
Finite Model Reasoning in ALCQI is

ExpTime-complete

Carsten Lutz1, Ulrike Sattler2, and Lidia Tendera3

1 Institute for Theoretical Computer Science, TU Dresden, Germany

lutz@tcs.inf.tu-dresden.de

2 Department of Computer Science, University of Manchester, UK

sattler@cs.man.ac.uk

3 Institute of Mathematics and Informatics, Opole University, Poland

tendera@math.uni.opole.pl

1 Motivation

Most description logics (DLs) enjoy the finite model property (FMP). This is, for
example, the case for ALC [14] and many of its extensions such as ALCI (ALC
with inverse roles) and ALCQ (ALC with qualifying number restrictions): for any
of these logics L, each satisfiable L-concept has a finite model. This even holds if
we consider concept satisfiability w.r.t. general TBoxes. However, there also exist
natural description logics that do not enjoy FMP. A rather prominent example is
ALCQI, which is obtained from ALC by adding both inverse roles and qualifying
number restrictions. While ALCQI without TBoxes still has the FMP, this is no
longer the case in the presence of general TBoxes: for example, the concept ¬Au∃R.A

is satisfiable w.r.t. the TBox

{A
.
= ∃R.A u (6 1 R− >)},

but each of its models contains an infinite R-chain.
The fact that ALCQI lacks FMP becomes particularly important if we consider

this logic’s most prominent application, which is reasoning about conceptual database
models as proposed by Calvanese et al. [4]: if such a model is described by an ER
diagram or a UML diagram, then it can be translated into a DL TBox, and DL
reasoners such as FaCT and RACER can be used to detect inconsistencies and to
infer implicit IS-A relationships between entities/classes. This useful and original
application has led to the implementation of I.com, a tool that provides a GUI for
specifying conceptual models, automatizing the translation into DLs, and displaying
the information returned by the reasoner [7]. However, it is well-known that there exist
quite simple ER and UML diagrams that are satisfiable only in infinite models, but not
in finite ones [15]. Since all available DL reasoning systems are performing reasoning
in arbitrary (as opposed to finite) models, this means that some inconsistencies and
IS-A relationships will go unnoticed if standard reasoners are used, e.g. in conjunction
with I.com.

The main reason for existing DL reasoners to perform only reasoning w.r.t. arbi-
trary models is that finite model reasoning in description logics such as ALCQI is
not yet well-understood. The only known algorithm is presented by Calvanese in [2],
where he proves that reasoning in ALCQI is decidable in 2-ExpTime. The purpose
of this paper is to establish tight ExpTime complexity bounds for finite model reason-
ing in ALCQI. More precisely, we develop an algorithm that is capable of deciding
finite satisfiability of ALCQI-concepts w.r.t. general TBoxes. Similar to Calvanese’s
approach, the core idea behind our algorithm is to translate a given satisfiability prob-
lem into a set of linear inequalities that can then be solved by linear programming
methods. The main difference to Calvanese’s approach is that our equation systems
talk about different components of models, mosaics, which allows us to keep the size
of equation systems exponential in the size of the input. In this way, we improve the
best-known 2-ExpTime upper bound to a tight ExpTime one.

Since our algorithm presupposes unary coding of the numbers occurring in quali-
fying number restrictions, it does not immediately yield an ExpTime-upper bound for
the binary coding case. Therefore, we use a different approach to establish this bound,
namely a reduction of ALCQI-concept satisfiability w.r.t. TBoxes to ALCFI-concept
satisfiability w.r.t. TBoxes (ALCFI is obtained from ALCQI by allowing only the
numbers 0 and 1 to be used in number restrictions). Since the latter problem is in
ExpTime due to our initial result for ALCQI with unary coding, we obtain the de-
sired bound. Finally, we show how to extend our ExpTime-upper bound to finite
ALCQI-ABox consistency w.r.t. general TBoxes (with numbers coded in binary).

All details and proofs can be found in the accompanying technical report [11].

2 The Algorithm for Unary Coding

We use the standard syntax and semantics for ALCQI, assuming that ∃R.C and
∀R.C are just abbreviations for (> 1 R C) and (6 0 R ¬C), respectively. By “unary
coding”, we mean that |(>nR.C)| = |(6nR.C)| = n+ |C|+ 1.

As observed by Calvanese in [2], combinatorics is an important issue when deciding
finite satisfiability of ALCQI-concepts. To illustrate this, consider the TBox

T := {A
.
= (> 2 R B), B

.
= (6 1 R− A)}.

It should be clear that, in any model of T , there are at least twice as many objects
satisfying B u (6 1 R− A) as there are objects satisfying A u (> 2 R B). This
simple example suggests that (i) types (i.e., sets of concepts satisfied by a particular
object in a particular model) such as {A, (> 2 R B)} are a natural notion for dealing
with finite satisfiability, and (ii) the combinatorics introduced by finite domains can
be addressed with inequalities like 2 · xT ≤ xT ′ , where the variable xT describes the
number of instance of a type T (e.g. {A, (> 2 R B)}), while xT ′ describes the number
of instances of another type T ′ (e.g. {B, (6 1 R− A)}).

Considering the above two points, a first idea to devise a decision procedure for
finite satisfiability of ALCQI-concepts w.r.t. TBoxes is to translate an input concept
and TBox into a system of inequalities with one variable for each type, and then to
use linear programming algorithms to check whether the equation system has a non-
negative integer solution. For example, the satisfiability problem of the concept A

w.r.t. the TBox T above can be translated into the two inequalities

∑

{T |(>2 R B)∈T}

2 · xT ≤
∑

{T |(61 Inv(R) A)∈T}

xT and
∑

{T |A∈T}

xT > 0

where the sums range over all types induced by the input concept A and TBox T . It
is not hard to see that any non-negative integer solution to this equation system can
be used to construct a finite model for A and T and vice versa.

Unfortunately, there is a problem with this approach: assume that the input
concept and TBox induce types T1 to T5 as follows: (> 1 R C) ∈ T1, (> 1 R D) ∈ T2,
(6 1 Inv(R) >) ∈ T3∩T4∩T5, C ∈ T3∩T4, and D ∈ T4∩T5. The translation described
above yields the inequalities

xT1 ≤ xT3 + xT4 and xT2 ≤ xT4 + xT5 ,

which have xT1 = xT2 = xT4 = 1 and xT3 = xT5 = 0 as an integer solution. Trying
to construct a model with a1, a2, and a4 instances of T1, T2, and T4, respectively,
we have to use a4 as a witness of a1 being an instance of (> 1 R C) and a2 being an
instance of (> 1 R D). However, this violates the (6 1 Inv(R) >) concept in T4.

This example illustrates that “counting types” does not suffice: conflicts may arise
if a type containing an at-most restriction (T4) can be used as a witness for at-least
restrictions in more than one type (T1 and T2). It is thus necessary to (additionally)
fix the types that are actually used as witnesses for at-least restrictions. We achieve
this by defining systems of inequalities that are based on chunks of models called
mosaics, rather than being based directly on types. Intuitively, a mosaic describes the
type of an object and fixes the type of “important” witnesses.

Before defining mosaics, we introduce some preliminaries. In the remainder of
this paper, w.l.o.g. we assume concepts (also those appearing inside TBoxes) to be in
negation normal form (NNF), i.e. negation is only allowed in front of concept names.
We use ¬̇C to denote the NNF of ¬C. Moreover, we will only consider TBoxes of
the form {>

.
= C}. This can be done w.l.o.g. since every TBox T = {Ci

.
= Di | 1 ≤

i ≤ n} can be rewritten as {>
.
= u1≤i≤n(Ci ↔ Di)}. For a concept C0 and a TBox

T = {>
.
= CT }, cl(C0, T) is the smallest set containing all sub-concepts of C0 and CT

that is closed under ¬̇. We use rol(C0, T) to denote the set of role names R and their
inverses R− occurring in C0 or T . Finally, we define a function Inv on roles such that
Inv(R) = R− if R is a role name, and Inv(R) = S if R = S−.

Definition 1 (Types and Mosaics) A type T for C0, T = {>
.
= CT } is a set

T ⊆ cl(C0, T) such that, for each D,E ∈ cl(C0, T), we have

(T1) D ∈ T iff ¬̇D 6∈ T ,

(T2) if D u E ∈ cl(C0, T), then D u E ∈ T iff D ∈ T and E ∈ T ,

(T3) if D t E ∈ cl(C0, T), then D t E ∈ T iff D ∈ T or E ∈ T , and

(T4) CT ∈ T .

We use type(C0, T) to denote the set of all types for C0, T . Let T be a type and
./ ∈ {6,>}. Then we use the following abbreviations:

max./(T) := max{n | (./ n R C) ∈ T} and sum./(T) :=
∑

(./ n R C)∈T

n.

For types T1, T2 and a role R, we write limR(T1, T2) (T2 is a limited ressource for T1

w.r.t. R) if C ∈ T1 and (6 n Inv(R) C) ∈ T2 for some C ∈ cl(C0, T) and n ∈ � .

A mosaic for C0, T is a triple M = (TM , LM , EM) where

• TM ∈ type(C0, T),

• LM is a function from rol(C0, T)× type(C0, T) to � , and

• EM is a function from rol(C0, T)× type(C0, T) to �

such that the following conditions are satisfied:

(M1) if LM (R, T) > 0, then limR(TM , T) and not limInv(R)(T, TM),

(M2) if EM (R, T) > 0, then limInv(R)(T, TM),

(M3) if (6 n R C) ∈ TM , then n ≥
∑

{T |C∈T}EM (R, T),

(M4) #{(R, T) | LM (R, T) > 0} ≤ sum>(TM) and max(range(LM)) ≤ max>(TM).

Consider a mosaic M and one of its “instances” d in some interpretation. While TM

is simply the type of d, LM and EM are used to describe certain “neighbors” of d, i.e.
objects e reachable from d via a role. For a role R, there are three possibilities for the
relationship between TM and T , the type of e:

1. Not limR(TM , T) and not limInv(R)(T, TM). Then d may have an arbitrary num-
ber of R-neighbors of type T and every instance of T may have an arbitrary
number of Inv(R)-neighbors of type TM . Intuitively, R-neighbors of type T are
“uncritical” and not recorded in the mosaic.

2. limR(TM , T) and not limInv(R)(T, TM). Then d may have an arbitrary number of
R-neighbors of type T , but every instance of T may only have a limited number
of Inv(R)-neighbors of type TM . Thus, R-neighbors of type T are a limited
ressource and we record in LM the minimal number of R-neighbors of type T

that d needs (“L” for “lower bound”).

3. limInv(R)(T, TM). Then d may only have a limited number of R-neighbors of type
T . To prevent the violation of at-most restrictions in TM , we record the exact
number of d’s R-neighbors of type T in EM .

(M1) and (M2) ensure that LM and EM record information for the “correct” types as
described above; (M3) ensures that at-most restrictions are not violated: by definition,
this concerns only neighbors with EM -types; finally, (M4) puts upper bounds on LM

to ensure that there exist only exponentially many mosaics (see below). At-least
restrictions are not mentioned in the definition of mosaics and will be treated by the
systems of inequalities to be defined later.

Now for the number of mosaics. First, the cardinality of type(C0, T) is exponen-
tial in the size of C0 and T . Next, (M2) and (M3) imply #{(R, T) | EM (R, T) >

0} ≤ sum6(TM) and max(range(EM)) ≤ max6(TM). Analogous bounds for LM are
enforced by (M4). Now max./(T) and sum./(T) are linear in the size of C0 and T for
./ ∈ {6,>} since numbers are coded in unary, and thus the number of mosaics is
bounded exponentially in the size of C0 and T .

We now define a system of inequalities for a concept C0 and a TBox T .

Definition 2 (Equation System) Let C0 be an ALCQI-concept and T a TBox.
We introduce a variable xM for each mosaic M for C0, T and define the equation
system EC0,T by taking (i) the equation

∑

{M |C0∈TM}

xM ≥ 1, (E1)

(ii) for each pair of types T, T ′ ∈ type(C0, T) and role R such that limR(T, T
′) and

not limInv(R)(T
′, T), the equation

∑

{M |TM=T}

LM (R, T ′) · xM ≤
∑

{M |TM=T ′}

EM (Inv(R), T) · xM , (E2)

and (iii) for each pair of types T, T ′ ∈ type(C0, T) and role R such that limR(T, T
′)

and limInv(R)(T
′, T), the equation

∑

{M |TM=T}

EM (R, T ′) · xM =
∑

{M |TM=T ′}

EM (Inv(R), T) · xM . (E3)

A solution of EC0,T is admissible if it is a non-negative integer solution and satisfies
the following conditions: (i) for each pair of types T, T ′ ∈ type(C0, T) and role R

such that limR(T, T
′) and not limInv(R)(T

′, T),

if
∑

{M |TM=T ′}

EM (Inv(R), T) · xM > 0, then
∑

{M |TM=T}

xM > 0; (A1)

(ii) for each mosaic M and each role R, if (> n R C) ∈ TM ,

xM > 0, and
∑

{T |C∈T}

LM (R, T) +
∑

{T |C∈T}

EM (R, T) < n,

then
∑

{M ′| C∈TM′ , not limR(TM ,TM′),

and not limInv(R)(TM′ ,TM)}

xM ′ > 0 (A2)

While inequality (E1) guarantees the existence of an instance of C0, inequalities (E2)
and (E3) enforce the lower and exact bounds on the number of neighbors as described
by LM and EM . A special case is treated by condition (A1): in inequality (E2), it
may happen that the left-hand side is zero while the right-hand side is non-zero. In
this case, there is an instance of a mosaic M ′ with TM ′ = T ′ and EM (Inv(R), T) > 0
(counted on the right-hand side), but there is no instance of a mosaic M with TM = T

(counted on the left-hand side)—thus we cannot find any neighbors as required by
EM (Inv(R), T). To cure this defect, condition (A1) ensures that, if the right-hand
side of (E2) is non-zero, then there is at least one instance of a mosaic M with
TM = T .1 Finally, (A2) takes care of at-least restrictions in types TM : if the number
of R-neighbors enforced by LM and EM is not enough for some (> n R C) ∈ TM , then
we make sure that there is at least one instance of a mosaic M ′ such that C ∈ TM ′

and, for instances of M (M ′), the number of R-neighbors (Inv(R)-neighbors) that are
instances of M ′ (M) is not limited.1

Lemma 1 C0 is finitely satisfiable w.r.t. T iff the equation system EC0,T has an ad-
missible solution.

The proof of this lemma can be found in [11].

Since the number of mosaics is exponential in the size of C0 and T , the size of
EC0,T and of the admissibility condition is also exponential in the size of C0 and T .
To prove an ExpTime upper bound for the finite satisfiability of ALCQI-concepts,
it thus remains to show that the existence of an admissible solution for the equation
systems EC0,T can be decided in deterministic polynomial time.

We assume linear inequalities to be of the form Σicixi ≥ b. A system of linear
inequalities is described by a tuple (V, E), where V is a set of variables and E a set of
inequalities using variables from V . Such a system is called simple if only non-negative
integers occur on the right-hand side of inequalities and all coefficients are (possibly
negative) integers. A side condition for an inequality system (V, E) is a constraint
of the form x > 0 =⇒ x1 + · · · + x` > 0, where x, x1, . . . x` ∈ V. It is not hard to
check that the inequalities (Ei) can be polynomially transformed into simple ones,
and that the conditions (Ai) can be polynomially transformed into side conditions;
more details are given in [11]. The proof of the following lemma is by reduction to
linear programming and can be found in [11].

Lemma 2 Let (V, E) be a simple equation system and I a set of side conditions for
(V, E). Then the existence of a non-negative integer solution for (V, E) satisfying all
constraints from I can be decided in (deterministic) time polynomial in #V +#E+#I.

Since satisfiability of ALC w.r.t. TBoxes in arbitrary models is ExpTime-hard [13]
and this DL has the finite model property, combining Lemmas 1 and 2 yields the
following theorem:

Theorem 1 Finite satisfiability of ALCQI-concepts w.r.t. TBoxes is Exptime-com-
plete if numbers are coded in unary.

3 Binary Coding

If numbers in number restrictions are coded binarily (i.e. |(>nR.C)| = |(6nR.C)| =
log(n)+ |C|+1), Theorem 1 does no longer apply: in this case, the number of mosaics
is double exponential in the size of the input, and thus the algorithm used in Section 2
yields only a 2-ExpTime upper bound. For reasoning w.r.t arbitrary models, a variety

1To see why a single instance suffices, consult the proof sketch of Lemma 1 in [11].

.

.

.
.
.
.

x

R

R

R

R

R

R

R

x

R R

R R

LR
LR

LR

Figure 1: Representing role successor relationships.

of results are known that suggest that the coding of numbers in number restrictions is
usually irrelevant for the complexity of reasoning, see e.g. [16, 10]. However, for finite
model reasoning, similar results do not seem to be known. Indeed, it is a non-trivial
problem whether the algorithm used in Section 2 can be adapted to binary coding.
We have to leave this problem open and choose an alternative technique: a reduction
of finite ALCQI-concept satisfiability to the finite satisfiability of ALCFI-concepts.
This reduction is polynomial even for binary coding of numbers, and finite satisfiability
in the target logic is in ExpTime due to Theorem 1 (since number restrictions in
ALCFI are restricted to the numbers 0 and 1, the coding is not an issue). Note that
we cannot use existing reductions of ALCQI to ALCFI such as the one presented in
[5] because these work only on potentially infinite, tree-shaped models.

The central idea behind our reduction is to replace counting via qualified number
restrictions with counting via concept names: to count up to a number n, we reserve
concept names B0, . . . , Bdlog(n)e representing the bits of the binary coding of numbers
between 0 and n. For the actual counting, we can then use well-known (propositional
logic) formulas that encode incrementation. We use a TBox involving auxiliary con-
cept names and roles LR to re-arrange R-neighbors as shown in Figure 1: except for the
root, each node on the auxiliary LR-path attached to x has precisely one R-neighbor.
Ignoring the root for a second, this means that we can count via concept names along
the auxiliary objects on LR-paths. However, we cannot gather all original R-neighbors
of x on the LR-path since we only count up to the sum of numbers occurring in the
input concept and TBox. Since an object may have more R-neighbors than this, these
“unrestricted” R-neighbors are not re-arranged, but attached to the root as shown
in the upper right part of Figure 1. To obtain an ALCFI-concept from an ALCQI-
concept, we replace, in the input concept and TBox, number restrictions (./ nRC)
with new concept names A(./n R C), and then use additional TBox axioms to ensure
that, e.g., if x is an instance of A(6nR.C), then there are at most n R-successors in C

along the LR-path starting at x and no R-successor of x is in C. Moreover, we have to
take care that the “auxiliary” objects introduced as intermediate points on LR-paths
and the “real” objects are distinguished properly.

The reduction with a proof of its correctness can be found in [11].

Theorem 2 Finite satisfiability of ALCQI-concepts w.r.t. TBoxes is Exptime-com-
plete if numbers are coded in binary.

4 ABox Consistency

Finally, we extend the complexity bounds obtained in Sections 2 and 3 to a more
general reasoning task: finite ALCQI-ABox consistency. It is well known that (fi-

nite) ALCQI-ABox consistency has important applications: whereas finite ALCQI-
concept satisfiability algorithms can be used to decide the consistency of conceptual
database models and infer implicit IS-A relationships as described in the introduction,
ALCQI-ABox consistency can be used as the core component of algorithms deciding
containment of conjunctive queries w.r.t. conceptual database models—a task that
DLs have succesfully been used for and that calls for finite model reasoning [3, 9].

ABoxes are defined as usual, i.e., for O a countably infinite set of object names,
an ABox is a finite set of ABox assertions of the form a : C or (a, b) : R, where a and
b are object names, C is a concept, and R a role. Semantics is defined in the usual
way. Even though irrelevant for the result, we employ the unique name assumption,
i.e., a 6= b implies that aI 6= bI . In the following, we will polynomially reduce finite
ALCQI-ABox consistency to finite ALCQI-concept satisfiability.

Let A be an ABox and T a TBox. For each object name a used in A, reflA(a)
denotes the set of role names R such that {(a, a) : R, (a, a) : R−} ∩ A 6= ∅. For each
object a and role R ∈ rol(A, T), NA(a,R) denotes the set of object names b such that
b 6= a and {(a, b) : R, (b, a) : Inv(R)} ∩ A 6= ∅.

We use cl(A, T) to denote the smallest set containing all sub-concepts of concepts
appearing in A and T that is closed under ¬̇. It can be easily shown that the cardi-
nality of cl(A, T) is linear in the size of A and T . Moreover, rol(A, T) denotes the set
of all roles (i.e., role names or inverses of role names) used in A or T .

A type T for an ABox A and a TBox T is defined as in Definition 1 with the
only exception that cl(C0, T) is replaced with cl(A, T). In what follows, we will
sometimes identify types T with the conjunction uC∈T C and write, e.g., d ∈ T I for
d ∈ (uC∈T C)I . It is easily seen that the number of types for an ABox A and a TBox
T is exponential in the size of A and T .

A central notion for the reduction of finite ALCQI-ABox consistency to finite
ALCQI-concept satisfiability is that of a reduction candidate: a mapping t that asso-
ciates a type t(a) with each object name a occurring in A such that a : C ∈ A implies
C ∈ t(a). For each reduction candidate t, object name a, role R ∈ rol(A, T), and
type T ∈ range(t), we use #At (a,R, T) to denote the number of objects b such that
b ∈ NA(a,R) and t(b) = T . Then, for each object name a used in A, we define its
t-reduction concept CAt (a) as follows:

CAt (a) := t(a) uX u u
R∈reflA(a)

∃R.(t(a) uX) u

u
R∈rol(A,T)

u
T∈range(t)

(> #At (a,R, T) R (T u ¬X)),

whereX is a fresh concept name not used in A and T . Finally, the reduction candidate
t is called realizable iff, for every object a used in A, the reduction concept CAt (a) is
finitely satisfiable w.r.t. T . The following lemma describes the relationship between
ABoxes and reduction candidates:

Lemma 3 Let A be an ABox and T a TBox. A is finitely consistent w.r.t. T iff there
exists a realizable reduction candidate for A and T .

Since the number of types for A and T is exponential in the size of A and T , and
the number of object names used inA is linear in the size ofA, the number of reduction

candidates for A and T is exponential in the size of A and T . Thus, to decide finite
consistency of A w.r.t. T , we may simply enumerate all reduction candidates for A
and T and check them for realizability: by Lemma 3, A is finitely consistent w.r.t.
T iff we find a realizable reduction type. Since the size of the reduction concepts is
clearly polynomial in the size of A and T , by Theorem 2 the resulting algorithm can
be executed in deterministic time exponential in A and T .

Theorem 3 Finite ALCQI-ABox consistency w.r.t. TBoxes is ExpTime-complete
if numbers are coded in binary.

5 Discussion

In this paper, we have determined finite model reasoning in the description logic
ALCQI to be ExpTime-complete. This shows that reasoning w.r.t. finite models is
not harder than reasoning w.r.t. arbitrary models, which is known to be also ExpTime-
complete [6, 5]. We hope that, ultimately, this research will lead to the development
of finite model reasoning systems that behave equally well as existing DL reasoners
doing reasoning w.r.t. arbitrary models. Note, however, that the current algorithm
is best-case ExpTime since it constructs an exponentially large equation system. It
can thus not be expected to have an acceptable runtime behaviour if implemented
in a naive way. Nevertheless, we believe that the use of equation systems and linear
programming is indispensable for finite model reasoning in ALCQI. Thus, efforts
to obtain efficient reasoners should perhaps concentrate on methods to avoid best-
case exponentiality such as on-the-fly construction of equation systems. Finally, the
reductions presented in [11] can also not be expected to exhibit an acceptable run-time
behaviour and it would thus be interesting to try to replace them by more “direct”
methods for dealing with binary coding of numbers and with ABoxes.

It is interesting to relate our results to formalisms from other areas where finite
model reasoning is an issue. Take for example the full µ-calculus, i.e. the extension of
ALC with fixpoints and inverse roles. For the νµ-fragment of this logic, satisfiability
in arbitrary models is ExpTime-complete [17] while the best known upper bound
for finite satisfiability is 2-ExpTime [1]. The situation is similar for the two-variable
fragment of first-order logic with counting quantifiers [8]. Whereas reasoning in arbi-
trary models is NExpTime-complete [12] (with unary coding), the best known upper
bound for finite model reasoning is 2-NExpTime (this follows from results in [8]). As
future work, it would be interesting to try and push our results to more expressive
logics such as the ones mentioned above, in order to obtain tight complexity results
for reasoning in finite models.

References

[1] M. Bojanczyk. Two-way alternating automata and finite models. In Proc. of
ICALP2002, volume 2380 of LNCS. Springer-Verlag, 2002.

[2] D. Calvanese. Finite model reasoning in description logics. In Proc. of KR-96.
Morgan Kaufmann, 1996.

[3] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of PODS-98, pages 149–158, 1998.

[4] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual
data modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems, pages 229–263. Kluwer Academic Publisher, 1998.

[5] G. De Giacomo. Decidability of Class-Based Knowledge Representation For-
malisms. PhD thesis, Università degli Studi di Roma “La Sapienza”, 1995.

[6] G. De Giacomo and M. Lenzerini. Tbox and Abox reasoning in expressive de-
scription logics. In Proc. of KR-96, pages 316–327. Morgan Kaufmann, 1996.

[7] E. Franconi and G. Ng. The i.com tool for intelligent conceptual modelling.
In Working Notes of the ECAI2000 Workshop KRDB2000. CEUR (http://
ceur-ws.org/), 2000.

[8] E. Grädel, M. Otto, and E. Rosen. Two-Variable Logic with Counting is Decid-
able. In Proceedings of Twelfth IEEE Symposium on Logic in Computer Science
(LICS’97), 1997.

[9] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to decide query contain-
ment under constraints using a description logic. In A. Voronkov, editor, Proc.
of LPAR 2000, number 1955 in LNAI. Springer-Verlag, 2000.

[10] O. Kupferman, U. Sattler, and M. Y. Vardi. The complexity of the graded mu-
calculus. In Proc. of CADE-18, volume 2392 of LNAI. Springer-Verlag, 2002.

[11] C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning
in description logics. LTCS-Report 02-05, Technical University Dresden, 2002.
Available from http://lat.inf.tu-dresden.de/research/reports.html.

[12] L. Pacholski, W. Szwast, and L. Tendera. Complexity results for first-order two-
variable logic with counting. SIAM Journal on Computing, 29(4):1083–1117,
August 2000.

[13] K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. of IJCAI-91, pages 466–471, Sydney, 1991.

[14] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26, 1991.

[15] B. Thalheim. Fundamentals of cardinality constraints. In Proceedings of the Con-
ference on Entity-Relationship-Approaches 1992 (ER92), number 645 in LNCS,
pages 7–23. Springer Verlag, 1992.

[16] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, 2001. electronically available at
http://www.bth.rwth-aachen.de/ediss/ediss.html.

[17] M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. of
ICALP’98, volume 1443 of LNCS, pages 628–641. Springer-Verlag, 1998.

