for
every instantiation Fiθj of formulas of the theory. Since the domain is infinite,
every selection is, too. Let us indicate with ST the set of all selections. ST is
infinite as well. A selection σ identifies a theory wσ called a world in this way:
wσ = {Fiθj |(Fi, θj , 1) ∈ σ}. Let us indicate with WT the set of all worlds. A
composite choice κ identifies a set of worlds ωκ = {wσ|σ ∈ ST , σ ⊇ κ}. We define
the set of worlds identified by a set of composite choices K as ωK =

⋃
κ∈K ωκ.

A composite choice κ is an explanation for a BCG query q if q is entailed by
the database and every world of ωκ. A set of composite choices K is covering
with respect to q if every world wσ in which q is entailed is such that wσ ∈ ωK .
Two composite choices κ1 and κ2 are incompatible if their union is inconsistent.
A set K of composite choices is mutually incompatible if for all κ1 ∈ K,κ2 ∈
K,κ1 6= κ2 ⇒ κ1 and κ2 are incompatible.

Explanations can be found by keeping track of the formulas that were used
for adding atoms to the database in the chase procedure.

Kolmogorov defined probability functions (or measures) as real-valued func-
tions over an algebra Ω of subsets of a set W called the sample space. The

set Ω is an algebra of W iff (1) W ∈ Ω, (2) Ω is closed under complementa-
tion, i.e., ω ∈ Ω → (W \ ω) ∈ Ω and (3) Ω is closed under finite union, i.e.,
ω1 ∈ Ω,ω2 ∈ Ω → (ω1 ∪ ω2) ∈ Ω. The elements of Ω are called measurable sets.
Not every subset of W need be present in Ω.

Given a sample space W and an algebra Ω of subsets of W, a probability
measure is a function µ : Ω → R that satisfies the following axioms: (1) µ(ω) ≥ 0
for all ω ∈ Ω, (2) µ(W) = 1, (3) ω1 ∩ ω2 = ∅ → µ(ω1 ∪ ω2) = µ(ω1) + µ(ω2) for
all ω1 ∈ Ω,ω2 ∈ Ω.

Poole [14] proposed an algorithm, called splitting algorithm, to obtain a set of
mutually incompatible K ′ composite choices from any set of composite choices K
such that ωK = ωK′ . Moreover, he proved that if K1 and K2 are both mutually
incompatible finite sets of finite composite choices such that ωK1

= ωK2
then∑

κ∈K1
P (κ) =

∑
κ∈K2

P (κ).
These results also hold for the probabilistic ontologies we consider, so we

can define a unique probability measure µ : ΩT → [0, 1] where ΩT is defined
as the set of sets of worlds identified by finite sets of finite composite choices:
ΩT = {ωK |K is a finite set of finite composite choices}. It is easy to see that
ΩT is an algebra over WT .

Then µ is defined by µ(ωK) =
∑
κ∈K′ P (κ) where K ′ is a finite mutually

incompatible set of finite composite choices such that ωK = ωK′ . 〈WT , ΩT , µ〉 is
a probability space according to Kolmogorov’s definition.

The probability of a BCQ query q is given by P (q) = µ({w|w ∈ WT ∧D∪w |=
q}). If q has a finite set K of finite explanations such that K is covering then
{w|w ∈ WT ∧D ∪ w |= q} ∈ ΩT and P (q) is well-defined.

Example 2. Let us consider the following probabilistic ontology, obtained from
the one presented in Example 1 by adding probabilistic annotations:

0.4 ::s F1 = ann(X, label), ann(X, price), visible(X)→ priceElem(X)

0.5 ::s F2 = ann(X, label), ann(X, priceRange), visible(X)→ priceElem(X)

0.6 ::s F3 = priceElem(E), group(E,X)→ forSale(X)

F4 = forSale(X)→ ∃Pprice(X,P)

F5 = hasCode(X,C), codeLoc(C,L)→ loc(X,L)

F6 = hasCode(X,C)→ ∃LcodeLoc(C,L), loc(X,L)

0.8 ::e F7 = loc(X,L1), loc(X,L2)→ L1 = L2

0.7 ::s F8 = loc(X,L)→ advertised(X)

and the database of Example 1:

codeLoc(ox1, central), codeLoc(ox1, south), codeLoc(ox2, summertown),

hasCode(prop1, ox2), ann(e1, price), ann(e1, label), visible(e1),

group(e1, prop1)

A covering set of explanations for the query q = priceElem(e1) is K = {κ1}
where κ1 = {(F1, {X/e1}, 1)}. K is also mutually exclusive so P (q) = 0.4.

A covering set of explanations for the query q = forSale(prop1) is K =
{κ1, κ2} where κ1 = {(F1, {X/prop1}, 1), (F3, {X/prop1}, 1)} and κ2 = {(F2,
{X/prop1}, 1), (F3, {X/prop1}, 1)}.

An equivalent mutually exclusive set of explanations obtained by applying
the splitting algorithm is K ′ = {κ′1, κ′2} where κ′1 = {(F1, {X/prop1}, 1), (F3,
{X/prop1}, 1), (F2, {X/prop1}, 0)} and κ′2 = {(F2, {X/prop1}, 1),
(F3, {X/prop1} , 1)} so P (q) = 0.4 · 0.6 · 0.5 + 0.5 · 0.6 = 0.42.

A covering set of explanations for the query q = advertised(prop1) is K =
{κ1, κ2, κ3} with

κ1 = {(F8, {X/prop1, L/summertown}, 1), (F7, ∅, 1)}
κ2 = {(F8, {X/prop1, L/summertown}, 1), (F7, ∅, 0)}
κ3 = {(F8, {X/prop1, L/z1}, 1), (F7, ∅, 0)}

where z1 ∈ ∆N . A mutually exclusive set of explanations is K ′ = {κ′1, κ′2, κ′3}
where

κ′1 = {(F8, {X/prop1, L/summertown}, 1), (F7, ∅, 1)}
κ′2 = {(F8, {X/prop1, L/summertown}, 1), (F7, ∅, 0), (F8, {X/prop1, L/z1}, 0)}
κ′3 = {(F8, {X/prop1, L/z1}, 1), (F7, ∅, 0)}

so P (q) = 0.7 · 0.8 + 0.7 · 0.2 · 0.3 + 0.7 · 0.2 = 0.742

Example 3. Let us consider the following ontology, inspired by the people+pets
ontology proposed in Patel-Schneider et al. [13]:

0.5 ::s F1 = hasAnimal(X,Y), pet(Y)→ petOwner(X)

0.6 ::s F2 = cat(X)→ pet(X)

and the database hasAnimal(kevin,fluffy), hasAnimal(kevin, tom), cat(fluffy),
cat(tom). A covering set of explanations for the query q = petOwner(kevin)
is K = {κ1, κ2} where κ1 = {(F1, {X/kevin}, 1), (F2, {X/fluffy}, 1)} and κ2 =
{(F1, {X/kevin}, 1), (F2, {X/tom}, 1)}. An equivalent mutually exclusive set of
explanations is K ′ = {κ′1, κ′2} where:

κ′1 = {(F1, {X/kevin}, 1), (F2, {X/fluffy}, 1), (F2, {X/tom}, 0)}
κ′2 = {(F1, {X/kevin}, 1), (F2, {X/tom}, 1)}

so P (q) = 0.5 · 0.6 · 0.4 + 0.5 · 0.6 = 0.42

Example 4. Let us consider the following ontology:

F1 = ∃Y hasAnimal(X,Y), pet(Y)→ petOwner(X)

0.6 ::s F2 = cat(X)→ pet(X)

0.4 ::e F3 = cat(fluffy)

0.3 ::e F4 = cat(tom)

and the database hasAnimal(kevin,fluffy), hasAnimal(kevin, tom). A covering
set of explanations for the query axiom q = petOwner(kevin) is K = {κ1, κ2}
where

κ1 = {(F3, ∅, 1), (F2, {X/fluffy}, 1)}
κ2 = {(F4, ∅, 1), (F2, {X/tom}, 1)}

which, after splitting, becomes K ′ = {κ′1, κ′2, κ′3}:

κ′1 = {(F3, ∅, 1), (F2, {X/fluffy}, 1), (F4, ∅, 1), (F2, {X/tom}, 0)}
κ′2 = {(F3, ∅, 1), (F2, {X/fluffy}, 1), (F4, ∅, 0)}
κ′3 = {(F4, ∅, 1), (F2, {X/tom}, 1)}

so P (q) = 0.4 · 0.6 · 0.3 · 0.4 + 0.4 · 0.6 · 0.7 + 0.3 · 0.6 = 0.3768

4 Related Work

Gottlob et al. [9, 8] present probabilistic Datalog+/-, a version of Datalog+/-
that allows the representation of probabilistic information by combining Markov
Logic Networks with Datalog+/-. Each Datalog+/- formula F is annotated with
a probabilistic scenario λ, an assignment of values to a set of random variables
from the MLN associated to the ontology. A full probabilistic scenario assigns a
value to all the random variables of the MLN. A probabilistic scenario represents
an event that happens when the random variables described by the MLN assume
the values indicate in the scenario. Probabilistic formulas then take the form
F : λ.

A probabilistic Datalog+/- is of the form Φ = (O,M) where O is a set of
annotated formulas and M is a MLN. An annotated formula holds when the
event associated with its probabilistic annotation holds.

If a is a ground atom, its probability in a probabilistic Datalog+/- ontology
Φ = (O,M), denoted Pr(a), is obtained by summing the probabilities according
to M of all full scenarios such that the atom is entailed by the annotated formulas
that hold in the scenario.

Example 5. Let us consider the following probabilistic Datalog+/- ontology from
[8]:

F1 = visible(X)→ priceElem(X) : {ann(X, label), ann(X, price)}
F2 = visible(X)→ priceElem(X) : {ann(X, label), ann(X, priceRange)}
F3 = priceElem(E), group(E,X)→ forSale(X) : {sale}
F4 = forSale(E)→ ∃Pprice(X,P)

F5 = hasCode(X,C), codeLoc(C,L)→ loc(X,L)

F6 = hasCode(X,C)→ ∃LcodeLoc(C,L), loc(X,L)

F7 = loc(X,L1), loc(X,L2)→ L1 = L2 : {uniqueLoc}

and the MLN

0.3 ann(X, label) ∧ ann(X, price)

0.4 ann(X, label) ∧ ann(X, priceRange)

0.8 sale

1.1 uniqueLoc

Suppose that this network is grounded with respect to the only constant e1. The
resulting ground network has 5 Boolean random variables, each correspond-
ing to a logical atom. Therefore, there are 25 full scenarios. In this theory
Pr(priceElem(e1)) = 0.492 and Pr(forSale(prop1)) = 0.339.

5 Conclusions

We have presented the application of the distribution semantics for probabilis-
tic ontologies (named DISPONTE) to the Datalog+/- language. DISPONTE is
inspired by the distribution semantics of probabilistic logic programming and is
a minimal extension of the underlying ontology semantics to allow to represent
and reason with uncertain knowledge.

DISPONTE differs from Probabilistic Datalog+/- because the probabilistic
interactions among the atoms are modeled directly by means of Datalog+/- for-
mulas rather than by a separate entity. The parameters of DISPONTE
Datalog+/- are easier to interpret as they are probabilities (statistical or epis-
temic) while MLN parameters are weights not directly interpretable as prob-
abilities. Moreover, DISPONTE does not require the prior grounding of the
probabilistic atoms, for which the set of constants has to be defined by the user,
but allows an on demand grounding on the basis of the terms that are used for
inference.

In the future we plan to design inference algorithms for probabilistic
Datalog+/- under the DISPONTE semantics.

References

1. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering un-
der expressive relational constraints. In: International Conference on Principles of
Knowledge Representation and Reasoning. pp. 70–80. AAAI Press (2008)

2. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework
for tractable query answering over ontologies. In: Symposium on Principles of
Database Systems. pp. 77–86. ACM (2009)

3. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Tractable query answering over ontologies
with Datalog+/-. In: International Workshop on Description Logics. CEUR Work-
shop Proceedings, vol. 477. CEUR-WS.org (2009)

4. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A fam-
ily of logical knowledge representation and query languages for new applications.
In: IEEE Symposium on Logic in Computer Science. pp. 228–242. IEEE Computer
Society (2010)

5. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385–429 (2007)

6. Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz,
T., Nickles, M., Pool, M. (eds.): Uncertainty Reasoning for the Semantic Web I,
ISWC International Workshops, URSW 2005-2007, Revised Selected and Invited
Papers, LNCS, vol. 5327. Springer (2008)

7. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and
its application in link discovery. In: International Joint Conference on Artificial
Intelligence. pp. 2462–2467 (2007)

8. Gottlob, G., Lukasiewicz, T., Simari, G.I.: Answering threshold queries in prob-
abilistic Datalog+/- ontologies. In: International Conference on Scalable Uncer-
tainty Management. LNCS, vol. 6929, pp. 401–414. Springer (2011)

9. Gottlob, G., Lukasiewicz, T., Simari, G.I.: Conjunctive query answering in proba-
bilistic Datalog+/- ontologies. In: International Conference on Web Reasoning and
Rule Systems. LNCS, vol. 6902, pp. 77–92. Springer (2011)

10. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3),
311–350 (1990)

11. Kimmig, A., Demoen, B., Raedt, L.D., Costa, V.S., Rocha, R.: On the implemen-
tation of the probabilistic logic programming language ProbLog. Theor. Prac. Log.
Prog. 11(2-3), 235–262 (2011)

12. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. Web Sem. 6(4), 291–308 (2008)

13. Patel-Schneider, P, F., Horrocks, I., Bechhofer, S.: Tutorial on OWL. In: Interna-
tional Semantic Web Conference (2003), http://www.cs.man.ac.uk/~horrocks/
ISWC2003/Tutorial/

14. Poole, D.: Abducing through negation as failure: stable models within the inde-
pendent choice logic. J. Log. Prog. 44(1-3), 5–35 (2000)

15. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1-2), 107–
136 (2006)

16. Riguzzi, F.: Extended semantics and inference for the Independent Choice Logic.
Log. J. IGPL 17(6), 589–629 (2009)

17. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: International Conference on Logic Programming. pp. 715–729. MIT Press
(1995)

18. URW3-XG: Uncertainty reasoning for the World Wide Web, final report (2005)
19. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated

disjunctions. In: International Conference on Logic Programming. LNCS, vol. 3131,
pp. 195–209. Springer (2004)

