
Data Mining in Hybrid Languages via ILP

Francesca A. Lisi
Dipartimento di Informatica, University of Bari, Italy

lisi@di.uniba.it

Abstract

We present an application of the hybrid language AL-log to frequent pattern
discovery by using methods and techniques of Inductive Logic Programming.

1 Introduction

Data mining is an application area arisen in the 1990s at the intersection of several
different research fields, notably statistics, machine learning and databases, as soon as
developments in sensing, communications and storage technologies made it possible to
collect and store large collections of scientific and commercial data [8]. The abilities
to analyze such data sets had not developed as fast. Research in data mining can be
loosely defined as the study of methods, techniques and algorithms for finding models
or patterns that are interesting or valuable in large data sets. The space of patterns if
often infinite, and the enumeration of patterns involves some form of search in one such
space. Practical computational constraints place severe limits on the subspace that can
be explored by a data mining algorithm. The goal of data mining is either prediction
or description. Prediction involves using some variables or fields in the database to
predict unknown or future values of other variables of interest. Description focuses on
finding human-interpretable patterns describing data. Among descriptive tasks, data
summarization aims at the extraction of compact patterns that describe subsets of
data. There are two classes of methods which represent taking horizontal (cases) and
vertical (fields) slices of the data. In the former, one would like to produce summaries
of subsets, e.g. producing sufficient statistics or logical conditions that hold for subsets.
In the latter case, one would like to describe relations between fields. This class of
methods is distinguished from the above in that rather than predicting the value of
a specified field (e.g., classification) or grouping cases together (e.g. clustering) the
goal is to find relations between fields. One common output of this vertical data
summarization is called frequent (association) patterns. These patterns state that
certain combinations of values occur in a given database with a support greater than
a user-defined threshold.

Hybrid systems are knowledge representation and reasoning (KR&R) systems con-
sisting of two or more subsystems dealing with distinct portions of a single knowledge
base by means of specific reasoning procedures [9]. E.g., AL-log [7] combines Data-
log [4] and ALC [20]. In AL-log the interplay between the relational and structural
subsystems allows the representation of and the reasoning with objects, properties of

Figure 1: Concept hierarchies for the Northwin
tradersD database.

objects, relations between objects, and concept hierarchies. This is a great opportu-
nity which has not been adequately exploited yet in applications. In this paper we
propose AL-log as a KR&R framework for data mining. Frequent pattern discov-
ery at multiple levels of description granularity is the data mining task chosen as a
showcase because it effectively shows the benefit of the AL-log framework. From the
methodological point of view, our work adopts techniques peculiar to Inductive Logic
Programming (ILP), a research area at the intersection of machine learning and logic
programming [18]. The usual KR&R framework in ILP is Datalog. E.g., WARMR
[6] is an ILP system for frequent pattern discovery where data and patterns are rep-
resented in Datalog. We basically adjust the DL component of AL-log in previous
results obtained for Datalog. Also we extend the unique names assumption to the
relational component.

The paper is organized as follows. Section 2 defines the data mining task of
interest. Section 3 presents the AL-log framework. Section 4 discusses the ILP setting
for working within the framework. Section 5 concludes the paper with final remarks
and directions for future work.

2 The mining task

The data mining task chosen as a showcase is a variant of frequent pattern discovery
which aims at taking concept hierarchies into account. This means that the problem
statement includes some taxonomic information T = {Hk}1≤k≤m besides the data set
r to be mined. It is noteworthy that each concept hierarchy Hk in T can arrange
its concepts {Ch

k }1≤h≤nk
according to its own range of concept levels. Furthermore,

data is typically available at leaf levels. This makes it hard to generate and evaluate
patterns that combine concepts belonging to different hierarchies.

For the sake of uniformity, we map concepts to levels of description granularity
whose number maxG depends on the data mining problem at hand. Concepts marked
with multiple granularity levels are simply replicated along the hierarchy they belong
to, so that a layering of the taxonomy at hand is induced. We denote T l the l-th
layer, 1 ≤ l ≤ maxG, of a taxonomy T .
Example 2.1. In Figure 1 a three-layered taxonomy T is illustrated for the Northwin

tradersD

database distributed as a sample database for by MicrosoftTM Access. We shall
refer to it throughout this paper. It consists of two concept hierarchies, H1 and
H2, rooted in Product and Customer, respectively. They have been rearranged ac-
cording to the three problem-defined granularity levels. For instance, the concepts
Beverage, . . . , SeaFood in H1 = {Beverage @ Product, . . . , SeaFood @ Product}
have been assigned to both T 2 and T 3 to make the hierarchies balanced. ♦

A pattern is an expression in some language describing a subset of data or a model
applicable to that subset [8]. Given a taxonomy T , we denote by Ll the language of
patterns involving concepts in T l.
Definition 2.1. Let P ∈ Ll. A pattern Q ∈ Lh, h < l (resp. h > l), is an ancestor
(resp. descendant) of P iff it can be obtained from P by replacing each concept C
that occurs in P with a concept D ∈ T h such that C v D (resp. D v C). �

This correspondence between Ll and T l supplies means for getting both coarser-
grained and finer-grained descriptions than a given pattern. Furthermore patterns
are evaluated by taking their own level of description granularity into account. In
particular, candidate patterns that fulfill the following requirements are retained:
Definition 2.2. Let r be a data set and minsupl the minimum support threshold for
Ll. A pattern P ∈ Ll with support s is frequent in r, denoted as freq(r, P), if (i)
s ≥ minsupl and (ii) all ancestors of P w.r.t. T are frequent. �

Formally, the problem of discovering frequent patterns at multiple levels of de-
scription granularity can be defined as follows.
Definition 2.3. Given

• a data set r including a taxonomy T where a reference concept and task-relevant
concepts are designated,

• a set {Ll}1≤l≤maxG of languages

• a set {minsupl}1≤l≤maxG of support thresholds

the problem of frequent pattern discovery at l levels of description granularity, 1 ≤ l ≤
maxG, is to find the set F of all the patterns P ∈ Ll such that freq(r, P). �

Example 2.2. An instantiation of Definition 2.3 for the case of Northwin
tradersD is sales

analysis by finding associations between the category of ordered products and the
geographic location of the customer within orders. Here Order is the reference concept,
whereas the sub-concepts of Product and Customer are relevant to the task. ♦

Most algorithms of frequent pattern discovery follow the levelwise method for
finding potentially interesting sentences of a given language [17]. Ingredients of this
method are a data set r, a language L of patterns, a generality relation � for L,
and a breadth-first search strategy for the space (L,�) which alternates candidate
generation and candidate evaluation phases. In our proposal the first two and the last
two ingredients are supplied by the AL-log framework (see Section 3) and the ILP
setting (see Section 4), respectively.

3 The AL-log framework

The main feature of our framework is the extension of the unique names assumption
from the semantic level to the syntactic one. In particular we resort to the bias
of Object Identity [16]: In a formula, terms denoted with different symbols must
represent different entities of the domain. This bias leads to a restricted form of
substitution whose bindings avoid the identification of terms: A substitution σ is an
OI-substitution w.r.t. a set of terms T iff ∀t1, t2 ∈ T : t1 6= t2 yields that t1σ 6= t2σ.
We assume substitutions to be OI-compliant.

Data is represented as an AL-log knowledge base B, i.e. a pair 〈Σ,Π〉 where Σ
is an ALC knowledge base and Π is a constrained Datalog program. We remind
that constraints in clauses are ALC concept assertions and the interaction between
Σ and Π is at the basis of both a model-theoretic semantics and a hybrid reasoning
mechanism (called constrained SLD-resolution) for AL-log.
Example 3.1. Following Example 2.2, we consider an AL-log knowledge base B
obtained from the Northwin

tradersD database. To serve our illustrative purpose we fo-
cus on the concepts Order, Product and Customer and the relations Order and
OrderDetail. The intensional part of Σ encompasses inclusion statements such as
DairyProduct @ Product and FrenchCustomer @ EuropeanCustomer that represent
the two taxonomies illustrated in Figure 1. The extensional part of Σ contains 830 con-
cept assertions for Order (e.g. order10248:Order), 77 assertions for the sub-concepts
of Product, e.g. product11:DairyProduct, and 91 assertions for the sub-concepts of
Customer, e.g. ’VINET’:FrenchCustomer. The extensional part of Π consists of 830
facts for order/14 and 2155 facts for orderDetail/5, e.g.

orderDetail(order10248,product11,’£14’,12,0.00)

represents the order detail concerning the order number 10248 and product code 11.
The intensional part of Π defines two views on order and orderDetail:

item(OrderID,ProductID) ← orderDetail(OrderID,ProductID, , ,)
& OrderID:Order, ProductID:Product

purchaser(OrderID,CustomerID) ← order(OrderID,CustomerID, ,. . .,)
& OrderID:Order, CustomerID:Customer

When triggered on the EDB of Π these rules can deduce implicit facts such as
item(order10248,product11) and purchaser(order10248,’VINET’). ♦

Patterns are represented as O-queries, a rule-based form of unary conjunctive
queries whose answer set contains individuals of an ALC concept Ĉ of reference.
Definition 3.1. Given a reference concept Ĉ, an O-query Q to an AL-log knowledge
base B is a constrained Datalog clause of the form

Q = q(X)← α1, . . . , αm&X : Ĉ, γ2, . . . , γn

where X is the distinguished variable and the remaining variables occurring in the
body of Q are the existential variables. We denote by key(Q) the key constraint
X : Ĉ of Q. An O-query q(X)← &X : Ĉ is called trivial. �

We impose O-queries to be linked and connected (or range-restricted) constrained
Datalog clauses. The language L of patterns for a given mining problem is implicitly
defined by a set A of atom templates, a key constraint γ̂, and an additional set Γ of
constraint templates. An atom template α specify name and arity of the predicate and
mode of its arguments. An instantiation of α is a Datalog atom with predicate and
arguments that fulfill the requirements specified in α. Constraint templates specify
the concept name for concept assertions and determine the level l of granularity for
descriptions.
Example 3.2. Following Example 3.1, let A={item(+,-), purchaser(+,-)} and γ̂
be the key constraint built on the concept Order. Suppose that we are interested in
descriptions at two different granularity levels. Thus the sets Γ1 and Γ2 of constraints
are derived from the layers T 1 and T 2 of the taxonomy T shown in Figure 1. Examples
of O-queries belonging to this language are:

Q0= q(X) ← & X:Order
Q1= q(X) ← item(X,Y) & X:Order
Q2= q(X) ← purchaser(X,Y) & X:Order
Q3= q(X) ← item(X,Y) & X:Order, Y:Product
Q4= q(X) ← purchaser(X,Y) & X:Order, Y:Customer
Q5= q(X) ← item(X,Y), item(X,Z) & X:Order, Y:Product
Q6= q(X) ← item(X,Y), purchaser(X,Z) & X:Order, Y:Product
Q7= q(X) ← item(X,Y), item(X,Z) & X:Order, Y:Product, Z:Product
Q8= q(X) ← item(X,Y), purchaser(X,Z) & X:Order, Y:Product, Z:Customer
Q9= q(X) ← item(X,Y) & X:Order, Y:DairyProduct
Q10= q(X) ← purchaser(X,Y) & X:Order, Y:EuropeanCustomer
Q11= q(X) ← item(X,Y), item(X,Z) & X:Order, Y:DairyProduct
Q12= q(X) ← item(X,Y), purchaser(X,Z) & X:Order, Y:DairyProduct
Q13= q(X) ← item(X,Y), item(X,Z)

& X:Order, Y:DairyProduct, Z:GrainsCereals
Q14= q(X) ← item(X,Y), purchaser(X,Z)

& X:Order, Y:DairyProduct, Z:EuropeanCustomer

Note that all of them are linked and connected. Furthermore, Q0 and Q1 are valid
for both L1 and L2, queries from Q2 to Q8 belong to L1, and queries from Q9 to Q14

belong to L2. In particular, Q8 is an ancestor of Q14. ♦

An answer to anO-query Q is a ground substitution θ for the distinguished variable
of Q. The aforementioned conditions of well-formedness guarantee that the evaluation
of O-queries is sound. Query answering is necessary for computing the support of
patterns during the candidate evaluation phases.
Definition 3.2. Let B be a AL-log knowledge base, P ∈ Ll. The support of P with
respect to B is defined:

σ(P,B) =
| answerset(P,B) |
| answerset(P̂ ,B) |

where P̂ is the trivial O-query q(X)← &X : Ĉ for Ll. �

Example 3.3. A correct answer to Q0, Q3 and Q9 w.r.t. B is the substitution
θ ={X/order10248}. In total we have that answerset(Q0,B) contains 830 answers

(as many as the number of individuals for the concept Order), answerset(Q3,B) 830
answers as well (since the conditions in the body of Q3 are not strong enough to filter
the individuals of Order) and answerset(Q9,B) 303 answers. Therefore, σ(Q3,B) =
100% and σ(Q9,B) = 36.5%. ♦

4 The ILP setting

The definition of a generality order for O-queries can not disregard the nature of O-
queries as a special case of constrained Datalog clauses as well as the availability of
an AL-log knowledge base with respect to which these O-queries are to be evaluated.
Generalized subsumption [3] has been introduced in ILP as a generality order for Horn
clauses with respect to background knowledge. We propose to adapt it to our AL-log
framework as follows.
Definition 4.1. Let Q be an O-query, α a ground atom, and J an interpretation. We
say that Q covers α under J if there is a ground substitution θ for Q (Qθ is ground)
such that body(Q)θ is true under J and head(Q)θ = α. �

Definition 4.2. Let P and Q be two O-queries to an AL-log knowledge base B. We
say that P B-subsumes Q if for every model J of B and every ground atom α such
that Q covers α under J , we have that P covers α under J . �

We have defined a quasi-order �B for O-queries on the basis of B-subsumption and
provided a decidable procedure to check �B on the basis of constrained SLD resolution
[15]. Furthermore �B is monotonic with respect to support.
Proposition 4.1. [15] Let P and Q be two O-queries to an AL-log knowledge base
B. If P �B Q then σ(P,B) ≥ σ(Q,B).

Quasi-ordered sets can be searched by refinement operators [18]. From Proposition
4.1 it follows that downward refinement operators are of greater help in the context
of frequent pattern discovery. Indeed, they drive the search towards patterns with
decreasing support and enable the early detection of infrequent patterns. Furthermore
we are interested in operators for searching multi-level pattern spaces. To this aim,
given two ALC constraints γ1 = t1 : C and γ2 = t2 : D, we say that γ1 is at least as
strong as (resp. stronger than) γ2, denoted as γ1 � γ2 (resp. γ1 � γ2), iff t1 = t2 and
C v D (resp. C @ D).
Definition 4.3. Let maxD be the search depth bound, and L = {Ll}1≤l≤maxG be a
language of O-queries. A (downward) refinement operator ρO for (L,�B) is defined
such that, for a given O-query

P = q(X)← α1, . . . , αm&X : Ĉ, γ2, . . . , γn

in Ll, l < maxG, m + n < maxD, the set ρO(P) contains all Q ∈ L that can be
obtained by applying one of the following refinement rules:

〈Atom〉 Q = q(X)← α1, . . . , αm, αm+1&X : Ĉ, γ2, . . . , γn where αm+1 is an instanti-
ation of an atom template in A such that αm+1 6∈ body(P).

〈Constr〉 Q = q(X)← α1, . . . , αm&X : Ĉ, γ2, . . . , γn, γn+1 where γn+1 is an instanti-
ation of a constraint template in Γl such that γn+1 constrains an unconstrained
variable in body(P).

Figure 2: Portion of the refinement graph of ρO in L.

〈∀C〉 Q = q(X) ← α1, . . . , αm&X : Ĉ, γ′2, . . . , γ
′
n where each γ′j , 2 ≤ j ≤ n, is an

instantiation of a constraint template in Γl+1 such that γ′j � γj and at least one
γ′j � γj .

�

The rules 〈Atom〉 and 〈Constr〉 help moving within the pattern space Ll (intra-
space search) whereas the rule 〈∀C〉 helps moving from Ll to Ll+1 (inter-space search).
Both rules are correct, i.e. the Q’s obtained by applying any of these refinement rules
to P ∈ Ll are O-queries such that P �B Q [15].
Example 4.1. A refinement operator for L induces a refinement graph. This is a
directed graph which has the members of L as nodes (here variant O-queries can
be viewed as the same node), and which contains an edge from P to Q just in case
Q ∈ ρO(P). Figure 2 illustrates a portion of the refinement graph of ρO in the space
L = L1∪L2 of O-queries reported in Example 3.2. Each edge indicates the application
of only one of the rules defined for ρO. E.g., ρO(Q1) is the set

Q′
1= q(X) ← item(X,Y), item(X,Z) & X:Order

Q′
2= q(X) ← item(X,Y), purchaser(X,Z) & X:Order

Q′
3= q(X) ← item(X,Y) & X:Order, Y:Product

Q′
4= q(X) ← item(X,Y) & X:Order, Y:Customer

Q′
5= q(X) ← item(X,Y) & X:Order, Y:Beverage

Q′
6= q(X) ← item(X,Y) & X:Order, Y:Condiment

Q′
7= q(X) ← item(X,Y) & X:Order, Y:Confection

Q′
8= q(X) ← item(X,Y) & X:Order, Y:DairyProduct

Q′
9= q(X) ← item(X,Y) & X:Order, Y:GrainsCereals

Q′
10= q(X) ← item(X,Y) & X:Order, Y:MeatPoultry

Q′
11= q(X) ← item(X,Y) & X:Order, Y:Produce

Q′
12= q(X) ← item(X,Y) & X:Order, Y:SeaFood

Q′
13= q(X) ← item(X,Y) & X:Order, Y:EuropeanCustomer

Q′
14= q(X) ← item(X,Y) & X:Order, Y:NorthAmericanCustomer

Q′
15= q(X) ← item(X,Y) & X:Order, Y:SouthAmericanCustomer

where Q′
1 and Q′

2 are generated by means of 〈Atom〉, Q′
3 and Q′

4 by means of 〈Constr〉,
and the O-queries from Q′

5 to Q′
15 also by means of 〈Constr〉 (but considering Q1 as

belonging to L2). Note that Q′
4, Q′

13, Q′
14, and Q′

15 will turn out to be infrequent. Yet
they are generated. What matters while searching (L,�B) is to find patterns that are
more specific than a given P under B-subsumption. Conversely, ρO(Q3) is the set

Q′′
1= q(X) ← item(X,Y), item(X,Z) & X:Order, Y:Product

Q′′
2= q(X) ← item(X,Y), purchaser(X,Z) & X:Order, Y:Product

Q′′
3= q(X) ← item(X,Y) & X:Order, Y:Beverage

Q′′
4= q(X) ← item(X,Y) & X:Order, Y:Condiment

Q′′
5= q(X) ← item(X,Y) & X:Order, Y:Confection

Q′′
6= q(X) ← item(X,Y) & X:Order, Y:DairyProduct

Q′′
7= q(X) ← item(X,Y) & X:Order, Y:GrainsCereals

Q′′
8= q(X) ← item(X,Y) & X:Order, Y:MeatPoultry

Q′′
9= q(X) ← item(X,Y) & X:Order, Y:Produce

Q′′
10= q(X) ← item(X,Y) & X:Order, Y:SeaFood

where Q′′
1 and Q′′

2 are generated by means of 〈Atom〉, and the O-queries from Q′′
3 to

Q′′
10 by means of 〈∀C〉. Note that Q9 = Q′

8 = Q′′
6 can be obtained by applying either

〈Constr〉 to Q1 (here Q1 is considered as belonging to L2) or 〈∀C〉 to Q3. ♦

From now on we call k-patterns those patterns Q ∈ ρk
O(P) that have been gen-

erated after k refinement steps starting from the trivial O-query P̂ in Ll and apply-
ing either 〈Atom〉 or 〈Constr〉. Under the assumption that minsupl ≤ minsupl−1,
1 < l < maxG, two pruning conditions for a multi-level search space can be defined.
Proposition 4.2. [15] Given an AL-log knowledge base B, a k-pattern Q in Ll is
infrequent if it is B-subsumed by either (i) an infrequent (k − 1)-pattern in Ll or (ii)
an infrequent k-pattern in Ll−1.

Condition (i) requires to test the containment in queries at the same description
granularity level (intra-space subsumption checks) whereas condition (ii) demands for
testing the containment in coarser-grained queries (inter-space subsumption checks).
Because of Definition 2.2 the former are to be tested for each level l, while the latter
only for l > 1.
Example 4.2. With reference to Figure 2, suppose now that Q9 is a frequent pattern.
It is refined into Q11 by means of 〈Atom〉. If Q5 was infrequent, Q11 should be pruned
according to Proposition 4.2(ii). ♦

Since each node in Ll can be reached from either another node in Ll or a node in
Ll−1 (as shown in Example 4.1), the pruning conditions of Proposition 4.2 allow us
to speed up the search of spaces at levels l > 1 of description granularity [15].

5 Conclusions

Learning pure DLs has been quite widely investigated [5, 13, 2]. Conversely, there
are very few attempts at learning in DL-based hybrid languages. In [19] the chosen
language is Carin-ALN , therefore example coverage and subsumption between two
hypotheses are based on the existential entailment algorithm of Carin [14]. Following
[19], Kietz studies the learnability of Carin-ALN , thus providing a pre-processing
method which enables ILP systems to learn Carin-ALN rules [12]. Closely related
to DL-based hybrid systems are the proposals arising from the study of many-sorted
logics, where a first-order language is combined with a sort language which can be
regarded as an elementary DL [10]. In this respect the study of sorted downward
refinement [11] can be also considered a contribution to learning in hybrid languages.

In this paper we have presented an application of hybrid languages to data mining.
We would like to emphasize that the choice of an application context and the investi-
gation of ILP issues within the chosen context make a substantial difference between
our work and related work on learning in hybrid languages. Indeed our AL-log frame-
work can be seen as a simple yet significant object-relational data model. As such it
has allowed us to bridge the gap between ILP and object-relational databases, thus
paving the way to new interesting streams of research in ILP and data mining. Our
ILP setting for object-relational data mining has been implemented in the ILP system
AL-QuIn (AL-log Query Induction) and tested on geographic and census data of
Manchester Stockport (UK) [15].

In the future we plan to move from mining at multiple levels of granularity to
mining at multiple levels of abstraction (aggregation/summarization) as usual in data
warehousing. An extension of our work in this direction will require the investigation
of the properties of DLs such as [1], and the definition of an ILP setting compliant
with these properties.

References

[1] F. Baader and U. Sattler. Description logics with concrete domains and aggre-
gation. In H. Prade, editor, Proc. of the 13th European Conference on Artificial
Intelligence, pages 336–340. John Wiley & Sons Ltd, 1998.

[2] L. Badea and S.-W. Nienhuys-Cheng. A refinement operator for description logics.
In J. Cussens and A. Frisch, editors, Inductive Logic Programming, volume 1866
of Lecture Notes in Artificial Intelligence, pages 40–59. Springer-Verlag, 2000.

[3] W. Buntine. Generalized subsumption and its application to induction and re-
dundancy. Artificial Intelligence, 36(2):149–176, 1988.

[4] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer,
1990.

[5] W. Cohen and H. Hirsh. Learning the CLASSIC description logic: Thoretical and
experimental results. In Proc. of the 4th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’94), pages 121–133. Morgan Kaufmann, 1994.

[6] L. Dehaspe and H. Toivonen. Discovery of frequent Datalog patterns. Data
Mining and Knowledge Discovery, 3:7–36, 1999.

[7] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog
and Description Logics. Journal of Intelligent Information Systems, 10(3):227–
252, 1998.

[8] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Ad-
vances in Knowledge Discovery and Data Mining. AAAI Press/The MIT Press,
1996.

[9] A. Frisch and A. Cohn. Thoughts and afterthoughts on the 1988 workshop on
principles of hybrid reasoning. AI Magazine, 11(5):84–87, 1991.

[10] A. Frisch. The substitutional framework for sorted deduction: Fundamental re-
sults on hybrid reasoning. Artificial Intelligence, 49:161–198, 1991.

[11] A. Frisch. Sorted downward refinement: Building background knowledge into a
refinement operator for inductive logic programming. In S. Džeroski and P. Flach,
editors, Inductive Logic Programming, volume 1634 of Lecture Notes in Artificial
Intelligence, pages 104–115. Springer, 1999.

[12] J.-U. Kietz. Learnability of description logic programs. In S. Matwin and C. Sam-
mut, editors, Inductive Logic Programming, volume 2583 of Lecture Notes in Ar-
tificial Intelligence, pages 117–132. Springer, 2003.

[13] J.-U. Kietz and K. Morik. A polynomial approach to the constructive induction
of structural knowledge. Machine Learning, 14(1):193–217, 1994.

[14] A. Levy and M.-C. Rousset. Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104:165–209, 1998.

[15] F.A. Lisi. An ILP Setting for Object-Relational Data Mining. Ph.D. Thesis,
Department of Computer Science, University of Bari, Italy, 2002.

[16] F.A. Lisi, S. Ferilli, and N. Fanizzi. Object Identity as Search Bias for Pattern
Spaces. In F. van Harmelen, editor, Proc. of the 15th European Conference on
Artificial Intelligence, pages 375–379. IOS Press, 2002.

[17] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowl-
edge discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

[18] S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming, volume 1228 of Lecture Notes in Artificial Intelligence. Springer, 1997.

[19] C. Rouveirol and V. Ventos. Towards Learning in CARIN-ALN . In J. Cussens
and A. Frisch, editors, Inductive Logic Programming, volume 1866 of Lecture
Notes in Artificial Intelligence, pages 191–208. Springer, 2000.

[20] M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26, 1991.

