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Abstract. Protocol software is important for much of the computer
based infrastructure deployed today, and will remain so for the foresee-
able future. With current modelling techniques for communication pro-
tocols, important properties are modelled and verified. However, most
implementations are being done by hand even if good formal models
exist. This paper discusses some of the challenges in modelling and auto-
matically generating software for protocols. The challenges are discussed
using the Kao-Chow authentication protocol as a running example by
outlining an approach for generating protocol software for different plat-
forms based upon Coloured Petri Nets (CPN). The basic idea of the
approach is to annotate the CPN models with pragmatics which can be
used in a code generator when mapping the constructs of the CPN model
onto the target platform.

1 Introduction

Much work has been done to model and verify protocols using a wide range of
formalisms [8]. Petri nets [23] and Coloured Petri Nets (CPNs) [13,14] in partic-
ular are widely used formal modelling languages for behavioural modelling and
verification of industrial-sized protocols [7]. There exist, however, relatively few
examples [16, 17, 21] where CPN models have been used as a basis for automat-
ically obtaining implementations of the modelled protocols.

This paper describes challenges with automatically generating code from pro-
tocol models and proposes some avenues for solving them. A concept of prag-
matics is introduced for protocol models which holds information useful for gen-
erating an implementation. This paper also proposes the use of separate models
to describe the configuration and platform for protocol software. This allows the
protocol models to be at a high level of abstraction while specific implementa-
tions can be derived using configuration and platform models.

Figure 1 illustrates our approach to generating protocol software. The Proto-
col Model is a model in a language that is not yet fully designed, but it could be
based on CPN or another High Level Petri Net (HLPN) language. The Config-
uration Model contains information on which design choices should be made for
the implementation of the protocol. For example, the configuration can contain



information on exactly which underlying network layer service to use for com-
munication between protocol entities. The Platform Model is intended to contain
information on how operations should be implemented on the specific platform in
question. For example the details on what is needed to set up and transmit mes-
sages over the User Datagram Protocol (UDP) [9] or the Transmission Control
Protocol (TCP) [10]. The Protocol Model, together with a Configuration Model
and Platform Model is fed into a Generator in order to obtain an implementation
of the protocol. Finding a good separation between the Protocol, Configuration
and Platform Models is one of the important challenges in this approach.

The evaluation of our approach will be based on the software we are able
to generate using our approach. If we are able to generate software for a wide
range of protocols with high quality, this will be considered a success. We will
also evaluate the confidence we can gain that the generated software maintains
the properties of the Protocol Model.
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Fig. 1: Protocol software generation approach.

In order to include information that will help with code generation, we in-
troduce the concepts of pragmatics and scope to the Protocol Model. Pragmatics
assign special behaviour and meaning to model elements. This means that we
are able to differentiate between transitions, places and data according to their
function in the protocol. In the protocol models, pragmatics are encapsulated in
« and ». We will provide more details on these pragmatics in the following.

This paper is structured as follows. Section 2 focuses on elements that are
missing from CPNs in order to model and generate code for protocols. This
section also introduces the Kao-Chow (KC) authentication protocol [15] which
is used as a running example throughout this paper. The concepts of pragmatics
and scope are also introduced in this section. Section 3 discusses the need for
configuration and platform models and identifies some elements that should be
contained in those models. Finally, Section 4 discusses future work and identify
criteria for evaluating our approach to model based development of protocol
software. The reader is assumed to be familiar with the basic concepts of CPNs.
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2 Protocol Model

To illustrate our approach we use the KC protocol. KC is a protocol that makes
it possible for two entities, A and B, to authenticate each other using uncertified
symmetric key 3 cryptography and an authentication server, S. The authentica-
tion server is assumed to have pre-shared keys with each of the authenticating
entities. Listing 1 shows the basic sequence of messages exchanged in KC using
Alice and Bob notation [20]. First some entity, A, wants to authenticate with an-
other entity, B. To this end, A sends its and Bs identity together with a nonce4,
Na, to the authentication server, S (1). S then generates a session key, Kab, for
use between A and B. This session key and A and B’s identities, together with
A’s nonce is encrypted with the pre-shared key, Kbs, between B and S. S also
creates a copy of the same data encrypted with the pre-shared key, Kas, between
A and S and sends both copies to B (2). B then sends the part of the message
it got from S encrypted with the key, Kas, shared by A and S to A together
with As nonce encrypted with the session key, Kab, and a new nonce Nb (3).
Finally, A responds to B with B’s nonce, Nb, encrypted with the session key,
Kab, (4). A considers B to be authenticated when the nonce, Na, it receives from
A encrypted with Kab is identical to the Na which A created at the beginning
of the exchange. Similarly, B considers A to be authenticated when B receives
its nonce, Nb, encrypted with Kab from A.

Listing 1: Kao-Chow message sequece from [24]

1 . A −> S : A, B, Na
2 . S −> B: {A, B, Na , Kab}Kas , {A, B, Na , Kab}Kbs
3 . B −> A: {A, B, Na , Kab}Kas , {Na}Kab , Nb
4 . A −> B: {Nb}Kab

CPNs and other types of Petri Nets are widely used and have a well docu-
mented capability for modelling and verifying protocols and aiding in the imple-
mentation of protocol software [1,7]. Our approach is to use HLPNs, and CPNs
in particular, as a starting point for modelling protocols.

The top page of a CPN model of KC is shown in Fig. 2. Here the participants,
A, B and Server, in the protocol are modelled as substitution transitions on the
top level module. The places make it explicit that A send messages to Server,
Server send messages to B, and that A and B send messages to each other.

Another effort to model KC using Petri Nets is presented in [3]. In this paper
KC is first defined in the Security Protocol Language [6] and then translated
into S-nets [4]. KC is also modelled using several different tools and languages
in [5].

3 Uncertified keys are keys that are not accompanied with information such as proof
of who is the keys owner and issuer and how the key should be used.

4 A nonce is a number or bit-string that is used only once.
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Fig. 2: Top level module of the Kao-Chow model.

2.1 Scope Pragmatics

Implicit in the KC model is information about different protocol entities that
have different roles. Our approach is to make this information more explicit is
to add the entity pragmatic to substitution transitions that indicate that the
module is an entity in the protocol. In this approach, the top level of a model
typically consists only of substitution transitions and network nodes, which is
the case in the KC model in Fig. 2.

An alternate approach could be to tag all model elements that are part of
the same protocol entity or to encompass all elements inside some form of field
that delimits the entities from each other. One problem with this approach is
that since several parties can exist on the same module some elements may
interact without going through a network node. On one hand this could make
models more error-prone. On the other hand such back-channels may be used
to represent out of band communication that is relevant to the protocol and not
properly network traffic. Since such out of band traffic could also be represented
by non-network nodes in the top level anyway, this is not a strong argument
against the chosen approach as explained in the previous paragraph.

2.2 Communication Channel Places

Network places, which have the channel pragmatic, represent the network and
firing adjacent transitions corresponds to sending some data over the network.
The sender and recipients are identified by the transitions on either side of
the network places. Pragmatics on network places could, for example, include
constraints on the network channel which corresponds to the assumptions made
on the network used by the protocol. Such assumptions could be that package
are guaranteed to arrive in order without duplicates, as TCP channels guarantee,
or that there are no such guarantees, as is the case with UDP. Another example
may be a constraint indicating that the channel is secure from an attacker being
able to read the data which is provided by the Transport Layer Security (TLS)
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protocol [11]. How the communication channel should be initialized and used
specifically should be specified in the configuration and platform models.

2.3 API Pragmatics

Figures 3 and 4 show the two modules for the A entity in the KC model. The
behaviour of A is somewhat complex despite the simplicity of the protocol, be-
cause many steps are taken for each message. In the figures, pragmatics have
been added to several elements in the model. Figure 3 shows how the protocol is
initiated by placing a token on the place Init at the top of the figure. The token
contains the addresses for A and B. These addresses are then combined with a
nonce from the place Nonce and put on the place A to S which represent sending
the message to the authentication server. At the same time, a copy of the nonce
is placed on the WaitAuthenticate place. This place represents a state where A
is waiting for a response from B.

When a message is placed on the place B to A, the transitions on the sub-
module associated with the Authenticate substitution transition become enabled.
This submodule is shown in Fig. 4. Here the transition Receive Authentication
(when enabled) stores As original Nonce and Bs Nonce in StoreA and StoreB, and
then places a token on the Wait Decrypt place. Then the Decrypt Key transition
can use the key in the place Key Store to decrypt the session key and nonce. The
Authenticate transition is now able to perform the actual authentication of B. In
the KC protocol, the authentication involves simply to check that the stored and
the received and decrypted nonces are identical. The model does not explicitly
show what should be done if the nonces are not the same. In practice, this would
typically cause an error to be raised and the protocol would terminate. This is
left out of the model in this paper for simplicity. Assuming that the authenti-
cation step is successful, Bs nonce is encrypted with the session key, which is
generated by the authentication server and stored at the place Session Key Store,
at the Encrypt Nonce transition, and finally put on the A to B place.

In the upper part of Fig. 3 there is a transition with the API pragmatic. This
pragmatic symbolizes an entry point where the outside environment can interact
with the protocol software. For target languages in the object-oriented paradigm
this would typically be translated into a method with public access. In the KC
example, the API pragmatic is the starting point of the protocol. It is given
the name kcAuthenticate and takes two arguments; toAddr and fromAddr.
Listing 2 shows an example of how the API transition could be translated into
the signature of a Java method.

Listing 2: API method signature

pub l i c vo id kcAuthent ica te ( Id fromAddr , Id toAddr )

2.4 Operation Pragmatics

The operation pragmatic means the implementation should performing an oper-
ation such as printing data to the screen or calling a system library when this
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Fig. 3: Module A of Kao-Chow model.
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Fig. 4: Module Authenticate of Kao-Chow model.
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pragmatic is encountered. Operation pragmatics are typically attached to tran-
sitions. The specific code that results from an operation in the Protocol Model
is defined by the configuration and platform models.

In the KC protocol for entity A, there are four operation pragmatics. These
are to generate a nonce (Generate Nonce in 3), encrypt (Encrypt Nonce in 4), de-
crypt (Decrypt Key in 4) and authenticate (Authenticate in 4). These pragmatics
help to make explicit what operations are to be done for the transition with this
pragmatic. Also it makes it possible for the Generator (see Fig. 1) to know how
to generate code for these transitions, even if they are not modelled at the same
level of detail as the implementation.

In an implementation, the Encrypt Nonce operation in the lower part of Fig-
ure 4 could be translated into what is shown in listing 3 on the Java platform
where the encrypt method is already defined.

Listing 3: Encryption operation

St r ing nonceReply = serverNonce . nonce . toSt r ing ( ) ;
nonceReply = encrypt ( nonceReply . bytes , s e s s ionKey ) ;

2.5 Transient Entities

Two places with the transient pragmatic are present in Figure 3. Model elements
with the transient pragmatics are elements that are not considered by the gen-
erator, but may be useful for other uses of the model such as simulation and
verification. The transient places in Figure 3 provide an initial state in the model
which is necessary for simulation of the CPN model.

2.6 Data Pragmatics

In Fig. 4 several pieces of data have an enc pragmatic, for example on the arc
between the Wait Decrypt place and the Decrypt Key transition in the middle
of the figure. This pragmatic indicates that the data is encrypted with a given
key. Encrypted data should only be used (read or manipulated) in transitions
where the encryption key is available. In the KC example, encrypted data is only
available after passing through a transition with a decryption operation where
the correct key is available.

The enc pragmatic as shown here only takes symmetric encryption schemes
into account. However, extending the pragmatic to also be able to model asym-
metric encryption should be relatively simple. The enc pragmatic is an example
of a domain specific pragmatic which is specific to the area of security protocols.

3 Configuration and Platform Models

Pragmatics in the model bring the model closer to an implementation by adding
information that is useful for generating an implementation. Still the model
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is too abstract to generate code without making many assumptions about de-
sign choices and the underlying platform. We propose to use configuration and
platform models to provide information so that the generator can generate an
implementation.

The configuration model contains information about how to implement the
protocol. It is likely to be highly dependent on both the protocol model and the
platform model. It therefore seems possible that configuration models will not
be reusable for other protocols or platforms. A typical design choice that will
be represented in the configuration model is the choice of underlying network
service to be used for communication between protocol entities. For example if for
a protocol that has no constraints on the network layer service, a configuration
would be whether to use UDP or TCP for the implementation.

The platform model should hold specific implementation details. In the ex-
ample with the underlying network layer service, the platform model would hold
information on how to set up, send and receive messages over UDP and TCP.
The platform models are general in the sense that a platform model can be used
to generate implementations of several protocols for the specific platform. In
order to achieve this, the platform models, of course, need to support a wide
range of features for different protocols and configurations.

Separating the configuration and platform models in this way makes it pos-
sible to reuse the models. Protocol models can be reused for different platforms
and configurations. Platform models can also be reused to create protocol soft-
ware for different protocols with different configurations for a specific platform.

4 Discussion

This paper has discussed some initial ideas for generating protocol software from
models in a general way by annotating the model with pragmatics and adding
configuration and platform information. This paper has also introduced a few
specific pragmatics for protocol models that are exemplified by a model of the
KC protocol. The list of pragmatics is by no means exhaustive, but provides
a starting point for creating the first generation of technologies for protocol
software modelling and generation using our approach. Additional information
to be specified in configuration and platform models has also been introduced
and argued for.

4.1 Related Work

In [19] a method for annotating CPNs is described. This method makes it possible
to add auxiliary information to tokens in CPNs in layers of annotations. This
approach is similar to the pragmatics presented in this paper in that both add
information to CPNs. The approaches are different in that the pragmatics are
added directly to the CPNs whereas the annotations in [19] are created and
maintained separate from the underlying CPN model. Another difference is that
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the annotations are only concerned with tokens, while pragmatics can be added
to places and transitions as well.

In [18] a restricted version of CPNs, called Colored Control Flow Nets (CCFN),
are used to generate Java programs. This is done by first translating the CCFN
to an intermediate model called a Annotated Java Workflow Net (AJWN) which
is annotated by Java snippets derived from arc inscriptions in the corresponding
CCFN.

In [17] a subclass of CPNs called Process-Partitioned CPNs (PP-CPNs) is in-
troduced and used to automatically generate an implementation of the Dynamic
MANET On-demand (DYMO) [12] routing protocol. The approach in [12] to
generate code is to first translate the PP-CPN model into a control flow graph.
The control flow graph is then used to construct an abstract syntax tree (AST)
for an intermediate language which in turn is used to generate the AST of the tar-
get language. One difference to our approach is that in [17] information about
the target platform and how translate model concepts to target language is
contained in the generator instead of configuration and platform models. The
method of [17] also defines a new subclass of CPNs instead of extending CPNs
with annotations such as the pragmatics described here.

The notion of using different models for different layers of abstraction is also
present in the Model Driven Architecture (MDA) [22] methodology of software
engineering. In MDA three models are defined for a system. A Computation
Independent Model (CIM) defines what a system is supposed to do and roughly
corresponds to the protocol model as described in this paper. A Platform Inde-
pendent Model (PIM) describes behaviour and structure of a system indepen-
dent of the platform it is implemented on and a Platform Specific Model (PSM)
combines the information in the PIM with all the details that are needed to
generate an implementation of the system for the specified platform. The PIM
and PSM are quite different from the configuration and platform models in this
paper which do not include information on the software system itself, but rather
design choices and how to implement these choices on the target platform for
the given protocol model.

4.2 Future work

In the near future, we plan to use the KC model and manually simulate the code
generation and then compare the implementation that is obtained through this
simulation to an implementation that we have already created independently
from the model. After that we will produce the first set of tools to automatically
generate protocol software from HLPNs using the concepts of pragmatics and
scope discussed in this paper as well as configuration and platform models.

Code generation will be done by model transformations. A significant chal-
lenge will be to gain confidence in the output of the generator. Formal verification
of the generator will likely not be possible, but it is critical that we can maintain
a high degree of confidence in the generated software. One technique that can be
used to validate both the generator and the software it produces it to generate
test suits based on the state space of the protocol code. Another technique is
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to rigorously test and examine several generated protocol implementations from
several different protocol domains.

The protocol model itself should be verifiable. One approach to verifying
protocols using CPNs has been described in [2]. We will study whether this and
other approaches are applicable to protocol models with pragmatics as described
in this paper. We will also look into how pragmatics can be used to help verify
more properties about a protocol such as verifying that secret data is never
places on a network channel in plain text and that the correct keys are always
present to decrypt encrypted data.
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