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Abstract. The presented paper describes a method of text preprocess-
ing improving the performance of sequential data mining applied in the
task of gene interaction extraction from biomedical texts. The need of
text preprocessing rises primarily from the fact, that the language en-
coded by any general word sequence is mostly not sequential. The method
involves a number of heuristic language transformations, all together con-
verting sentences into forms with higher degree of sequentiality. The core
idea of enhancing sentence sequentiality results from the observation that
the components constituting the semantical and grammatical content of
sentences are not equally relevant for extracting a highly specific type of
information. Experiments employing a simple sequential algorithm con-
firmed the usability of the proposed text preprocessing in the gene in-
teraction extraction task. Furthermore, limitations identified during the
result analysis may be regarded as guidelines for further work exploring
the capabilities of the sequential data mining applied on linguistically
preprocessed texts.
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1 Introduction

Gene interaction extraction from textual language representation can succeed
only if language is understood correctly. In general, language comprehension
proceeds through interpretation of grammar, semantics and pragmatics; omis-
sion of any of these components may cause the communication to fail. Individual
language variants may differ in complexity of these components; biomedical lan-
guage proves to be complex in all of them. Being the complexity extremely
hard, any engineering approach has to omit some aspects by making assump-
tions, permitting relaxations etc. In case of sequential approach, which is focused
in this project, this is expressed by assumption that language is of sequential
nature. To diminish the negative effect of such a simplification while keeping the
full potential power and flexibility of the sequential approach unchanged, text
preprocessing needs to be employed. The text preprocessing method (sentence
skeletonization) discussed in this paper builds on a priori linguistic knowledge.



2 Related Work

The methods commonly applied in the gene interaction extraction task include
computational-linguistics based methods (mainly language parsing), rule-based
methods and machine learning based methods [26].

Shallow parsing provides only partial decomposition of the sentence struc-
ture: part-of-speech tagged words are grouped into non-overlapping chunks of
grammatically related words, whose relations are subsequently analyzed [10, 26].
Pustejovsky et al. [18] and Leroy et al. [13] accomplish the analysis using
finite state automata. Deep parsing, in contrast, considers the entire sentence
structure. Ahmed et al. [1] analyze the full parse by assigning predefined syn-
tactic frames to parsed clauses, Skounakis et. al [23] automate the analysis
by employing hidden Markov models (empiricist approach [26]). Rule-based ap-
proaches employ textual rules or patterns encoding relationships between entities
[26]. Manually defined rules have been applied e.g. by Blaschke and Valencia
[4] or Proux et al. [20]; systems capable of inducing rules automatically have
been proposed e.g. by Huang et al. [11] or Hakenberg et al. [9] On the field
of machine learning based methods, Kraven and Kumlien [7] employ bayesian
classifier, Stapley and Benoit [24] use co-occurrence statistics, Airola et
al. [2] extend the general graph kernel method introduced by Bunescu and
Mooney [6] and construct a custom kernel to be passed to support vector ma-
chines.

Instead of being mutually exclusive, the three above principles rather sup-
plement each other, as they each describe a different methodological aspect:
parsing focuses on understanding the internal domain structure, rules on encod-
ing internal dependencies and machine learning on procedures of revealing such
dependencies. Advanced sequential approaches, like the episode rules proposed
by Plantevit at al. [17], encode in fact the findings of machine learning based
procedures. The missing structural view may be added by employing a reason-
able text preprocessing.

The method of the text preprocessing discussed in this paper builds on the
work of Miwa et al. [15], Jonnalagadda et al. [12] and Siddhartan [22],
who propose various techniques transforming sentences into syntactically simpler
structures.

3 Method Description

Text preprocessing discussed here converts a sentence into a set of structurally
simpler word sequences called skeletons. Each skeleton estimates a subset of core
semantical and syntactical features of the original sequence. Moreover, the lan-
guage behind the skeleton is more reliably mirrored by the corresponding word
sequence than in case of the original sentence. Thus, the sequentiality of skele-
tons is higher than the sequentiality of the original sentence, which makes them
more suitable for applying sequential approaches. As a result of estimation, the
skeleton set can not be regarded as a decomposition of the original sentence.



Skeletons are constructed following the bottom-up principle: being grounded at
the clause level, they are further modified at the sentence level. The skeleton
construction rely mostly on metalingual categories assigned to text by Tree-
tagger [21].

3.1 Clause Level

Problem Identification

(1)

G
the G gene

the G gene expression
the G gene expression in the cell

the activation of the G gene expression in the cell
the activation of the G gene expression in the eucaryotic cell

The Example 1 demostrates that altering a simple phrase by adequate lan-
guage components causes the phrase to grow both to the left and to the right.
Although there are limitations of such growth given by the demand of under-
standability, the space of all possible forms of phrases remains infinite. Assuming
any semantically relevant sentence, e.g. g inhibits X, all the above phrases con-
stitute a lexical paradigm for variable nominal argument X. This phenomenon
will be referred to as paradigmatic phrase space complexity.

(2) the [G1 activates G2]

(3) the expression of [G1 activates G2]

In Example 2 G1 binds to predicate activates (i.e. to the right), whereas
in Example 3 G1 binds to verbal noun expression (i.e. to the left). Therefore,
in both sentences the marked subsequence represents different syntagma. This
phenomenon will be referred to as syntagmatic phrase space complexity.

In conclusion, due to arbitrary phrase space complexity, the positional dis-
tance in the word sequence does not imply the underlying language distance.

Building Principles To deal with the above difficulties, the following principles
have been defined as building blocks for the clause level text preprocessing:

Phrase structure reduction. The language sentence may be considered as
a projection of a multidimensional, non-sequential language structure into a se-
quence of lexical elements. Backward mapping (i.e. word sequence interpretation)
may be extremely difficult without fully qualified language knowledge. However,
playing with paradigmatic relations (Example 1) reveals, that semantically re-
lated structures of different structural complexity can be placed at the same
position, i.e. complex structures may be replaced with simpler ones without sig-
nificant information loss. Applying recursively such transformations results in



clause level skeleton, which is assumed to hold or at least represent the core of
the original clauses.

Operation atomicity. Working with the sentence as a whole implies facing
the potential complexity of a general sentence. This can be avoided by operat-
ing on the lowest syntactical level: simplifying transformations considering only
the closest context rely on what we almost certainly know about the local lan-
guage. Moreover, atomicity and linguistic relevancy allow for heuristic qualifying
and quantifying the additive semantic shifts caused by these transformations.
However, the semantic shifts may be negligible, as in Example 4, where only
attributes and appositional adjuncts are removed.

(4) gene(att) G in eukaryotic(att) cells → G [in cells](adj) → G

Gene name propagation. Simplifying a word sequence can not proceed with-
out removing words considered irrelevant. Language relevancy of words is closely
related to their position in the phrase: word in head position holds the core
meaning of the phrase and represents the minimal member of the correspond-
ing paradigm, words at other position are linguistically less relevant. However,
the language relevancy may conflict with the relevancy rising from the gene in-
teraction extraction task, since gene entity names may occupy also attributive
or adjunct positions. Therefore, to prevent the gene entity names from being
removed, they need to be propagated to more stable positions. However, this
procedure causes non-negligible (though measurable) shift in the semantic space
of the given sentence (Example 5).

(5) G(att) expression → G; expression of G(adj) → G

Proximity assumption. Due to declared operation atomicity, the word se-
quence is never seen as a whole, but always locally. As a result, especially con-
junction words may be ambiguous: being given only the immediate neighbor-
hood, it may by hard to determine, what subsequences of the sentence actually
constitute the arguments of the conjunction word. However, in case that both
left and right neighboring words are of the same or related class, the following
principle is applied: unless there is special reason for not treating them as argu-
ments of the conjunction word (Example 7), they are treated as such (Example
6).

(6) G1 activates [G2 and G3] → G1 activates G2+G3

(7) ... expression [of G1] and [G2 activates]...

The clause level transformations designed according to the above principles
are summarized in Table 1.

Skeleton Construction The process of finding the clause skeletons can be
roughly summarized into four steps: (1) reduce noun chunks into minimal chunks
using the left removal and forward propagation; resolve appositions and coor-
dinations, which results to a nominal skeleton. The remaining two steps are



Table 1. Clause level transformations. Legend: NC ∼ applicable within noun chunk;
VC ∼ applicable within verb chunk; NCS ∼ applicable to noun chunk sequences.

Transformation Cost Type Description

Leftr̃emoval̃(LR) ∼ 0 NC Attribute removed, head preserved:
cell gene → gene; gene G → G

Forward propaga-
tion (FP)

> 0 NC Attribute moved to head position:
G expression → G

Verb reduction ∼ 0 VC Left verb form removed:
has activated → activated; is able to activate → acti-
vate

Apposition re-
duction

∼ 0 NC Concatenation + LR and FP
gene, G, → G; G1, G2, → G1+G2

Coordination re-
duction

∼ 0 NC Coordination + LR and FP
gene and G → G; gene and protein → protein; G1
and G2 → G1+G2

Right removal ∼ 0 NCS Appositional adjunct removed:
gene in cells → gene; G in cells → G

Backward propa-
gation

> 0 NCS Appositional adjunct moved to preceding head:
expression if G → G

specific to verb skeletons: (3) resolve nominal structures, mainly using the right
removal and backward propagation; (4) resolve appositions and coordinations
more freely. Following the path of abstraction, the above four steps may be fur-
ther summarized in two steps: (I) investigate in details the internal structure
of noun chunk sequences; (II) reduce the noun chunk sequences (if possible) to
such forms which can be passed as arguments to clause verb predicate.

(8) expression of G1 gene activates G2 induced protein G3 in mouse cells

→ expression of G activates G2 induced G3 (nominal skeleton)
→ G1 activates G3 (verb skeleton)

Nominal structures are resolved and passed as arguments to clause predicates,
i.e. nominal structures are subordinated to verb predicates. However, subset of
nouns and adjectives may be also employed as predicates, i.e. they bind argu-
ments: nouns, gene entity words or other nominal predicates. Nominal structures
built around nominal predicates are saved in nominal skeletons before they are
dissolved to become verb arguments. However, if they appear as arguments of a
nominal predicate, they need to be stored in another nominal skeleton, before
they are dissolved to become arguments of the superior nominal predicates. The
procedure dealing with nested nominal predicates is not covered here due to
limited space.



3.2 Sentence Level

Problem Identification

(9) ... it activates G2; ... and activates G2

Even though the sentence stubs 9 seem incomplete with respect to their
subjects, none of them has actually empty subject argument: both pronoun
and unstated subject are valid syntactical subjects. However, these elements do
not hold their own semantics; they only point to another language elements,
thus propagating the once declared content to another sentence locations. The
propagation naturally implies the binding ability: elements one representing the
holder of the semantics and one the pointer (either explicit, or implicit) are
clearly related to each other. This phenomenon will be referred to as the existence
of language pointers.

(10) [G1 activatingnominal G2] interactsfinite with G3

The predicative power of verb allows it to operate as top level node which
divides clause in two regions containing (mainly nominal) arguments of the given
verb. However, nominal verb forms (past participles, ing-forms) occur also within
these regions (Example 10), while still preserving the verb syntactic behaviour.
Moreover, some nominal verb structures tend to constitute their own subordi-
nated clauses. An error in determining, which verb holds the role of sentence
predicate, may lead towards loss of the sentence integrity. This phenomenon will
be referred to as existence of nominal verb forms.

Building Principles The skeletons grounded at the clause level are further
modified at the sentence level according to the following principles:

Mapping language pointers to corresponding values. Pointers need to be re-
placed by the elements they are pointing to, in order to prevent sequential al-
gorithm from missing relation the element is involved in through this pointer.
Correct mapping requires deep knowledge of discourse and information struc-
ture of general English sentence. Currently, the mapping employs only simple
heuristic rules.

Mapping nominal verb forms to potential interaction predicates. To preserve
the sentence semantical integrity, nominal verb forms are mapped to potential
interaction predicates: verbs, nouns or adjectives with respect to current local
context. The mapping follows complex heuristic rules extracted manually from
random subsets of biomedical abstracts.

Assumption of neutral thematic structure. Scientific texts are assumed to
follow the neutral textual principle: an entity is referred to not until it has been
introduced. Therefore, only pointers pointing to the left are taken into account.

Operation minimality. In contrast to the clause level, transformations at the
sentence level can not be evaluated using a reliable language based measure, since
the context which needs to be covered is too large and therefore too versatile.
To minimize the probability of making errors, only a minimum number of steps



are applied. Therefore, only those mappings are carried out, which cause any
predicate to get two arguments, each containing at least one gene entity name.

The sentence level transformations designed according to the above principles
are summarized in Table 2.

Table 2. Sentence level transformations. Legend: N ∼ within noun chunks, C ∼ within
single clause, CC ∼ in context of two coordinate clauses; CS ∼ in context of clause and
its subordinated clause.

Transf. Appl. Description

Explicit
pointer
mapping

N, CC, CS Personal and possessive pronouns are mapped to gene entity
names
... G1 consists of three exons and [it → G1] activates...
... G1 and [its → G1] activation...

Implicit
pointer
mapping

CC, C(S) Unstated subjects are mapped to gene entity names
... G1 activates G2 and [¡none¿ → G1] associates...
... G1 activates G2 by [¡none¿ → G1] associating...

Ing-forms
mapping

N, C(S) Mapping ing-forms to nouns, adjectives or verbs

Participle
mapping

N, C(S) Mapping past participles to verbs or adjectives

4 Experiments

4.1 Testing Method

A simple sequential approach has been used to evaluate the effect of sentence
skeletonization (i.e. improvement of sentence sequentiality) in the gene inter-
action extraction task: manually created, grammatically relevant patterns rep-
resenting predication between two gene entities are matched against sentence
skeletons, matching subsequences of sentence skeletons are considered to express
interactions between the involved gene entities. Two features of this approach
are essential:

(I) Syntagmatic rigidity: As the resulting sequentiality is the actual target
of testing, the reference basis (i.e. what is certainly of sequential nature) repre-
sented here by the predefined sequential patterns should mirror the sequential
principle in the clearest possible form in order to provide the most informative
evaluation. Therefore, the time span between each two subsequent elements of
all sequential patterns are set to one, i.e. neighboring tokens of a pattern have
neighboring counterparts in the sentence skeleton, no time relaxation is allowed.

(II) Paradigmatic latitude: Instead of lexical elements, the sequential pat-
terns are built (almost) exclusively from metalingual components, thus focusing
on grammar rather than on the actual semantics (grammar is often a funda-
mental prerequisite for semantic integrity). The elements of sequential patterns



result from double abstraction: e.g. noun-token (i.e. second-level abstraction) of
a sequential pattern covers four noun categories (i.e. singular, plural, proper etc.;
first level abstraction) actually assigned to any English noun word by Treetag-
ger [21]; i.e. any noun may be substituted for the noun-token.

The set sequential patterns consists of 29 patterns, 23 with a verb predicate,
3 with a noun predicate and 3 with an adjective predicate, e.g.: gene verb gene;
gene noun preposition gene; gene adjective gene.

4.2 Experimental Data

The resulting sequentialty was evaluated on six biomedical corpora annotated
both for gene entites and gene interactions: AIMed [16], Christine Brun Cor-
pus [5], HPRD50 [14], IEPA [3], LLL05 [25] and BC-PPI [8]. All six corpora
were handled in the same way according to the following four principles: (I)
sentences are stemmed and assigned grammar tags using Treetagger [21];
(II) interactions employing more than two gene entities are converted into corre-
sponding number of binary interactions (e.g. one ternary interaction corresponds
to three binary interactions); (III) interacting gene pair, being detected in a cor-
pus sentence, is counted only ones into performance measures (precision, recall,
F-measure) regardless of how many times it is actually expressed in the sentence;
(IV) a triple of two interacting genes and a binding predicate is counted only
ones in the pattern analysis regardless of how many times it actually appears in
the sentence.

4.3 Results

The overall performance of the presented approach in terms of precision, recall
and F-measure is given in Table 3.

Table 3. Precision, recall and F-measure for all testing corpora

AIMed Brun Hprd50 IEPA LLL05 BC-PPI

Precision 0.49 0.62 0.81 0.74 0.87 0.36
Recall 0.46 0.47 0.61 0.59 0.72 0.65

F-measure 0.48 0.54 0.69 0.65 0.79 0.46

False negatives result mostly from the insufficient sequentiality of skele-
tonized sentences. Two corpora, LLL05 (providing excellent results) and BC-
PPI (providing poor results), were analyzed in detail to identify both (a) the
structures not covered by the sentence skeletonization, and (b) the factors caus-
ing the skeletonization to fail to improve the sentence sequentiality. A classifica-
tion of such phenomena is given in Table 4.

False positives result either from (a) shortcommings of the sentence skele-
tonization, or (b) shortcommings of the sequential algorithm. (a) Provided that



Table 4. Analysis of false negatives: unhandled structures, confusing factors

Category Explanation

1 Incorrect tagging E.g. G1 binds@noun to G2
2 Distance too long E.g. multiple nested clauses before interaction is completed
3 Front-end argu-

ments
E.g. in addition to G2, G1 interacts with G3

4 Nested ing-forms E.g. ... by activating G2 encoding G3
5 Higher level

non-verb coordi-
nations

E.g. G1 interacts [with G2] and [with G3]

6 Unresolved
pointers

E.g. high concentration of G1 induces G2, but low concentra-
tion(!) activates G3

7 Misleading inter-
punction

E.g. G1 and G2, interact with G3

8 Different lan-
guage forms

E.g. complex of G1 and G2; G1 and G2 interact [with each
other]

stylistical correctness is guaranteed, the sentence complexity rises together with
the complexity of the idea held by this sentence; thus, reducing the sentence com-
plexity naturally distorts the underlying idea. The atomicity principle declared
at the clause level typically prevents the corresponding transformations from ex-
ceeding the allowed level of distortion. Unfortunately, the minimality principle
declared at the sentence level instead of the atomicity principle does not guar-
antee the same level of control. As a result, the corresponding transformations
appear as error contributors more frequently. Moreover, their negative effect is
often multiplied by coordinations, which distribute the error to all coordination
participants. (b) Errors of the testing algorithm rise mostly from the omission of
semantics: not every word holding the position of an interaction predicate does
trully descibe an interaction. The overall performance on various corpora (Table
3) depends strongly upon the frequency of such confusing predicate candidates.

The atomicity allows to define a language based distance measure for esti-
mative quantifying the semantic shift: the quantified overall semantic deviation
from the original word sequence could be understood as a confidence in the ob-
tained result (skeleton). However, the atomicity is currently declared only at the
clause level. Therefore, any distance measure designed for estimating the overall
semantic deviation from the original text representation will necessarily mirror
exclusively the effect of clause level transformations. Experiments designed to
find the optimal maximum allowed deviation by setting non-zero cost for both
forward and background propagations (Table 1) proved, that such a measure is
not sufficiently informative.

Pyysalo, Airola et al. [19, 2] use very similar approach to evaluate ex-
traction performance of several approaches on five corpora, four of which are
used in the presented experiments: AIMed, HPRD50, IEPA and LLL05. A
comparison of some of them with the method proposed in this report is given
in Table 5. Obviously, the presented approach achieves comparable results, even



though it was targeted only to evaluate the effect of sentence skeletonization and
was not seriously meant as a full featured system for gene interaction extraction.

Table 5. Performance comparison. Legend: Graph kernel ∼ SVM based approach [2],
RelEx ∼ approach involving deep parsing [19], Skel. + seq. ∼ the presented approach.

AIMed HPRD50 IEPA LLL05

P Graph kernel 0.529 0.643 0.696 0.725
RelEx 0.40 0.76 0.74 0.82

Skel. + seq. 0.49 0.81 0.74 0.87

R Graph kernel 0.618 0.658 0.827 0.872
RelEx 0.50 0.64 0.61 0.72

Skel. + seq. 0.46 0.61 0.59 0.72

F Graph kernel 0.564 0.634 0.751 0.768
RelEx 0.44 0.69 0.67 0.77

Skel. + seq. 0.48 0.69 0.65 0.79

5 Conclusion and Further Work

Since natural language is not sequential, linguistic preprocessing for sequential
data mining (not limited to biomedical literature) can be understood as improv-
ing sentence sequentiality.

Based on a detailed analysis of biomedical texts, language phenomena break-
ing the sentence sequentiality have been identified. To deal with these obstacles,
heuristic transformations have been designed, all of which are employed to con-
vert a sentence into a set of skeletons, structures with improved level of sequen-
tiality.. Sentence skeleton may be regarded as simplified form of the original
sentence or sentence approximation (both grammatical and semantical), thus
not being fully equivalent with the original sentence.

The impact of the sentence skeletonization has been evaluated using an inten-
tionally simple, clearly sequential algorithm. By applying this algorithm in the
gene interaction extraction task on skeletonized sentences from various biomed-
ical corpora, limitations of the sentence skeletonization have been identified.
Furthermore, the usability of pattern mining from sentence skeletons have been
confirmed, provided that further improvements in sentence skeletonization will
be made and a more advanced sequential algorithm will be used.

Sentence skeletonization will be further improved by applying the atomic-
ity principle also at the sentence level and text level: this can be achieved by
identifying the information flow between pairs of patternalized, i.e. further skele-
tonized clauses or sentences. Such method should not only solve the mapping
problems, but it might also be helpful in dealing with various issues strongly
related to pragmatics.

Furthermore, episode rules, an advanced general sequential approach pro-
posed by Plantevit et al. [17], will be applied to sentence skeletons in the



gene interaction extraction task. Both lexical and metalingual information should
be employed as features to balance the generalization potential and semantical
relevancy of extracted rules.

Acknowledgment
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