
From EL to Tractable Existential Rules with Complex
Role Inclusions

Michaël Thomazo

University Montpellier 2

Abstract. Ontology-based data access consists in using ontologies while query-
ing data. Due to the high complexity of this problem, considering lightweight
description logics like EL is especially relevant. Another strand of research is
based on existential rules. In this paper, we use this latter formalism in order to
cover EL with the same complexity of reasoning while allowing any predicate
arity and some cycles on variables. We then add complex role inclusions to en-
hance expressivity, while staying polynomial in data complexity and generalizing
existing results. In particular, we consider transitivity and right/left identity rules,
which do not behave well with respect to usual decidability paradigms.

1 Introduction

Ontology-based data access (OBDA) recently received a lot of attention both from
knowledge representation and database communities. This problem can be stated as
follows: given a set of facts and an ontology (the knowledge base), one wants to eval-
uate a conjunctive query against this knowledge base. The ontology can be represented
in several ways. Traditional ontology languages are description logics (DLs,[4]). The
original focus of DL research was the ontology in itself, with problems like satisfiabil-
ity or subsumption between concepts. The conjunctive query answering problem has
been considered more recently. Classical DLs appeared to be highly complex for that
reasoning problem, and lightweight description logics (such as EL and DL-Lite) are
thus very relevant.

A parallel approach relies on existential rules [5, 6], also known as TGDs [1] that
form the basis of Datalog± [8]. Existential rules are logical formulas of the form B→ H,
where B and H are conjunctions of atoms and where H might contain existentially
quantified variables. In contrast to DLs, they allow for any predicate arity (which in
particular eases the integration with database systems in which relations are naturally
translated into n-ary predicates) and can express some cyclic dependencies on variables.
On the other hand, neither disjunction nor negation is expressible with existential rules.
Interestingly, the two main families of DLs that have been designed for conjunctive
query answering can be translated into existential rules. The associated ontology-based
conjunctive query answering problem (CQA) is formalized as follows: given a set of
facts (in their logical form an existentially closed conjunction of atoms) F, a set of
rules R, and a conjunctive query Q, check whether F,R |= Q hold. This problem is
undecidable, and numerous restrictions on R have been proposed recently in order to
ensure decidability (see [12] for a survey), which is usually proven by means of one

of the two following mechanisms, or a combination of both. The first one is forward
chaining: rules are iteratively applied to F, until either no new information is added,
or the query is entailed. If a set of rules is such that for any fact, this process halts in
finite time or generates a set of facts of bounded treewidth (which is defined on a graph
naturally associated with the facts, see e.g. [6]), then the CQA problem is decidable ([7,
5]). The second mechanism is backward chaining: a query Q is rewritten into a set of
conjunctive queries (which can be seen as a union of conjunctive queries), such that
Q is entailed by F and R if and only if one its rewritings is entailed by F. The CQA
problem is decidable if the set of rewritings is finite for any query.
EL [2, 11] is one of the description logics that have a reasonable complexity for

CQA: NP-complete in combined complexity and Ptime-complete in data complexity.
As pointed out before, any EL TBox can be translated into existential rules. However,
the smallest known Datalog± decidable class covering such rules is a class for which
CQA complexity is much higher than the original one (2-Exptime-complete in com-
bined complexity). Finally, it is known that one can add to EL inclusions a special kind
of complex role inclusions while keeping polynomial data complexity [10]. As far as
we know, such results have no counter-part in the rule framework. Moreover, one of
the most used complex role inclusion, namely transitivity, is out of the scope of known
decidability criteria when combined with decidable classes of existential rules.

The contribution of this paper is two-fold:

– first, it presents a class of existential rules, namely orientable fr1, that covers EL
ontologies while keeping the same (data or combined) complexity for CQA (The-
orem 1). The proposed class allows for predicates of arbitrary arity and a form of
cyclic dependencies between variables;

– second, it generalizes this class by adding complex role inclusions while staying
polynomial in data complexity (Theorem 2); it allows for left and right identity
rules, which have been proven useful for modeling purposes [3]. The syntactic reg-
ularity condition enforced is close from the one imposed in Horn-SROIQ ([9]).

In Section 2, basic definitions about EL and existential rules are recalled. In Section
3, orientable fr1 rules are introduced. Section 4 adapts the algorithm presented in [13]
and designed for a more general existential rule class, yielding an easier and worst-case
optimal algorithm for orientable fr1 rules. This algorithm is further modified in Section
5 in order to take some complex role inclusions into account. Section 6 concludes the
paper.

In this paper, we will avoid technical definitions and rely on examples, to provide
an intuition about the main techniques.

2 Preliminaries

We briefly recall the preliminary definitions presented in [6]. An atom is of the form
p(t1, . . . , tk) where p is a predicate with arity k, and the ti are terms, i.e., variable or
constants. A fact is the existential closure of a conjunction of atoms.1 An existential rule

1 Note that this notion generalizes the usual definition of fact by taking existential variables
generated by rules into account.

(or simply a rule when not ambiguous) is a formula R = ∀x∀y(B[x, y]→ (∃zH[y, z]))2

where B = body(R) and H = head(R) are finite conjunctions of atoms, called the body
and the head of R, respectively. The frontier of R, denoted by fr(R), is the set of variables
vars(B) ∩ vars(H) = y. A rule R is applicable to a fact F if there is a homomorphism π
from body(R) to F; the result of the application of R on F w.r.t. π is a fact α(F,R, π) =

F ∪ πsafe(head(R)) where πsafe is a substitution of head(R), that replaces each x ∈ fr(R)
with π(x), and each other variable with a “fresh” variable, i.e., not introduced before.
The direct saturation of F with R is defined as α(F,R) = F ∪(R=(H,C),π)∈Π(F,R) π

safe(C),
where Π(F,R) = {(R, π) | R = (B,H) ∈ R and π is a homomorphism from H to F}. The
k saturation of F with R is denoted by αk(F,R) and is such that: α0(F,R) = F, and
for i > 0, αi(F,R) = α(αi−1(F,R),R). The universal model of F and R is the union of
αk(F,R) for k ∈ N. Q is entailed by F and R iff it is entailed by αk(F,R) for some k ∈ N
(i.e., by the universal model of F and R).

An EL TBox contains concept inclusions C1 v C2, where C1 and C2 are concepts
built as follows:

C := > | A | C1 uC2 | ∃R.C

Any EL ontology can be translated into a set of existential rules (which are called
EL-rules), where C1 v C2 is translated into φ(C1)(x) → φ(C2)(x), with φ inductively
built as explained Table 1. The smallest known decidable class covering rules needed
for the translation of an arbitrary EL TBox is the set of frontier-1 (fr1) rules, i.e., the
set of rules whose body and head share exactly one variable.

Table 1. Translation of an EL ontology

EL concept Logical translation φ
A A(x)

C1 uC2 φ(C1)(x) ∧ φ(C2)(x)
∃R.C r(x, y) ∧ φ(C)(y)

3 Orientable fr1 Rules

However, the combined complexity of reasoning with fr1 rules and EL is quite different:
2-Exptime-complete in the former case, and NP-complete in the latter – though both are
in Ptime for data complexity. In this section, we present a class of rules that covers EL
while keeping the same combined and data complexities.
EL-rules have the following idiosyncrasy: they add information “below” the fron-

tier of the rule, as pictured in Figure 1. Any EL-rule mapping its frontier to x1 will map
its body to dashed atoms, and will create atoms that are also below x1. This is due to the
fact that information about a term “above” x1 is not even expressible, since no inverse
role is possible. Orientable fr1 rules generalize this idea.

We define for every predicate r of arity k a strict total order on its positions r1, . . . , rk.
We denote by < the union of all these relations. Given such a strict partial order, we can
associate a directed graph with each set of atoms.

2 We can now omit quantifiers since there is no ambiguity.

•a

• • y1

• •

x1

x2 x3

Fig. 1. An arc is directed from the first to the second argument of an atom.

Definition 1 (<-graph associated with a set of atoms). Let A be a set of atoms. The
<-graph associated with A is the directed graph defined as follows:

– to each term x appearing in A, we assign a vertex vx,
– for any x, y such that x , y and x and y appear in the same atom with position

px < py, there is an arc from vx to vy (note that no loop can occur).

Intuitively, a rule is oriented for an order < if the atoms needed to trigger it as well
as the atoms created by it are situated both in the same right direction according to <.

Definition 2 (<-oriented fr1 rule). Let R be a rule and < a strict total order on the
position of its predicates. R is <-oriented fr1 if it is fr1 and if the <-graph associated
with body(R) ∪ head(R) is a directed acyclic graph such that there is a path from fr(R)
to any other node.

Given this notion of rule orientation, we naturally define the notion of orientable fr1
set of rules.

Definition 3 (Orientable fr1 set of rules). A set of rules R is orientable fr1 (or simply
orientable when not ambiguous) if there exists an order < such that every rule of R is
<-oriented fr1.

Example 1 (Orientable fr1 set of rules). Let us take R = {r(x, y) ∧ p(y) → q(x, z, t) ∧
s(z, t); q(x, y, z) ∧ s(y, z) → r(x, t) ∧ r(t, t) ∧ p(t)}. By taking r1 < r2, s1 < s2 and
q1 < q2 < q3, we can easily check that this set of rules is <-oriented. Note that these
rules are not translatable in EL because of the predicate of arity 3 and of cycles.

Property 1 (Recognizability problem) The problem of deciding whether a set of rules
R is orientable is NP-complete.

The hardness result comes from a reduction of 3-SAT. NP-hardness of the recogniz-
ability problem might impede the practical applicability of following results. However,
this complexity remains quite small compared to the combined complexity of CQA
with a lot of known classes, and, more importantly, even strongly restricted sets of ori-
entable rules are still of interest. Indeed, the next property shows that rules translating
EL ontologies are very naturally oriented (with R1 < R2 for any role R).

Property 2 (Generalization of EL) Any set of EL-rules is orientable.

In the next examples, we assume for all predicate p that pi < p j if and only if i < j.

4 An Algorithm for CQA with Orientable Rules

In this section, we present a forward chaining algorithm which is a simplified version of
the algorithm introduced in [13] for a class of rules called greedy bounded treewidth set,
which includes fr1. While performing forward chaining, a greedy tree decomposition
(of bounded width) of the currently generated fact is maintained. We call bags the nodes
of this tree, which is built as follows: the root of this tree contains all atoms in F, and
each time a rule with frontier f is applied by means of a homomorphism π, we create a
new bag that contains the newly generated atoms, and choose as its pBarent the root of
the tree if π(f) is a constant or a variable of F, otherwise the bag in which the variable
π(f) has been generated.

Example 2 (Greedy tree decomposition). Let F = {p(a), q(a)} and R = {R1 : p(x) →
r(x, y) ∧ q(y); R2 : q(x) → t(x, y) ∧ p(y)}. We show the greedy tree decomposition of
α4(F,R) in Figure 2.

p(a), q(a)

r(a, x1), q(x1) t(a, y1), p(y1)

t(x1, x2), p(x2) r(y1, y2), q(y2)

r(x2, x3), q(x3)

t(x3, x4), p(x4)

r(y2, y3), q(y3)

t(y3, y4), p(y4)

B0

L1

L2

D1

D2

L3

L4

D3

D4

R1 R2

R2 R1

R1

R2

R2

R1

Fig. 2. The greedy tree decomposition of α4(F,R) (Example 2)

Maintaining this tree decomposition is not sufficient by itself to ensure the termina-
tion of the algorithm, since the universal model can be infinite. The main notion used in
[13] to ensure the finiteness of the built tree is the equivalence between bags: two bags
B and B′ are said equivalent when every fact that will eventually be mapped “under
B” (i.e., using at least one term generated below B) can be mapped similarly (i.e., up
to a bijection between terms of B and B′)“under B′”, and conversely. If two bags are
equivalent, it is only necessary to apply rules below one of them, and the other one will
be said “blocked”. When no more rule is applicable on a non-blocked bag, we obtain
the full blocked tree.

This equivalence as well as rule applications are computed in the original algorithm
by means of patterns, that are attached to each bag. The complexity of the original
algorithm is due to the high number of relevant patterns. In the remaining of this section,

we explain how to compute the equivalence relation as well as new rule applications
without using patterns – and thus we do not present patterns here.

First, we can simplify equivalence between bags: with orientable fr1 rules, two bags
are equivalent if they have been created by the same rule, as stated by the following
property.

Property 3 Let R be a set of orientable fr1 rules, R ∈ R,R′ ∈ R, and F be a fact. Let
B1 and B2 be two bags of T ∗ (the tree decomposition of the universal model of F and
R) created by the same rule R. Let z be an existential variable of R, z1 and z2 be the
corresponding fresh variables in B1 and B2. B1 has a child created by a rule application
of R′ mapping fr(R′) to z1 if and only if B2 has a child created by a rule application of
R′ mapping fr(R′) to z2.

Example 2 (contd.). A full blocked tree of F and R is represented in Figure 3. L2 is
equivalent to D1, D2 to L1; L2 and D2 are blocked and no new rule application can be
done on B0, L1 or D1 – this is checked by existence of a ∗-homomorphism, see below.

Second, we check rule applicability by means of ∗-homomorphism. This tool is
introduced in [13] to evaluate a conjunctive query. Suppose that, at some step of the
algorithm, we have generated a blocked tree T . We want to check if there is a homo-
morphism from Q to the possibly infinite fact encoded by T . This fact can be obtained
from T by a possibly infinite sequence of completions, that iteratively copies under
blocked bags the atoms found under their equivalent bag (up to variable renaming).
Such a homomorphism induces a partition of Q (two atoms are in the same set if they
are mapped to the same – initial or added – bag) and a tree structure for this partition
(mimicking the tree structure of the image bags). Finally, [13] shows that if there ex-
ists such a homomorphism, there exists one requiring only a completion sequence of
bounded length. To encode the homomorphism, we thus only need the tree decompo-
sition of Q, homomorphisms from each subset of Q to a bag of T , and the required
bounded number of completions: this is the structure called a ∗-homomorphism.

p(a), q(a)

r(a, x1), q(x1) t(a, y1), p(y1)

t(x1, x2), p(x2) r(y1, y2), q(y2)

B0

L1

L2

D1

D2

R1 R2

R2 R1

Fig. 3. The full blocked tree of F and R (Example 2)

Example 3 (∗-homomorphism). Let Q = {r(z, z1), t(z1, z2), r(z2, z3), t(z3, z4), t(z, z′1)}. Let
π = {(z, a), (z1, x1), (z2, x2), (z3, x3)(z4, x4), (z′1, y1)} from Q to the fact associated with the
tree drawn in Figure 2. The corresponding ∗-homomorphism is pictured in Figure 4.

∅

r(z, z1) t(z, z′1)

t(z1, z2)

r(z2, z3)

t(z3, z4)

Q0 → B0

z→ a

Q1 → L1

z→ a, z1 → x1

Q2 → L2

z1 → x1, z2 → x2

Q3 → D2

z2 → y1, z3 → y2

Q4 → L2

z3 → x1, z4 → x2

Q6 → D1

Fig. 4. A ∗-homomorphism from Q = {r(z, z1), t(z1, z2), r(z2, z3), t(z3, z4), t(z, z′1)} to the structure
of Figure 3.

Given a tree decomposition of Q and homomorphisms from bags of this decom-
position to corresponding bags of T (as in Figure 4), we check if it is actually a ∗-
homomorphism. We check for any pair of adjacent nodes that the associated mappings
are compatible, i.e., the image of any term is unique. In the given example, for Q1,
{(z, a), (z1, x1)} is a homomorphism from r(z, z1) to r(a, x1), q(x1), which is consistent
with Q0 since z is mapped to a in both cases. An interesting consistency check occurs
for Q2 and Q3: since Q2 has been mapped to a bag having no child, z2 has image x2
when considering Q2, and y1 when considering Q3. However, this is consistent since
when copying D2 under L2, we rename y1 by x2.

Theorem 1. The conjunctive query answering problem with a set of orientable fr1 rules
is Ptime-complete for data complexity and NP-complete for combined complexity.

Proof. The Ptime membership comes from similar result for fr1 rules in [13]. The NP-
membership is due to the fact that the structure we build is of polynomial size in F and
R. The hardness holds because it generalizes EL.

It is interesting to note that our algorithm, when further restricted to EL ontologies,
becomes similar to the algorithm presented in [11]. The main difference is that, while
our algorithm maintains equivalence classes, the algorithm in [11] merges equivalent
bags. These merges result in the finiteness of the process, but also in the loss of ho-
momorphism soundness with respect to first-order semantics. Soundness is regained by
modifying homomorphism check, in a way both based on the orientation of EL and on
its tree-model property.

5 Adding Complex Role Inclusions

Complex role inclusions are arguably useful in practice. However, this kind of rules
does not behave well with respect to both forward chaining and backward chaining, as
illustrated with Example 4.

Example 4. Let R = {p(x) → r(x, y) ∧ p(y); r(x, y) ∧ r(y, z) → r(x, z)}. The query Q =

{q(x), r(x, y), q(y)} is not rewritable w.r.t. R into a finite union of conjunctive queries,
and R does not generate facts of bounded treewidth either: a clique of arbitrary size can
be built by performing forward chaining on the fact p(a).

In order to stay as close as possible to the algorithm of previous section, we split any
fact generated during the chase into two parts: atoms generated by fr1 rules (the back-
bone), and those generated by role inclusions. The first part is of bounded treewidth,
and can be managed in the same way as before. The second part will be dealt with in
a different fashion: we restrict the set of allowed role inclusions in order to deal with
them by means of automata, as it was already done in [10]. In the following, we de-
fine an abstract condition of regularity for so-called oriented join rules, and an easily
checkable syntactic condition that generalizes existing results. We then illustrate the
algorithm with Example 5.

Definition 4 (Join rule). A join rule is a rule of the following shape: r(x, y)∧ s(y, z)→
t(x, z). Transitivity rules are the case where r = s = t, left-identity rules where r = t.

Definition 5 (Backbone). Let F be a fact, R = Ro ∪ R j where Ro is a set of fr1 rules
and R j is a set of join rules. The backbone associated with F and R is the subset of
atoms of the universal model of F and R that have been created by a fr1 rule.

The backbone is of bounded treewidth, and a tree decomposition can be built greed-
ily. In order to have a counter-part of Property 3 on bag equivalence, we consider only
orientable join rules.

Definition 6 (<-oriented join rules). Let R be the following join rule: r(x, y)∧s(y, z)→
t(x, z). R is a <-oriented join rule if:

– either r1 < r2, s1 < s2 and t1 < t2,
– or r1 > r2, s1 > s2 and t1 > t2.

The following property allows us to keep a trivial equivalence relation on bags.
Indeed, it ensures that the criterion used in the previous section to check equivalence
between bags remains valid when adding <-oriented join rules to our framework.

Property 4 Let Ro be a set of <-oriented fr1 rules, R j be a set of <-oriented join rules
(for the same order <), R,R′ ∈ Ro, F be a fact. Let B1 and B2 two bags of T ∗ (the greedy
tree decomposition of the backbone associated with F and Ro∪R j) created by the same
rule R ∈ Ro. Let z be an existential variable of R, z1 and z2 be the corresponding fresh
variables of B1 and B2. B1 has a child created by a rule application of R′ mapping fr(R′)
to z1 if and only if B2 has a child created by a rule application of R′ mapping fr(R′) to
z2.

Having a finite representation of the backbone, we use regularity in order to manage
join rules. Given a fact F and x and y two terms of F, we denote by PF(x, y) the set of
words that describe a finite elementary path from x to y. For instance, in the query Q of
Figure 4, PF(z, z3) = {rtr}.

Definition 7 (Regularity of a set of join rules). Let P be a set of binary predicates,
and Rc be a set of join rules over P. Rc is regular if for any predicate p ∈ P, there exists
a regular language Lp such that, for any fact F , for any x, y ∈ terms(F), the following
holds:

F,Rc |= p(x, y)⇔ PF(x, y) ∩ Lp , ∅

Similarly to a ∗-homomorphism, a ∗ j-homomorphism is a labeled tree structure,
together with a mapping from its bags to the bags of the full blocked tree. In the ∗-
homomorphism case, the consistency check consists only in checking that each term
of the query has a well-defined image. In the ∗ j-homomorphism case, we also have to
check that atoms generated by complex role inclusions can be effectively generated. Let
us consider Example 5 and Figure 5. In order to have w(a, x) entailed by the universal
model, not only should x be mapped to t1 in a bag B equivalent to B3, but there should
also be a path from a to the image of the frontier of the rule creating B, such that Aw

(Figure 5) ends in s3 when reading the word associated with that path. It is worth to
note that this is not the case for B3 and B5, but it holds for B7, even though B3, B5 and
B7 are equivalent. We thus add this information about states in the ∗ j-homomorphism.

Compared to the orientable fr1 case, the size of a completion needed to map a query
can be bigger up to a factor which is exponential in the query and in the automaton used
to recognize regular predicates. This does not increase the data complexity of CQA
with the union of a <-oriented fr1 set of rules and a <-oriented and regular set of join
rules, which remains Ptime-complete. However further work is required to determine
the combined complexity of the problem.

Example 5. Let R = Ro ∪ R j with Ro = {p(x) → r(x, y) ∧ r(y, z) ∧ q(z) ∧ p(z), q(x) →
w(x, y)} and R j = {r(x, y)∧ r(y, z)→ s(x, z), s(x, y)∧ r(y, z)→ t(x, z), t(x, y)∧w(y, z)→
w(x, z)}. We take a fact F = {p(a)} and a query Q = {w(a, x)}. The regular expressions
associated with r, s, t and w are r, rr + s, rrr + sr + t, and (rrr + sr + t)∗w.

There exists a homomorphism π from Q to the completion represented in Figure 6,
mapping x to t3. We represent this homomorphism by the structure represented Figure 7.

s0 s1 s2 s3 s4
r r r w

t
s

ε

Fig. 5.Aw, an automaton recognizing Lw (Example 5)

Last, we present a syntactic condition that ensures that a set of join rules is regular.
In particular, this condition generalizes the condition proposed in [10].

Definition 8 (Stratified set of join rules). A set of join rules is stratified if the directed
graph G built as follows is acyclic. For every predicate p, there exists a vertex vp in V.
There is an arc from vp to vq where p , q if there exists a rule r(x, y) ∧ s(y, z)→ t(x, z),
where p = r or p = s and q = t.

p(a)

r(a, y1), r(y1, z1), q(z1), p(z1)

r(z1, y2), r(y2, z2), q(z2), p(z2)

r(z2, y2), r(y3, z3), q(z3), p(z3)

w(z1, t1)

w(z3, t3)

w(z2, t2)

B1

B2

B4

B3

B7

B5

Fig. 6. In plain, the full blocked tree; in dashed, a completion (Example 5). By additionally using
(only) role inclusions, Q = w(a, x) can be mapped, mapping x to t3.

a

x

B0 → F

B1 → B3,w(a, x) : s3

x→ t1

Fig. 7. A ∗ j-homomorphism of Q = {w(a, x)} in the full blocked tree of Example 5

Property 5 (Regularity of a stratified set of join rules) A stratified set of join rules is
regular.

Proof (sketch). By induction on the structure of G. A predicate p whose vertex does not
have an incoming arc is associated with the regular expression p. For any q, if we have
a regular expression for any p such that (vp, vq) is an arc of G, we can build one for q.

Theorem 2. The CQA problem with rules being the union of of <-oriented fr1 rules
and <-oriented regular join rules (for the same order <) is Ptime in data complexity.

6 Conclusion

In this preliminary work, we identified a class of existential rules, namely fr1 orientable
rules, covering EL ontologies while keeping the same complexity for CQA. Rules allow
to easily use predicates of any arity and some cycles between variables. We exploited
the simplicity of orientable fr1 rules to simplify the very recent algorithm from [13].
We then investigated how to add some expressive power that could be useful in prac-
tice, while staying polynomial in data complexity: we showed how to add transitivity
axioms and left- and right-identity rules. Although adding these rules does not fulfill the
usual decidability criteria, we adapted the algorithm for orientable rules by using finite
automata. Some follow-up naturally come to mind: can we generalize our approach to
cover Horn-SROIQ? What is the combined complexity of CQA with the considered
rules? What are interesting classes of rules with predicate of any arity that could be
added to this basis, while staying polynomial in data complexity? How does the algo-
rithm behave in practice? Moreover, compared to the algorithm presented in [11], the

representation of the universal model uses more space, since equivalent nodes are not
merged. Can we adapt our algorithm in order to reduce the space requirements?

Aknowledgment

The author thanks the anonymous reviewers for their useful and constructive com-
ments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
2. Baader, F.: Terminological cycles in a description logic with existential restrictions. In: IJ-

CAI. pp. 325–330 (2003)
3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L., Saffiotti, A.

(eds.) Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05). pp. 364–369. Profes-
sional Book Center (2005)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, second edn. (2007)

5. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: Extending decidable cases for rules with
existential variables. In: IJCAI (2009)

6. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential variables: Walk-
ing the decidability line. Artif. Intell. 175(9-10), 1620–1654 (2011)

7. Calı̀, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expres-
sive relational constraints. In: Proceedings of the Eleventh International Conference on the
Principles of Knowledge Representation and Reasoning (KR 2008), Sydney, Australia. pp.
70–80 (2008)

8. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable
query answering over ontologies. In: Proceedings of the 28th symposium on Princi-
ples of database systems (PODS’09). pp. 77–86. ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1559795.1559809

9. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR. pp. 57–67
(2006)

10. Krötzsch, M., Rudolph, S.: Conjunctive queries for EL with role composition. In: DL. vol.
250 (2007)

11. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic EL
using a relational database system. In: IJCAI (2009)

12. Mugnier, M.L.: Ontological query answering with existential rules. In: RR. pp. 2–23 (2011)
13. Thomazo, M., Baget, J.F., Mugnier, M.L., Rudolph, S.: A generic querying algorithm for

greedy sets of existential rules. In: KR ((to appear) 2012)

