
Reasoning about Nominals

with FaCT and Racer

Jan Hladik∗

Technische Universität Dresden

Abstract
We present a translation of looping alternating two-way automata into a com-

parably inexpressive description logic, which is contained in SHIQ. This enables
us to perform the emptiness test for a language accepted by such an automaton
using the systems FaCT and Racer. We implemented our translation and per-
formed a test using automata which accept models for ALCIO concepts, so that
we can use SHIQ systems to reason about nominals. Our empirical results show,
however, that the resulting knowledge bases are hard to process for both systems.

1 Introduction

Tableau- and automata-based algorithms are two mechanisms for testing satisfiability
of a DL concept or TBox. The most significant advantage of automata algorithms
(for examples, see e.g. [9, 7]) is elegance: the translation is often very intuitive, an
ExpTime upper complexity bound is obtained automatically, non-determinism and
infinite structures are handled implicitly. Their main drawback is their complexity,
which is exponential not only in the worst case, but in every case. Tableau algo-
rithms [1] on the other hand are well suited for implementation [5, 3] since several
well-known optimizations have led to a good performance for many realistic appli-
cations. However, ensuring termination or obtaining an ExpTime upper complexity
bound is a difficult task [2]. In the absence of an approach enjoying the advantages
of both, for many logics tableau- and automata-based algorithms were hand-crafted,
which constitutes a possibly unnecessary overhead. In [4], we present a way of translat-
ing looping two-way alternating automata into the relatively inexpressive description
logic ALIf , which is contained in SHIQ [6]. This enables us to take a concept C

in a language that is decidable by alternating automata, construct the corresponding
automaton AC , then translate AC into a description logic TBox TC , and use a SHIQ
system on TC to test satisfiability of the initial concept C. First results regarding
the performance of FaCT [5] on a few hand-crafted concepts were presented in [4].
Here, we generated a larger set of test concepts and tested their satisfiability with
both FaCT and Racer [3].

2 Preliminaries

In this section, we describe the looping alternating two-way automata, which we trans-
late, and the DL ALIf , which we translate into. This class of automata is very useful

∗The author is supported by the DFG, Project No. GR 1324/3-3.



for description logics: to decide the satisfiability problem for a DL concept C, one
defines an automaton AC which accepts all (abstractions of) models of C. Then,
one can decide satisfiability of C by performing the emptiness test for the language
accepted by AC . First, we define the data structure these automata operate on.

Definition 1 (K-ary tree) Let K be a natural number. We define [K] :=
{1, . . . ,K} and [K]− := [K] ∪ {0,−1}. A K-ary infinite tree over an alphabet Σ
is a total mapping τ : [K]∗ → Σ.

Intuitively, the empty word ε denotes the root of the tree and, for ` ∈ [K]∗ and
k ∈ [K], ` · k denotes the k-th successor of `. The terms ` · 0 and ` · (−1) are used
within the transition function of two-way automata: ` · 0 is defined as ` and, for an
` = w · v with w ∈ [K]∗ and v ∈ [K], ` · (−1) is defined as w (i.e. the father node of
`); ε · (−1) is undefined. The use of 0 and −1 allows the automaton, after processing
a tree node n, not only to continue with n’s sons, but also to stay in n or return to
n’s father. Moreover, the Boolean connectives ∧ and ∨ can be used in the transition
function. Thus, for example, the transition δ(a, q1) = (1, q3) ∧ ((−1, q2) ∨ (3, q1)) is
to be interpreted as follows: if the automaton processes a node `, is in state q1, and
reads the letter a, then it sends one copy of the automaton in state q3 to the first
successor of ` and either another copy in state q2 to `’s predecessor or a copy in state
q1 to the third successor. Formally, the transition function is defined using positive
Boolean formulae which are described in the following.

Definition 2 (PBF, Alternating Automaton, Run) The set of positive Boolean
formulae over a set V , B+(V ), consists of all formulae built from V ∪ {true, false}
using the binary operators ∧ and ∨. A set R ⊆ V satisfies a formula ϕ ∈ B+(V ) iff
assigning true to all elements of R and false to all elements of V \R yields a formula
that evaluates to true.
An alternating automaton A is a tuple (Q,Σ, q0, δ), where Q = {q0, . . . , qq̂} is

a set of states, Σ = {σ0, . . . , σσ̂} is the input alphabet, q0 is the initial state, and
δ : Q× Σ→ B+([K]0 ×Q) is the transition relation.
The width of an automaton w(A) is the number of literals that can appear on the

right-hand side of a transition, i.e., w(A) := (q̂ + 1) · (K + 2). A run ρ of A on a
tree τ is a w(A)-ary infinite tree over ([K]∗ × Q) ∪ {↑} which satisfies the following
conditions:

1. ρ(ε) = (ε, q0) and

2. for each node r with ρ(r) = (t, q) 6= ↑ and δ(q, τ(t)) = ϕ, there is a set S =
{(t1, q1), . . . , (tn, qn)} ⊆ [K]0 ×Q such that S satisfies ϕ and, for all 1 ≤ i ≤ n,
ρ(r · i) = (t · ti, qi).

An automaton A accepts an input tree τ if there exists a run of A on τ . The
language accepted by A, L(A), is the set of all trees accepted by A.

The target language for our translation, ALIf , is comparably inexpressive: it con-
tains features (and their inverses), but neither non-functional roles nor the advanced
constructors present in state-of-the-art DLs, e.g. qualified number restrictions.

Definition 3 (Attributive language with inverses and features, ALIf) Let
NC be a set of concept names and NF a set of feature names. The set of ALIf
concepts and features over NC and NF are inductively defined as follows:



• if f is a feature name, then f− is an inverse feature;
f is a feature if it is a feature name or an inverse feature;

• >, ⊥, and each concept name C ∈ NC is an ALIf -concept;
if C and D are concepts, then C tD and C uD are concepts;
if C is a concept and f is a feature, then ∃f.C and ∀f.C are concepts.

GCIs, TBoxes, interpretations and models are defined as usual.

3 The Translation

In this section, we describe how to translate an alternating automaton A into a TBox
tr(A) and a concept C such that L(A) is non-empty iff C is satisfiable w.r.t. tr(A).
Intuitively, we translate the transition function δ into a set of GCIs tr(A) whose
models correspond to runs of A. To this purpose, we use concept names to represent
the automaton’s states and alphabet symbols and, for each k ∈ [K], a feature name
fk to represent the “k-th successor” relation for a node in the input tree.

Definition 4 Let A = (Q,Σ, q0, δ) be an alternating automaton with Q =
{q0, . . . , qq̂} and Σ = {σ0, . . . , σσ̂}. The translation of A into an ALIf TBox tr(A) is
defined as follows: for each qi ∈ Q we use a concept name Qi, for each σj ∈ Σ, we use
a concept name Aj , and set

tr(A) := {G>,G⊥} ∪
⋃

q∈Q,σ∈Σ

tr(δ(q, σ)), where

G> := > v A1 tA2 t . . . tAσ̂,

G⊥ :=
⊔

0≤i<j≤σ̂

(Ai uAj) v ⊥,

tr(δ(q, σ)) := tr(q) u tr(σ) v tr(ϕ) if δ(q, σ) = ϕ,

and the translation of ϕ, q, and σ is defined as follows:

tr(qi) := Qi for qi ∈ Q, tr(σi) := Ai for σi ∈ Σ,

tr(α ∧ β) := tr(α) u tr(β), tr(α ∨ β) := tr(α) t tr(β),
tr(true) := >, tr(false) := ⊥,

tr(0, q) := tr(q), tr(k, q) := ∃fk.tr(q) for k > 0,
tr(−1, q) :=

d
i∈[K]

∀f−i .tr(q).

Lemma 5 The language accepted by an alternating automaton A = (Q,Σ, q0, δ) is
non-empty iff the concept C = tr(q0) u

d
i∈[K] ∀f

−
i .⊥ its satisfiable w.r.t. tr(A).

We have shown in [4] that tr ensures that each model I of tr(A) corresponds to
a run ρ on some tree τ . Intuitively, a node r in the domain of ρ, dom(ρ), is labelled
with a node t in dom(τ) which, in turn, is labelled with exactly one σ ∈ Σ. Thus each
r in dom(ρ) is associated with one σ ∈ Σ. To express this fact in tr(A), we use the
extra GCIs G> and G⊥: they guarantee that every individual of I is an instance of
exactly one Ai. The translation of transitions tr(−1, q) going to the predecessor node
ensures that the label of each predecessor contains tr(q). Additionally, we have to
enforce that there is one node which corresponds to the root node and therefore has
no predecessors. Thus we reduce emptiness of A to unsatisfiability of the concept C =
tr(q0) u

d
i∈[K] ∀f

−
i .⊥ w.r.t. the TBox A, i.e. there exists an instance of the concept

corresponding to the initial state which is not a successor of any other individual.



4 The Test Concepts

The automata we used for testing result from a decision procedure for the DL ALCIO,
i.e. ALC with inverse roles and nominals. In [8], an algorithm is described which uses
two-way looping automata to decide satisfiability of formulae in the hybrid µ-calculus,
a modal logic which corresponds to ALCIO extended with fixpoints. The size of the
automaton’s transition function is exponential in the size of the input concept C.
Since our translation in Section 3 is linear, the size of the TBox TC is also exponential
in C. Table 1 shows the concept patterns we used for our test. Here, the expression
(∀R)i means ∀R . . .∀R

︸ ︷︷ ︸

i times

. For every pattern, we used the concepts for i ∈ {0, . . . , 5}.

The idea behind the structure of these patterns is the following: we test the
influence of the mere existence of a nominal using concept patterns which share the
same structure, but one of which uses a nominal symbol and the other one uses a
concept symbol (. . . -c and . . . -n/nc); we use the special features of nominals (root-nc);
and we exploit the interaction between universal and existential restriction (all-. . . )
as well as the interaction between a role and its inverse (all-inv-. . . ).

Name Satisfiable Concept Unsatisfiable Concept
ex-c (∃R)i.A (∃R)i.(A u ¬A)
ex-n (∃R)i.N (∃R)i.(N u ¬N)
ex-nc (∃R)i.(A uN) (∃R)i.(A u ¬A uN)
all-c (∃R)i.A u (∀R)i.B (∃R)i.A u (∀R)i.¬A
all-nc (∃R)i.A u (∀R)i.N (∃R)i.A u (∀R)i.(N u ¬A)
all-inv-c B u (∃R)i.(∀R−)i.A ¬A u (∃R)i.(∀R−)i.A
all-inv-nc N u (∃R)i.(∀R−)i.A (N uA) u (∃R)i.(∀R−)i.(¬A)
root-nc N uA u (∃R)i.(N uB) N uA u (∃R)i.(N u ¬A)

Table 1: Test concepts

5 Results

We tested our concepts with FaCT version 2.31.7 and Racer version 1.6.7 on the
following system: hardware: Pentium-IV 1.7GHz, 512MB RAM, 1.5GB swap-space;
software: Linux, Allegro Common Lisp 6.2 (FaCT) or 6.1 (Racer). Table 2 shows
for every concept pattern the maximum i for which the concept could be tested within
the time limit of 1000 seconds. The adjacent column shows the reason why the test of
the next harder concept failed: “T” stands for timeout, “M” for insufficient memory.
The total in the bottom rows also includes the concepts for i = 0 and is therefore
(by 8) higher than the sum of the above rows.
Comparing the “ex-c” and “ex-n” concepts, it is obvious that the overhead in-

troduced by nominals is significant. The same holds for every . . .-c concept in com-
parison with the corresponding . . .-nc concept. Moreover, unsatisfiable concepts are
significantly harder to process than their satisfiable counterparts. From the “root-nc”
concepts, only the trivial one for i = 0 could be decided. Comparing the performance
of the two systems, one can see that FaCT solves some more concepts than Racer.
Next, we examine if the calculation time does indeed increase exponentially in the

size of the input automaton or if this behaviour can be prevented by the optimisations



of the tableau algorithms. To this end, Figure 3 displays, for some selected formula
patterns, the calculation times in relation to the size of the input automaton’s tran-
sition function on a logarithmic scale. Although there are only few measuring points
per pattern, the nearly linear graphs suggest that the calculation time increases nearly
exponentially in the size of the transition function/TBox.

FaCT Racer

Concept sat unsat sat unsat

ex-c 5 2 T 4 T 1 T
ex-n 3 M 1 T 1 T 0 T
ex-nc 2 M 0 T 0 M 0 T
all-c 3 M 2 T 3 T 1 T
all-nc 0 M 0 T 0 M 0 M
all-inv-c 3 T 2 T 1 M 1 M
all-inv-nc 0 M 1 T 0 M 0 M
root-nc 0 M 0 T 0 M 0 M
Total 24 16 17 11

40 28

Table 2: Number of successful tests

0.1

1

10

100

1000

100 150 200 250 300 350 400 450 500 550 600

se
co

nd
s

size of transition function

FaCT ex-c
FaCT ex-n

FaCT all-inv-c
Racer ex-c
Racer all-c

Figure 3: Calculation times

6 Conclusion

We presented a translation of looping alternating automata into a description logic,
which enables us to use existing DL systems to perform the emptiness test of the
language accepted by an automaton. In order to test its efficiency, we implemented the
translation procedure, created a set of test automata and evaluated the performance
of FaCT and Racer on their translation. Our results indicate that the time needed
for the satisfiability test of the corresponding TBox is exponential in the size of the
input automaton’s transition function.

References

[1] F. Baader and U. Sattler. An overview of tableau algorithms for description logics. Studia Logica,
69, 2001.

[2] F. M. Donini and F. Massacci. EXPTIME tableaux for ALC. Artificial Intelligence, 124(1):87–138,
2000.

[3] V. Haarslev and R. Möller. RACER system description. In IJCAR-01, volume 2083 of LNAI.
Springer-Verlag, 2001.

[4] J. Hladik and U. Sattler. A translation of looping alternating automata to description logics. In
Proc. of the 19th Conference on Automated Deduction (CADE-19), Lecture Notes in Artificial
Intelligence. Springer Verlag, 2003.

[5] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proc. of KR-98. Morgan
Kaufmann, 1998.

[6] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In
H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of LPAR’99, volume 1705 of LNAI,
pages 161–180. Springer-Verlag, 1999.

[7] C. Lutz and U. Sattler. The complexity of reasoning with boolean modal logics. In F. Wolter,
H. Wansing, M. de Rijke, and M. Zakharyaschev, editors, Advances in Modal Logics 3. CSLI
Publications, Stanford, 2001.

[8] U. Sattler and M. Y. Vardi. The hybrid µ-calculus. In IJCAR-01, volume 2083 of LNAI, pages
76–91. Springer-Verlag, 2001.

[9] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. J. of
Computer and System Science, 32:183–221, 1986.


