
Explanation of Terminological Reasoning

A Preliminary Report

Stefan Schlobach

Language and Inference Technology, ILLC

Universiteit van Amsterdam, NL

schlobac@science.uva.nl

Ronald Cornet

Academic Medical Center

Universiteit van Amsterdam, NL

R.Cornet@amc.uva.nl

Abstract

This paper describes our current activities to supply extended reasoning sup-
port to knowledge engineers who are building terminologies using Description
Logics (DL) reasoners. The new services originate in the development of the
DICE1 terminology where the lack of appropriate debugging or explanation fa-
cilities hindered a more efficient (and possibly more concise) construction of a
corresponding DL TBox. We discuss a number of alternative methods to explain
incoherence of TBoxes, unsatisfiability of concepts and concept subsumption.

1 Introduction

Developing a terminology is a time-consuming and error-prone process. DICE, a
terminology developed at the AMC in Amsterdam for the unambiguous and unified
classification of patients in Intensive Care medicine, defines more than 2400 concepts
and uses 45 relations. Let us illustrate some of the problems: in a first version
of DICE a “brain” was incorrectly specified, among others, as a “central nervous-
system” and “body-part” located in the head. This definition is contradictory as
nervous-systems and body-parts are declared disjoint in DICE. Fortunately, current
Description Logic reasoners, such as RACER [4], can detect this type of inconsistency
and the knowledge engineer can identify the cause of the problem. Unfortunately,
many other concepts are defined based on the erroneous definition of “brain” forcing
each of them to be erroneous as well. In practice, DL reasoners provide lists of
hundreds of unsatisfiable concepts for the DICE TBox and the debugging remains a
jigsaw to be solved by human experts, with little additional explanation to support
this process. The situation is even worse when ontologies without formal semantics are
translated into DL terminologies [11, 3]. Cornet and Abu-Hanna, for example, have
studied alternative translations, using e.g. rigid translations of slot-fillers in frames into
existentially and universally quantified concepts. In some cases this will be too strong

1DICE stands for “Diagnoses for Intensive Care Evaluation”.

an assumption and will lead to high numbers of unsatisfiable concepts, and the cause
for the unsatisfiability will have to be examined separately for each individual concept.
In this case, explanation of TBox unsatisfiability and incoherence is paramount. A
similar approach to render the intended semantics of a terminology more precise is to
replace primitive concept definitions with non-primitive ones. In this case, a number
of concepts turn out to be equivalently defined or to subsume each other, and the
identification of the causes of the subsumption relations becomes a valuable asset.

In [9] we introduce pinpointing as a method to identify the precise position of errors
in a TBox by, first, calculating minimal incoherence-preserving sub-terminologies and,
secondly, maximally generalising axioms. There, algorithms and preliminary practical
results are described and we will, in Section 4, only briefly recall the main notions of
MIPS and GITs. In the Description Logic ALC [10] there are two main reasons why
concept subsumption might be intuitively difficult to understand, first, because of the
structural complexity of subsumer and subsumed concept and, secondly, because of
the logical interplay between the two concepts. We propose to explain subsumption
by reducing the structural complexity and by bringing the logical interplay more to
the foreground. We will describe two alternative approaches. An Illustration for
a subsumption T |= C v D is a single concept I which “bridges” a subsumption
relation as an intermediate subsumer T |= C v I v D, and which captures some of
the common structure of C and D. Alternatively, a magnification for T |= C v D is a
pair C ′ and D′ of concepts where T |= C v C ′ v D′ v D, and where C ′ is a structural
simplification of C and D′ a structural simplification of D. In this way the relation
T |= C ′ v D′ “zooms” into the relation T |= C v D, it magnifies it. Illustration and
magnification are new ideas that will be discussed in more detail in Section 5.

While pinpointing has been already applied in explaining incoherence in DICE,
implementation and evaluation of illustration and magnification is work in process. In
this paper we describe how to define different notions of structural similarity, and how
to apply them to explanation. With this preliminary report we aim at introducing
new mechanisms for explanation of DL reasoning.

2 Description Logics

We shall not give a formal introduction to Description Logics (DL) here, but point to
the first two chapters of the DL handbook [1] for an excellent overview. Briefly, DLs
are set description languages with concepts (usually we use capital letters), interpreted
as subsets of a domain, and roles which are binary relations, denoted by small letters.
ALC is a simple yet relatively expressive DL with conjunction C u D, disjunction
CtD, negation ¬C and universal ∀r.C and existential quantification ∃r.C. Commonly,
C → D is used as an abbreviation for ¬C tD.

In a terminology T (called TBox) the interpretations of concepts can be restricted
to the models of T by axioms of the form C v D or C=̇D. Based on this model-
theoretic semantics, concepts can be checked for unsatisfiability: whether they are
necessarily interpreted as the empty set. A TBox T is called coherent if no unsatisfiable
concept-name occurs in T . Other checks include subsumption of two concepts C and
D (a subset relation of CI and DI w.r.t. all models I of T). Subsumption between
concepts C and D w.r.t. a TBox T will be denoted by T |= C v D.

A TBox is unfoldable if the left-hand side of the axioms (called the defined con-

cepts) are atomic, and if the right-hand sides (the definitions) contain no reference to
the defined concept [7]. Subsumption and satisfiability without reference to a TBox
will be denoted by concept subsumption and concept satisfiability and we will write
|= C v D and C 6= ⊥, respectively. Most examples in this paper are using concept
subsumption only, but the definitions are usually more general and for subsumption
w.r.t. a TBox. Note, that subsumption and satisfiability of concepts w.r.t. unfoldable
TBoxes can be reduced to concept subsumption and concept satisfiability.

3 Structural Similarity

The new reasoning services of generalised terminologies, illustration and magnifica-
tion, which we are going to introduce in this paper, will require target concepts to be
structurally related to the original concepts such as subsumers or definitions. Struc-
tural properties of concepts have been used in early DL systems to decide subsumption
[5], but it is well known that structural subsumption is incomplete for more complex
languages such as ALC. However, to explain subsumption or incoherence logical com-
pleteness is irrelevant and we can, actually, use structural similarity of concepts to
simplify terminologies or subsumption relations.

The general principal will be the same in all cases: we will explain logical relations
by the same relations between simplified but structurally related concepts. For dif-
ferent representation languages, types of knowledge bases and application problems
different types of structural relatedness can be considered.

The first proposed notion is based on sets of qualified sub-concepts as the struc-
turally related concepts. Informally, the qualified sub-concepts are variants of those
concepts a knowledge engineer explicitly uses in the modelling process, where the
context of this use is kept intact. By context we mean the sequence of quantifiers a
concept-name occurs in and the polarity, i.e. whether it is used within the scope of
an even or odd number of negations2 The definition is by induction.

qs(C uD)={C ′, D′, C ′ uD′ | C ′ ∈ qs(C), D′ ∈ qs(D)}
qs(C tD)={C ′, D′, C ′ tD′ | C ′ ∈ qs(C), D′ ∈ qs(D)}
qs(∃r.C)={∃r.C ′ | C ′ ∈ qs(C)}
qs(∀r.C)={∀r.C ′ | C ′ ∈ qs(C)}
qs(¬C)={¬C ′ | C ′ ∈ qs(C)}
qs(A)={A} if A is atomic

The set of qualified sub-concepts for a concept C will be denoted by qs(C). Take
for example a concept C defined as ∃r.(D t ∀s.E). In this case the concept ∃r.∀s.E
is structurally related to C w.r.t. qualified sub-concepts, whereas concept ∃r.¬D or
∃s.D are not. A concept C is then structurally similar to a concept D if C ∈ qs(D).

Unfortunately, there are possibly exponentially many qualified sub-concepts, which
makes enumerating unfeasible in practice. For magnification of subsumption, which
will be introduced in Section 5, we will not just use structural similarities but a seman-
tic ordering on concepts to choose an explanation. For this purpose we can include a
semantic ordering on the qualified sub-concepts, i.e. we get two sets of concepts related

2We call these concepts the qualified sub-concepts of a concept because they are qualified (or
restricted) in the same way as the original concepts w.r.t. negation and quantification.

to a concept C, the generalised qualified sub-concepts (GQS) (abbreviated by gqs(C))
and the specialised qualified sub-concepts (SQS) (abbreviated by sqs(C)). GQSs of
C are those qualified sub-concepts which are more general w.r.t. the subsumption
relation, SQSs those that are more special. The definition is inductively as follows:

gqs(C uD)={C ′, D′, C ′ uD′ | C ′ ∈ gqs(C), D′ ∈ gqs(D)}
gqs(C tD)={C ′ tD′ | C ′ ∈ gqs(C), D′ ∈ gqs(D)}
gqs(∃r.C)={∃r.C ′ | C ′ ∈ gqs(C)}
gqs(∀r.C)={∀r.C ′ | C ′ ∈ gqs(C)}
gqs(¬C)={¬C ′ | C ′ ∈ sqs(C)}

gqs(A)=sqs(A) = {A} if A is atomic

sqs(C uD)={C ′ uD′ | C ′ ∈ sqs(C), D′ ∈ sqs(D)}
sqs(C tD)={C ′, D′, C ′ tD′ | C ′ ∈ sqs(C), D′ ∈ sqs(D)}
sqs(∃r.C)={∃r.C ′ | C ′ ∈ sqs(C)}
sqs(∀r.C)={∀r.C ′ | C ′ ∈ sqs(C)}
sqs(¬C)={¬C ′ | C ′ ∈ gqs(C)}

Note the interplay of GQSs and SQSs in the negated case, and the dual structure of
the definitions for the boolean operators. A simple consequence of this definition is
that |= C v C ′ for every C ′ ∈ gqs(C) and |= D′ v D for each D′ ∈ sqs(D).

Both notions of structural similarity might be inappropriate or insufficient for cer-
tain, more advanced, reasoning tasks, such as the suggestion of corrections. Experience
with the DICE terminology has, for example, shown that a common modelling error is
to define a concept as a sub-concept rather than as related by, for instance, a part of re-
lation. In this case the use of qualified sub-concepts for structural similarity can be too
restrictive. The original definition CentralNervousSystem u BodyPart u . . . of the
concept Brain in the DICE terminology (given disjointness of the two concepts Central-
NervousSystem and BodyPart) should be corrected to ∃part of.CentralNervousSystem
u BodyPart u . . . , which is not structurally related to the original concept according
to the chosen definition. If we intend to use structurally related concepts not just for
detection of errors by pinpointing (as proposed in Section 4) but to suggest corrections
this definition will not produce satisfying results. In this case a notion of similarity
which relates concepts ∃part of.CentralNervousSystem and CentralNervousSystem is
required. As we believe this to be an interesting extension of our approach, we plan
to investigate such an alternative notion of structural relatedness in future research.
This example shows that the definition of structural similarity gives us a handle to
identify particular types of errors, or to explain particular reasoning steps, but might
need adaption for others.

Let us now discuss the new reasoning services for explanation in more detail.

4 Explaining Unsatisfiability and Incoherence

In this section we study ways of explaining unsatisfiability and incoherence in DL
terminologies. Consider the following (incoherent) TBox T1, where A, B and C are
primitive and A1, . . . , A7 defined concept names:

A1 =̇ ¬A u A2 u A3 (ax1) A2 =̇ A u A4 (ax2)
A3 =̇ A4 u A5 (ax3) A4 =̇ ∀s.B u C (ax4)
A5 =̇ ∃s.¬B (ax5) A6 =̇ A1 t ∃r.(A3 u ¬C u A4) (ax6)
A7 =̇ A4 u ∃s.¬B (ax7)

The set of unsatisfiable concept names is {A1, A3, A6, A7}. Although this is still
of manageable size, it hides crucial information, e.g., that unsatisfiability of A1 not
only depends on the contradiction between A and A2, but also on the unsatisfiability
of A3 because of the contradictions between A4 and A5. We will use this example
to explain our debugging methods. In [9] we propose to simplify a terminology T
in order to reduce the available information to the root of the incoherence. More
concretely we first exclude axioms which are irrelevant to the incoherence and then
provide simplified definitions highlighting the exact position of a contradiction within
the axioms of this reduced TBox. We will call the former axiom pinpointing, the latter
concept pinpointing.

Axiom pinpointing Axiom pinpointing identifies debugging-relevant axioms, where
an axiom is relevant if a contradictory TBox becomes coherent once the axiom is re-
moved or if, at least, a particular, previously unsatisfiable concept turns satisfiable.
Unsatisfiability-preserving sub-TBoxes of a TBox T and an unsatisfiable concept A

are subsets of T in which A is unsatisfiable. In general there are several of these
sub-TBoxes and we select the minimal ones, i.e., those containing only axioms that
are necessary to preserve unsatisfiability.

Definition 4.1 Let A be a concept which is unsatisfiable in a TBox T . A set T ′ ⊆ T
is a minimal unsatisfiability-preserving sub-TBox (MUPS) of T if A is unsatisfiable in
T ′, and A is satisfiable in every sub-TBox T ′′ ⊂ T ′.

MUPS for our TBox T1 and A1 are {{ax1, ax2}, {ax1, ax3, ax4, ax5}}, for T1 and A6

{{ax1, ax2, ax4, ax6}, {ax1, ax3, ax4, ax5, ax6}}. MUPS are useful for relating unsat-
isfiability to sets of axioms but are also used to calculate MIPS.

MIPS are minimal subsets of an original TBox preserving unsatisfiability of at
least one atomic concept.

Definition 4.2 Let T be an incoherent TBox. A TBox T ′ ⊆ T is a minimal
incoherence-preserving sub-TBox (MIPS) of T if T ′ is incoherent, and every sub-TBox
T ′′ ⊂ T ′ is coherent.

For T1 we get three MIPS {ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}. It can easily be
checked that each of the three incoherent TBoxes is indeed a MIPS as taking away a
single axiom renders each of the three coherent. The first one signifies, for example,
that the first two axioms are already contradictory without reference to any other
axiom, which suggests a modelling error already in these two axioms.

Concept Pinpointing Incoherence of a TBox can be regarded as an over-speci-
fication of one or more concepts in the relevant definitions. Generalised terminologies

are terminologies where some of the definitions have been generalised.3 Furthermore,
we require generalised definitions to be structurally related to the original axioms
and we use qualified sub-concepts of Section 3 for this purpose. Formally, a concept
C ′ is called a syntactic generalisation of a concept C if C ′ ∈ qs(C) and |= C v C ′

(independent of T). Now, generalised incoherence-preserving terminologies (GITs) are
TBoxes where the defining concepts of the axioms are maximally generalised without
losing incoherence.

Definition 4.3 Let T = {C1 v D1, . . . , Cn v Dn} be an incoherent TBox. An inco-
herent TBox T ′ = {C1 v D′

1, . . . , Cn v D′
n} is a generalised incoherence-preserving

terminology (GIT) of T iff

• each D′
i is a syntactic generalisation of Di (1 ≤ i ≤ n), and

• every TBox T ′′ = {C1 v D′′
1 , . . . , Cn v D′′

n} with a syntactic generalisation D′′
i

of Di where T |= D′
i v D′′

i and T |= D′′
i 6v D′

i (for some i) is coherent.

Note, that the set of GITs of a TBox T is equivalent to the union of GITs for the
MIPS of T [9]. We could also have defined GITs using the generalised qualified sub-
concepts of Section 3. However, such a definition would not be equivalent to the
one we introduced in [9], which we also decided to present here to emphasise the
different character of structural simplification and semantic ordering. Of all possible
GITs we conjecture that the simplest ones, e.g., those with syntactically minimal
generalisations, are most likely to be useful for the identification of errors. In our
experiments we use two alternative formalisations, the first with respect to minimal
size of axioms, the second with respect to the number of concept names occurring in
the GIT. Three minimal sized GITs exist for our example TBox T1, where we only
show the non-trivial axioms:

{{A1 v ¬A uA2, A2 v A}, {A3 v A4 uA5, A4 v ∀s.B, A5 v ∃.¬B},
{A7 v A4 u ∃s.¬B, A4 v ∀s.B}}.

Algorithms for axiom and concept pinpointing were presented in [9]. Given that the
set {ax4} is a subset of two of the three MIPS the axiom {ax4} is most likely to cause
incoherence of T1 (we call such a set a core of arity two). Furthermore, we will have to
take care of a contradiction on A in (ax1) and (ax2). Practical experience with DICE
has shown that the cause for incoherence could be the erroneous use of concepts as
well as their actual definition. Note that our methods ignore cases like (ax6) where
the second disjunct remains unsatisfiable even though now every concept-name in the
corrected TBox is satisfiable. Although such a “local unsatisfiability” might indicate
an erroneous specification there is currently no way of identifying such problems.

5 Explaining Subsumption

Not only can DL reasoner efficiently check for consistency, but also for subsumption,
i.e. whether a concept, e.g. ∃child.> u ∀child.Doctor is a subclass of another concept
∃child.(Doctor t Rich). Unfortunately, reasoners do not explain why this is the case,
and it is not always easy to see why subsumption holds.

3To simplify matters we generalise the right-hand side of axioms only as we are currently only
considering unfoldable TBoxes.

5.1 Explaining Subsumption by Illustration

Our first approach is simple: a suitable illustration for this subsumption relation seems
to be that ∃child.> u ∀child.Doctor is more specific than ∃child.Doctor which, again,
is more specific than ∃child.(Doctor t Rich). Not only is this concept ∃child.Doctor
strongly linked by the common vocabulary to both the subsumer and the subsumed
concept it is also the simplest illustration one can give.

Consider the following concept subsumption |= Cex v Dex, taken from [2], which
the authors introduce to give an example for their “explanation as proof-fragment”
strategy, where Cex := ∃child.> u ∀child.¬((∃child.¬Doctor) t (∃child.Lawyer)) is
subsumed by Dex :=∃child.∀child (Rich t Doctor). Instead of providing a concise
and simplified extract of a formal proof as an explanation as done in [2] we suggest
an alternative, more static approach, which we call explaining by illustration. Imagine
the above information is given in natural language:

Suppose somebody has children, and each child has neither a child which is not a

doctor nor a child which is a Lawyer. Then, this person must have a child, every

child of which is either rich or a doctor.

A natural language explanation for this statement could be:

The person described above has a child every child of which is a doctor.

The intermediate statement a person with a child, every child of which is a doctor
can be considered an illustration of T |= Cex v Dex. It can be formalised as Iex :=
∃child.∀child.Doctor, and it has the particular property that it subsumes Cex and is
subsumed by Dex. Moreover, it is constructed from vocabulary which occurs both
in Cex and Dex, e.g., the information that the person’s grandchildren might be rich
is irrelevant, as no information about the grand-children’s finances is provided in
Cex. Finally, the illustration is of minimal size, as this increases the likelihood of the
explanation being understandable.

Definition 5.1 Let two concepts C and D and a TBox T , such that T |= C v D.
Furthermore, let size(C) denote the total number of atomic symbols in a concept C,
and N (C) be the set of different concept-names occurring in C. An illustration for
T |= C v D is a concept I such that T |= C v I and T |= I v D, and where
I ∈ qs(C) ∩ qs(D). We say that

• I is a minimal-sized illustration iff there is no illustration J of T |= C v D s.t.
size(J) < size(I). Alternatively

• I is a minimal-vocabulary illustration iff there is no illustration J of T |= C v D

s.t. N (J) ⊂ N (I).

Formally, such an illustration is an interpolant with minimal vocabulary or size.
In [8] we introduce optimal interpolants with a minimal number of concept names, and
tableau based algorithms for concept subsumption in ALC. These algorithms can be
used directly to provide minimal-vocabulary illustrations. To explain more complex
subsumption relations a single illustration might not be sufficient, and iterative ex-
planation is needed. Here subsumption between concepts and their illustrations could
be explained as well, either by new illustrations, by traditional explanation of proofs
or by explanation by magnifying.

5.2 Explaining Subsumption by Magnifying

Let us look again at our previous example for subsumption where the relation |=
Cex v Dex was explained by an illustration Iex := ∃child.∀child.Doctor. Remember
that Cex was ∃child.> u ∀child.¬((∃child.¬Doctor) t (∃child.Lawyer)) and the new
subsumption |= Cex v Iex might need further explanation. Now, the idea is to look,
again, at the syntactic structure of subsumer Iex and subsumed concept Cex, and to
find subsumption-preserving generalisations (or specialisations) of Cex (of Iex respec-
tively). As we are now looking for generalisations and specialisations of subsumer
and subsumed concept we propose to use generalised (and specialised) qualified sub-
concepts to define structural similarity. A magnification is now a pair of concepts
where one subsumes the other, and which a structurally similar, but more simple
versions of the original concepts.

Definition 5.2 Let T be a TBox. A pair of concepts C ′ and D′ magnifies a sub-
sumption relation T |= C v D iff

• T |= C v C ′ v D′ v D, if

• C ′ ∈ gqs(C) and D′ ∈ sqs(D), and if

• there are no C ′′ ∈ gqs(C) and D′′ ∈ sqs(D) such that T |= C ′
@ C ′′ and

T |= C ′′ v D′, or T |= D′′
@ D′ and T |= C ′ v D′′.

As before we will look for magnifying concepts of small size and logical complexity. The
concepts C ′

ex :=∃child.> u ∀child.¬(∃child.¬Doctor) and I ′ex :=∃child.∀child.Doctor
magnify then, for example, our previous subsumption |= Cex v Iex. Intuitively, what
happens is the following: The subsumption |= Cex v C ′

ex is a structural subsumption,
i.e. can be understood as a non-logical simplification of concept Cex:

|= ∃child.> u ∀child.¬((∃child.¬Doctor) t (∃child.Lawyer))
v ∃child.> u ∀child.¬(∃child.¬Doctor).

The concept Iex is already structurally minimal so that we have chosen I ′ex ≡ Iex.
What remains is a structurally non-reducible subsumption relation |= C ′

ex v I ′ex,
which now represents the logical interplay in magnified form:

|= ∃child.> u ∀child.¬(∃child.¬Doctor) v ∃child.∀child.Doctor.

Note that our definition of structural similarity does not provide any mechanisms to
deal with negation and that explanation of reasoning in application domains with
complex negations might be insufficient. In the DICE terminology negation is always
either atomic or represented in disjointness statements. For this reason we have not
yet investigated this problem any further.

We will end this introduction of magnification by discussing a relatively naive
algorithm to calculate a single small magnifying subsumption: for two concepts C and
D in a subsumption relation T |= C v D we calculate first a maximal generalisation
C ′ of C w.r.t. D, and secondly a minimal specialisation D′ of D w.r.t. the new C ′. The
resulting relation T |= C ′ v D′ is a magnifying subsumption for C and D. Formally,
a maximal generalisation of a concept C w.r.t. a concept D is a concept C ′ with the
following three properties: T |= C v C ′ v D, C ′ ∈ gqs(C) and there is no concept

C ′′ ∈ gqs(C) s.t. T |= C ′
@ C ′′ and T |= C ′′ v D. The definition of minimal

specialisation is dual using specialised qualified sub-concepts sqs(D′) instead. The
semantic ordering on the concepts now allows to calculate maximal generalisations
and minimal specialisations with relatively little effort. Moreover, as the ordering on
concepts is bound to the relaxation of conjunctions (or disjunctions in the negated
case) we also have an ordering of the GQSs according to their size. Although this
method might not calculate magnifications of minimal size or vocabulary it is probably
a reasonable compromise between computational feasibility and conceptual demands.
An implementation is forthcoming.

6 Conclusion

With this paper we hope to encourage an exchange of ideas within the DL community
to extend the efforts to equip the high-quality reasoning systems with equally powerful
and reliable explanation facilities. This can only improve the acceptance of logical
reasoning and formal reasoning in real world applications.

The results we report in this paper are of three different types: MIPS and MUPS
have been introduced in [9] and there are algorithms which we implemented and eval-
uated on the DICE terminology. The ideas for explanation by illustrations, however,
are lesser developed. In [8] we have presented algorithms for optimal interpolation
and a reliable and efficient implementation is under way. Explanation by magnifying,
finally, is a new idea: the definitions are still subject to discussion and the algorithms
are rather naive and sketchy. Nevertheless, we believe that all three approaches will
provide useful in the full-scale explanation facility we are currently working on.

As this paper describes work in progress the list of open problems and further
research is obviously long: First and foremost we need to fully implement the methods
described in this paper to allow for practical evaluation on more complex problems.
Moreover, in the DICE terminology we have to explain subsumption with respect to
TBoxes. As the axioms are unfoldable our approach here is to incorporate axiomatic
information into the definition of structural similarity.

Up to now we have not discussed explanation of satisfiability or non-subsumption.
As McGuinness pointed out in [6] an explanation should return a model or counter-
model but more work needs to be done to identify the most suitable ones. Finally, a
transformation of the DL syntax into some human-readable format will be needed to
increase the acceptance of logical reasoning and its tools.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

[2] A. Borgida, E. Franconi, I. Horrocks, D. McGuinness, and P. Patel-Schneider.
Explaining ALC subsumption. In DL-99, pages 37–40, 1999.

[3] R. Cornet and A. Abu-Hanna. Evaluation of a frame-based ontology. A
formalization-oriented approach. In Proceedings of MIE2002, Studies in Health
Technology & Information, volume 90, pages 488–93, 2002.

[4] V. Haarslev and R. Möller. RACER system description. In R. Goré, A. Leitsch,
and T. Nipkow, editors, IJCAR 2001, number 2083 in LNAI, 2001.

[5] H.Levesque and R.Brachman. Expressiveness and tractability in knowledge rep-
resentation and reasoning. Computational Intelligence, 3:78–93, 1987.

[6] Deborah McGuinness. Explaining Reasoning in Description Logics. PhD thesis,
Department of Computer Science, Rutgers University, 1996.

[7] B. Nebel. Terminological reasoning is inherently intractable. AI, 43:235–249,
1990.

[8] S. Schlobach. Optimal interpolation, 2003. submitted.

[9] S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging
of description logic terminologies. In IJCAI, 2003. Accepted for publication.

[10] M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48:1–26, 1991.

[11] S. Schulz and U. Hahn. Medical knowledge reengineering - converting major
portions of the UMLS into a terminological knowledge base. International Journal
of Medical Informatics, 64:207–221, 2001.

