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1 Motivation

Combining description logics (DLs) with other logical formalisms, including other
DLs, is an important and challenging task. Recent examples include:

1. the combination of DLs with temporal logics to formmulti-dimensional temporal
DLs, cf. e.g. [1, 6, 10];

2. the fusion of multiple DLs into a single formalism that inherits decidability
from its components, cf. [2];

3. the combination of different DLs in the context of loosely federated information
systems resulted in distributed description logics (DDLs), cf. [4].

A relatively new technique of combining description logics, first proposed in [9], is
the formation of so-called E-connections. The general idea behind this combination
method is that the interpretation domains of the connected logics are disjoint and
interconnected by means of link relations. The language of the E-connection is then
the union of the original languages enriched with operators capable of talking about
the link relations. To illustrate this idea, let us consider the E-connection of the two
description logics ALCQI and ALCIO.
Assume that we have two knowledge bases: one deals with people and usesALCQI;

the other deals with countries and employs ALCIO. Note that such a scenario is quite
natural: it may be the case that the two knowledge bases have been developed inde-
pendently and are now required to interoperate—this situation is standard for loosely
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Figure 1: The connection of two knowledge bases.

federated information systems [4] and also for ontology integration in the semantic
web [5]. Another reason for separating the two KBs could be that ALCQI is an ap-
propriate language for representing people’s affairs, ALCIO is appropriate for talking
about countries—but their union ALCQIO is very hard to handle algorithmically.
The KBs can be integrated by using binary link relations such as citizen-of, lives-in,

and likes, which relate domain objects from models of one KB with domain objects
from models of the other KB. In the E-connection of ALCQI and ALCIO, we can,
for example, say that francophile people like France:

Francophile
.
= 〈likes〉1France

where Francophile is a concept name from the ALCQI component, the 〈r〉1C operator
is one of the connection operators for talking about link relations, and France is a
nominal of ALCIO. Intuitively, the 〈r〉1C operator can be understood as an existential
value restriction. The ·1 indicates that this operator is applied to a concept of Logic 2
(ALCIO) and returns a concept of Logic 1 (ALCQI). In first-order logic, the above
formula would read as

∀x ∈W1(Francophile(x)↔ ∃y ∈W2(likes(x, y) ∧ France(y))),

where W1 is the domain of an ALCQI model and W2 is the domain of an ALCIO
model. Of course, we can also use link relations in the other direction:

France v 〈lives-in〉2(Human u ¬〈citizen-of〉1France)

expresses that not all people living in France are French citizens; see Figure 1. Again,
the reading of this formula in first-order logic would be

∀y ∈W2(France(y)→

→ ∃x ∈W1(lives-in(x, y) ∧ Human(x) ∧ ¬(∃z ∈W2(citizen-of(x, z) ∧ France(z))))).

The most important feature of E-connections is that, just as DLs themselves, they
offer an appealing compromise between expressive power and computational complex-
ity: although powerful enough to express many interesting concepts, the coupling
between the combined logics is sufficiently loose for proving general results about the
transfer of decidability. Such transfer results state that if the connected logics are
decidable, then their connection will also be decidable. Thus, E-connections are closer



in spirit to fusions than to multi-dimensional combinations: while there exist general
transfer results for the former [2], the latter allow such a close interaction between the
combined formalisms that general transfer results cannot be expected; see, e.g., [6].
The purpose of this paper is to summarize the general transfer results for E-

connections that have recently been obtained in [7]. The generality of the results is
due to the fact that E-connections are defined and investigated using the framework of
so-called abstract description systems (ADSs), a common generalization of description
logics, modal logics, logics of time and space, and many other logical formalisms [2].
Thus, we can connect not only DLs with DLs, but also, say, description logics with
spatial logics [8]. A natural interpretation of link relations in this context would then
be, for instance, to describe the spatial extension of abstract (DL) objects.

2 Basic E-connections

In this section, we introduce the basic variant of E-connections and formulate the
fundamental transfer theorem first proved in [9]. We begin by introducing ADSs. For
brevity, we give here a slightly trimmed-down version of ADSs that does not capture
ABoxes. However, all results presented in this paper do also apply to ADSs with
ABoxes as defined in [2, 7].

Definition 1 An abstract description language (ADL) L is determined by a countably
infinite set V of set variables and a countable set F of function symbols f of arity mf

such that ¬,∧ /∈ F . The terms tj of L are built in the following way:

tj ::= x | ¬t1 | t1 ∧ t2 | f(t1, . . . , tmf
),

where x ∈ V and f ∈ F . The term assertions of L are of the form t1 v t2. As usual,
we use t1

.
= t2 as an abbreviation for t1 v t2, t2 v t1.

An abstract description model (ADM) for an ADL L = 〈V,F〉 is a structure of the
form

W =
〈

W,VW = (xW)x∈V ,F
W = (fW)f∈F

〉

,

where W is a non-empty set, xW ⊆W and each fW is a function mapping mf -tuples
〈

X1, . . . , Xnf

〉

of subsets of W to a subset of W . The value tW ⊆ W of an L-term t
in W is defined inductively by taking

(¬t)W =W \ tW, (t1 ∧ t2)
W = tW1 ∩ tW2 , (f(t1, . . . , tmf

))W = fW(tW1 , . . . , t
W
mf
).

Intuitively, set variables correspond to concept names, function symbols to concept
constructors, and term assertions to general concept inclusion axioms (GCIs). ADSs
become a powerful tool in providing a choice of an appropriate class of ADMs in which
the ADL is to be interpreted. In this way, we can ensure that function symbols have
the desired semantics.

Definition 2 An abstract description system (ADS) is a pair (L,M), where L is an
ADL andM is a class of ADMs for L that is closed under the following operation: if
W =

〈

W,VW,FW
〉

and VW′

= (xW′

)x∈V is a new assignment of set variables in W ,

then W′ =
〈

W,VW′

,FW
〉

∈M.



The closure condition on the class of models M demands that set variables (i.e.,
concept names) can be interpreted as arbitrary subsets of the interpretation domain—
a property that all DLs comply with. It should be noted that ADSs can capture all
standard expressive means such as number restrictions, transitive closure of roles, and
concrete domains. A very detailed description of how standard DLs can be conceived
as ADSs can be found in [2]. Here we will only briefly describe the translations of the
basic description logic ALC into an ADS, as well as its extension by nominals, ALCO.
Again, we omit the discussion of ABox assertions for brevity.

The language ofALC is based on concept names A1, A2, . . . , role names R1, R2, . . . ,
the Boolean constructors ¬ and u, and the existential restriction ∃. ALC-concepts
are built according to the following rule:

C ::= Ai | ¬C | C uD | ∃R.C

An ALC-model is a structure

I =
〈

∆, AI
1 , . . . , R

I
1 , . . .

〉

,

where ∆ is a non-empty set, the AI
i are subsets of ∆ and the R

I
i are binary relations

on ∆. The interpretation of complex concepts is defined by setting:

(¬C)I = ∆ \ CI (C uD)I = CI uDI

(∃R.C)I = {w ∈ ∆ | ∃v ((w, v) ∈ RI ∧ v ∈ CI)}

The concepts of ALC can be regarded as terms C ] of an ADS ALC]: associate with
each concept name Ai a set variable A

]
i , and with each role name Ri a unary function

symbols f∃Ri
. Then set inductively:

(¬C)] = ¬C] (C uD)] = C] ∧D]

(∃Ri.C)
] = f∃Ri

(C])

Thus, ALC]-term assertions correspond to concept inclusion statements. The classM
of ADMs forALC] is defined as follows. For everyALC-model I =

〈

∆, AI
1 , . . . , R

I
1 , . . .

〉

,
the classM contains the model

M =
〈

∆,VM,FM
〉

,

where, for every concept name A and role name R, we have

(A])M = AI

fM
∃R(X) = {w ∈ ∆ | ∃v ((w, v) ∈ RI ∧ v ∈ X)}

Observe that the semantics of the function symbol f∃R is obtained in a straightforward
way from the semantics of the DL constructor ∃R.C.
Next, we discuss the addition of nominals. The description logic ALCO extends

ALC with nominals ni [12] that are always interpreted by singleton subsets of the
interpretation domain, but syntactically treated as concepts. Due to this special
property of nominals and the closure property on set variables in ADS (Definition
2), nominals cannot be translated as set variables. Rather, the corresponding ADS



ACLO] is obtained from the above translation of ALC by additionally introducing,
for every nominal ni of ALCO, the nullary function symbol fni

with fM
ni
= nIi and by

setting n]i = fni
.

In the following, we will not distinguish between a description logic and the cor-
responding ADS. We are interested in the following satisfiability problem.

Definition 3 Let S = (L,M) be an ADS, t an S-term, and Γ a finite set of term
assertions. Then t is called satisfiable relative to Γ if there exists an ADM W ∈ M
such that tW 6= ∅ and tW1 ⊆ tW2 for all t1 v t2 ∈ Γ.

It is not hard to see that this corresponds to the satisfiability of concepts with
respect to general TBoxes. Indeed, the presented transfer results do only apply to
DLs for which reasoning with respect to general TBoxes is decidable.
Let S1 and S2 be two ADSs that are to be connected.

1 We assume that the set
variables and non-Boolean functions symbols of S1 and S2 are pairwise disjoint. To
form a connection, fix a non-empty set E = {Ej | j ∈ J} of binary relation symbols.
The set of terms of the resulting E-connection CE(S1,S2) is partitioned into a set of
1-terms and a set of 2-terms. Intuitively, i-terms are the terms of Li enriched with
new function symbols for talking about link relations. For the following definition, we
set 1 = 2 and 2 = 1.

Definition 4 The sets of 1-terms and 2-terms of CE(S1,S2) are defined by simulta-
neous induction: for i ∈ {1, 2},

• every set variable of Li is an i-term;

• the set of i-terms is closed under ¬, ∧, and the function symbols of Li;

• if t is an i-term, then the expression 〈Ej〉
i t is an i-term, for every j ∈ J .

The set of terms of CE(S1,S2) is the union of the set of 1-terms and the set of 2-terms.
The term assertions of CE(S1,S2) are of the form t1 v t2, where both t1 and t2 are
i-terms, for i ∈ {1, 2}.

As expected, a model for the E-connection CE(S1,S2) consists of a model for S1, a
model for S2, and an interpretation of the link relations.

Definition 5 A structure M =
〈

W1,W2, E
M = (EM

j )j∈J)
〉

, where Wi ∈ Mi for

i ∈ {1, 2} and EM
j ⊆ W1 ×W2 for each j ∈ J , is called a model for C

E(S1,S2). The

value tM ⊆Wi of an i-term t is defined by simultaneous induction. For set variables X
of Li, we put X

M = XWi ; the inductive steps for the Booleans and function symbols
of Li are the same as in Definition 1; finally,

(〈Ej〉
1 t)M = {x ∈W1 | ∃y ∈ t

M (x, y) ∈ EM
j },

(〈Ej〉
2 t)M = {x ∈W2 | ∃y ∈ t

M (y, x) ∈ EM
j }.

We are now ready to formulate the fundamental transfer result mentioned above:

1In general, E-connections can connect n < ω ADSs [7], and all the formulated results apply to
the n-dimensional case as well.



Theorem 6 Let S1 and S2 be ADSs with decidable satisfiability problems. Then the
satisfiability problem for every E-connection CE(S1,S2) is decidable as well.

It is of interest to note that this transfer theorem is more general than the cor-
responding theorem for fusions obtained in [3]. The transfer result for fusions only
applies to ADSs whose class of models is closed under disjoint unions—thus ruling out
description logics with nominals. This is not the case for the above result: it means, in
particular, that the connection of ALCQI and ALCIO mentioned in the introduction
is decidable.
Theorem 6 is proved by a reduction to the satisfiability problems for the com-

ponent ADSs. Since this reduction is non-deterministic and involves an exponential
blow-up, we obtain an upper complexity bound for the E-connection that is one non-
deterministic exponential higher than the complexity of the component logics. It is
currently unknown whether this complexity is optimal in the general case. However,
it seems that in many natural cases the increase in complexity will be less dramatic.

3 Extensions

The basic idea of connecting logics by means of link relations can be extended in vari-
ous directions. For example, in the distributed KB example given in the introduction
we may want to describe people living in a country of which they are not citizens, or
people who like all countries. To do this, basic E-connections are not enough, since
Boolean operations on link relations are required:

Expat
.
= 〈lives-in ∩ ¬citizen-of〉1 Country

Internationalist
.
= ¬〈¬likes〉1Country

The E-connection of two ADSs S1 and S2 that admits the Boolean operators on link
relations is denoted by CEB(S1,S2). Since we deal with Boolean connections in some
more detail, let us give the precise definition:

Definition 7 Suppose that Si = (Li,Mi), i ∈ {1, 2}, are abstract description systems
and E = {Ej | j ∈ J} is a set of binary relation symbols. Denote by CEB(S1,S2) the
E-connection with the smallest set E of links such that

• E ⊆ E ;

• if F ∈ E , then ¬F ∈ E ;

• if F,G ∈ E , then F ∧G ∈ E .

Given an ADM M =
〈

(Wi)i∈{1,2}, E
M
〉

we interpret the links F ∈ E as relations

FM ⊆W1 ×W2 (with Wi being the domain of Wi) inductively in the obvious way:

(F ∧G)M = FM ∩GM, (¬F )M = (W1 ×W2) \ F
M.

Observe that role hierarchies on link relations can be expressed by writing, e.g., >i v
¬ 〈F ∩ ¬G〉1>2 for F v G, where >i = xi ∨ ¬xi for some set variable xi of Li.
Fortunately, our general transfer result carries over to the Boolean case:



Theorem 8 Let S1 and S2 be ADSs with decidable satisfiability problems. Then the
satisfiability problem for every E-connection CEB(S1,S2) is decidable as well.

The proof is similar to the basic case, although much more involved. The com-
plexity of the obtained algorithm is also as in the basic case. Interestingly, in the
Boolean case we are able to prove that the obtained complexity bound is optimal.
Let B be the ADS that has no function symbols apart from the Booleans and whose
class of ADMs is not restricted in any way. It is not hard to see that, for this simple
ADS, satisfiability is NP-complete. The Boolean connection CB(B,B) of B with itself,
however, is much more complex: it is possible to reduce the NEXPTIME-complete
satisfiability problem for the modal logic S5×S5 [11] to the satisfiability problem for
CB(B,B), which yields the following result:

Theorem 9 The satisfiability problem for CEB(B,B) is NEXPTIME-hard, for any in-
finite E.

To illustrate the expressive power of Boolean connections, we sketch the proof of
this theorem.
First, recall that S5 × S5–formulas are composed from propositional variables

p1, p2 . . . by means of the Booleans and the modal operators ¤1 and ¤2. S5 × S5-
models N = 〈W1 ×W2,V〉 consist of the Cartesian product of two non-empty sets
W1 and W2 and a valuation V which maps any propositional variable to a subset of
W1 ×W2. The extension ϕ

N of an S5 × S5-formula ϕ in N is computed inductively
by setting

pN
i = V(pi)

(ψ1 ∧ ψ2)
N = ψN

1 ∩ ψ
N
2

(¬ψ)N = (W1 ×W2)− ψ
N

(¤1ψ)
N = {(w1, w2) | ∀v ∈W1 (v, w2) ∈ ψ

N}

(¤2ψ)
N = {(w1, w2) | ∀v ∈W2 (w1, v) ∈ ψ

N}.

A formula ϕ is S5× S5-satisfiable if there exists an S5× S5-model in which ϕ has a
non-empty extension.
Suppose now that ϕ is an S5 × S5-formula. Denote by sub(ϕ) the set of all

subformulas of ϕ. For any ψ ∈ sub(ϕ) take a link Eψ ∈ E and let the C
E
B(B,B)-

knowledge base Γ consist of:

(1) Eψ1∧ψ2
= Eψ1

∧ Eψ2
, for ψ1 ∧ ψ2 ∈ sub(ϕ),

(2) E¬ψ = ¬Eψ, for ¬ψ ∈ sub(ϕ);

(3) 〈¬Eψ〉
2>1 = [E¤1ψ]

2⊥1 and [E¤1ψ]
2⊥1 =

〈

¬E¤1ψ

〉2
>1, for ¤1ψ ∈ sub(ϕ);

(4) 〈¬Eψ〉
1>2 = [E¤2ψ]

1⊥2 and [E¤2ψ]
1⊥2 =

〈

¬E¤2ψ

〉1
>2, for ¤2ψ ∈ sub(ϕ).

As was mentioned above, such equations can be added to the vocabulary when working
in connections with Boolean closures of links. More precisely, an equation of the form
F = G is a shorthand for the conjunction of the two link inclusions F v G and G v F .
We now claim that

(♣) ϕ is S5× S5-satisfiable iff 〈Eϕ〉
1>2 is satisfiable relative to Γ in C

E
B(B,B).



To prove (♣), assume first that ϕ is satisfied in a model N = 〈W1 ×W2,V〉. We

construct a model M =
〈

M1,M2, {E
M
ψ }ψ∈sub(ϕ)

〉

that satisfies 〈Eϕ〉
1>2 relative to

Γ. Let M2 be any model for B with domain W2. By assumption, ϕ
N 6= ∅, so we

can pick some (u, v) ∈ ϕN and choose M1 to be any model for B with domain W1.
Finally, we can define EM

ψ := ψN ⊆W1 ×W2, for every ψ ∈ sub(ϕ). By construction,

(〈Eϕ〉
1>2)

M 6= ∅, so it suffices to show that the equations (1)–(4) hold in M, which
can easily be shown by structural induction; details can be found in [7].
Conversely, assume that 〈Eϕ〉

1>2 is satisfied relative to Γ in a model M, where

M =
〈

M1,M2, {E
M
ψ }ψ∈sub(ϕ)

〉

is based on the domains W1 and W2. We define a

model N for S5 × S5 based on the domain W1 × W2 by letting p
N
i := EM

pi
, for

pi ∈ sub(ϕ), and arbitrary otherwise. It can now be shown by induction that

(♥) EM
ψ = ψN, for all ψ ∈ sub(ϕ).

Again, the details of this induction can be found in [7].
Since 〈Eϕ〉

1>2 is satisfiable in M, there exists a v ∈ W1 and a w ∈ W2 such that
(v, w) ∈ EM

ϕ = ϕN 6= ∅. It follows that ϕ is satisfied in N and hence proves (♣).

The reduction shows that the satisfiability problem of CEB(S1,S2) is at least NEXP-
TIME-hard for most interesting ADSs S1 and S2.

Another interesting way of extending basic E-connections is to add qualified num-
ber restrictions on link relations. Suppose, for example, that we want to describe
persons who are citizens of exactly one country. Then it would obviously be conve-
nient to write

Uni-National
.
= 〈citizen-of〉1 Country ∧ 〈≤ 1 citizen-of〉1>2

where the semantics of 〈≤ r E〉iC and its counterpart 〈≥ r E〉iC are defined as for
standard qualified number restrictions in DL. The E-connection of two ADSs S1 and
S2 that allows qualified number restrictions (but not the Boolean operators on link
relations) is denoted by CEQ(S1,S2). Unfortunately, it turns out that, in general,

decidability does not transfer from two ADSs S1,S2 to their E-connection C
E
Q(S1,S2).

Theorem 10 There exist ADSs S1 and S2 with decidable satisfiability problems such
that the satisfiability problem for CEQ(S1,S2) is undecidable even if E is a singleton.

Although to prove this theorem we use rather artificial ADSs, there is an intuitive
reason for this ‘negative’ result: number restrictions on links allow the transfer of
‘counting capabilities’ from one component to another. For example, in the connec-
tion CEQ(ALCQI,ALCIO), we can ‘export’ the nominals of ALCIO to ALCQI: the
assertions

>2 = 〈≤ 1E〉
2>1, >2 = 〈≥ 1E〉

2>1, >1 = 〈≤ 1E〉
1>2, >1 = 〈≥ 1E〉

1>2

state that E is a bijective function, and so we can use 〈E〉1N , N a nominal of ALCIO,
as a nominal in ALCQI. To obtain a general transfer result, we thus have to restrict
the class of ADSs we are working with. For a set of term assertions Γ, we use term(Γ)
to denote the set of (sub)terms occurring in Γ.



Definition 11 An ADS S = (L,M) is called number tolerant if there is a cardinal κ
such that, for every κ′ ≥ κ and every satisfiable finite set Γ of term assertions, there
exists a model W ∈M satisfying Γ and such that, for each d ∈W , there are precisely
κ′ elements d′ ∈W for which

{t ∈ term(Γ) | d ∈ tW} = {t ∈ term(Γ) | d′ ∈ tW}.

Intuitively, DLs that provide means for ‘global counting’ such as nominals are not
number tolerant, whereas those that can only ‘locally count’ are: for example, ALCQI
is number tolerant, while ALCIO is not. More details can be found in [7].

Theorem 12 Let S1,S2 be number-tolerant ADSs with decidable satisfiability prob-
lems. Then the satisfiability problem for any E-connection CEQ(S1,S2) is decidable as
well.

Again, the proof is a variation on the initial idea of the proof of Theorem 6, though
much more complex. It is now a natural question whether we can combine the Boolean
operators with qualified number restrictions on link relations and, at least for number
tolerant ADSs, obtain a general transfer result. Unfortunately, the answer to this
question is negative:

Theorem 13 There exist number tolerant ADSs S1,S2 with decidable satisfiability
problems such that the satisfiability problem for CEQB (S1,S2) is undecidable even if E
is a singleton.

4 Further results

In this paper, we have presented a brief overview of our recent results on E-connections.
More details and full proofs can be found in [7], where also several additional results
are proved. Here we mention only two of them:

(1) As already noted, the results in [7] are more general than those presented here in
that they take into account ADSs with ABoxes. Moreover, another extension of basic
E-connections is considered, in which ABox individuals may occur as arguments of a
connection operator even if nominals are not provided by the connected logics. Quite
surprisingly, we can still prove a general transfer result in the spirit of Theorem 6.
The combination of this extension with Boolean operators on link relations poses
no problems, whereas the combination with qualified number restrictions leads to
undecidability.

(2) There exists a close connection between E-connections and distributed descrip-
tion logics (DDLs) considered by Borgida and Serafini in [4]. Indeed, the extension of
E-connections mentioned in (1) can almost be viewed as a generalization of DDLs. We
say ‘almost’ because DDLs are able to express that an ABox individual of one logic is
connected via a certain link relation to exactly the objects b1, . . . , bk of another logic.
In [7], we extend E-connections with this expressive means, prove a general transfer
result for the case when all connected DLs are equipped with nominals, and show
that, in the general case, decidability does not transfer.
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