
ARML: an Active Rule Markup Language for Sharing
Rules among Active Information Management Systems

Eunsuk Cho, Insuk Park, Soon J. Hyun, and Myungchul Kim

School of Engineering, Information and Communications University (ICU)
P.O.Box 77, Yusong, Daejon, 305-600, Korea

{escho,ispark,shyun,mckim}@icu.ac.kr

Abstract. As the information management paradigm shifts from data manage-
ment to knowledge management, active rule support for various information
services has become a practical approach to add intelligence to the existing in-
formation management systems. Various active rule systems have been devel-
oped using different rule description languages and, yet, their business logics
are not sharable with each other. In this paper, we propose an XML-based ECA
rule definition language, called Active Rule Markup Language (ARML).
ARML provides an XML-based uniform rule description for the sharing of
business rules among heterogeneous active rule processing systems. Business
rules are made interoperable and therefore reusable through ARML when
mapped to ARML rule description facility. We discuss the language construct,
the proposed rule interoperability, and a prototype implementation.

1 Introduction

Active rule processing technology has been widely accepted to achieve one of the
ultimate database system’s goal of auto-everything in the course of decision-making. It
minimizes (or eliminate, after all) users’ intervention in processing a series of complex
tasks and managing data automatically with the verification of integrity constraint,
transaction, security, etc. Typically, active information management has rule-
processing features based on an Event-Condition-Action (ECA) construct by which
complicated business strategies are modeled and processed without looking into ap-
plication programs and the underlying database. For example, an Internet bookstore
that stores data about books, publishers, orders, etc., is accessed by a number of dis-
tributed users and when inventory of books run short and some threshold amount is
reached, it should be desirable for the database management system to automatically
place orders to the publishers of the books rather than waiting until the inventory
manager detects it and reports the situation. There has been a great deal of effort paid
in research and development of active data services and systems [1, 2, 5, 6, 8, 11, 12,
13, 16, 18].

Most of them have rule-processing features based on an Event-Condition-Action
(ECA) construct and are centered on the notion of rule and event definition. This way,
complex business logics of an enterprise can be represented in the form of ECA rule

chains, and changes can be made without looking into application programs and the
underlying database.

Different systems define different rule definition language facilities. Ariel uses
Ariel Rule Language (ARL) and REACH uses REAL [1, 2]. Similarly, Starburst,
AIMS, HiPAC, SAMOS use their own rule definition languages [6, 11, 12, 13]. Be-
sides these languages, triggers viewed as another type of ECA rules in SQL99 comply
with their rule description grammar [19].

They are system-dependent and have different syntactic features such as using dif-
ferent keywords for event, condition, and action descriptions. These syntactic diversi-
ties do not allow rule reusability and knowledge sharing, and thus demand rule devel-
opers of an enterprise to build from the scratch the entire business logics that are simi-
lar with existing business rules described in different rule language environments.
Reading and understanding the rules described in the existing rule languages would be
very difficult, unless designers have professional knowledge about the specific syntac-
tic structures of them.

In this paper, we propose an XML-based rule definition language, called Active
Rule Markup Language (ARML) to enable business logics defined in various rule
languages to be shared and reused among different systems. With its easy-to-define
rule description facility using XML, ARML provides a uniform ECA platform for
heterogeneous active information systems. Using ARML, rules of the similar services
with different systems can be easily understood and reused so as to save the cost for
creating and modeling business rules from the scratch. For example, an Internet book-
store may send its business rules about contract and conditions related to pricing,
amount of order, discount rate and cancellation represented in ARML to publishers.
Then, the publisher will be able to understand the business rules of the customer to
form marketing plans and make sales decisions although they have different active
information systems.

ARML, by taking advantages of XML standard with its ease of understanding, ex-
cellent expressiveness and web representation power, is simple to use and inexpensive
to implement by using well-developed XML APIs and XML utilities. It allows devel-
opers not to be dependent on the specific development tools and languages. Also, it is
human-readable and its vocabularies are easily shared through Document Type Defini-
tion (DTD) [3]. Active rules can be presented in various ways by using eXtensible
Stylesheet Language (XSL) [4, 9].

ARML defines a new tag set specifying ECA rule description, coupling mode, rule
execution precedence, and meta-information. It represents the business rules and con-
straints with a series of method calls. It hides the detailed implementation in the form
of methods so that business experts build the business processes easily by enumerating
the required methods and filling out the constraint values. By simply modifying the
sequence of method calls, adding the required method call, and changing the con-
straint values, the business rules and strategies of an enterprise can be comfortably
maintained and updated at the change of business constraints without touching upon a
complex mass of application programs.

There have been some efforts to employ XML facility in describing business rules
[8, 14, 15, 16]. ActiveWeb introduced an idea of using XML-based active rules for
deriving web views and for defining access control by user access behaviors. Reactive
E-Service proposed the concept of active XML rules for pushing reactive services to

XML-enabled repositories. Although they used XML-based active rules for their ap-
plications, the main idea and goal are different from our work and not suitable to
apply active rules to the general active information services because their XML-based
active rules focus on the specific reactive applications, such as web personalization
and pushing reactive services. RuleML, CommonRules, and BRML support XML-
based business rules for Web communication between applications on the various rule
systems. Although they deal with reaction rules based on ECA construct, it is also
hard to apply them to the active information management since they employ many
general features of multiple forms of rule systems, such as SQL, Prolog, logic pro-
gramming, production rules, and ECA rules. With these they intend to integrate rule-
markup approaches and to package the rule aspects of various domains such as engi-
neering, commerce, law, and Internet.

The rest of this paper is organized as follows. In Section 2, we describe ARML
construct and its semantics according to DTD. Section 3 introduces ARML layer for
rule interoperability, and gives an example of ARML and its interpretation. Section 4
describes the implementation of ARML. We conclude this paper and remark future
work in Section 5.

2 ARML Approach and DTD

ARML structure follows the rule definition language of AIMS and further includes
some features of other rule languages, such as a table for rule specification and a rule
set name for rule grouping [1, 6]. Table 1 shows rule definition language structures
used in different active database systems implementations. The DEFINE RULE, cre-
ate rule, and define rule clauses represent the beginning of the rule description and
define a rule name for identifying the rule. The EVENT, when, and on keywords are
used for specifying the event. The CONDITION and if specify the condition expres-
sion evaluated when rules are triggered. The ACTION and then imply the action part
of the rule. The AFTER, BEFORE, precedes, follows, and priority specify the rule
priority among rule sets triggered by the same event.
Beside these general rule features, each rule language has its own syntactic and
semantic features, such as coupling modes, rule-set name, etc. ARML integrates ECA
features of rule definition languages and expresses active rules in XML by encapsulat-
ing the detailed implementation of applications into a method call.

Table 1 Active Rule Definition Language Structures

AIMS Starburst Ariel
DEFINE RULE

rule-name-specification
EVENT event-specification
CONDITION

[DEC declaration]
[EXP expression]

ACTION action-specification
MODE ec-coupling, ca-coupling
AFTER precedence-rule-list
BEFORE follow-rule-list

create rule name on table
when triggering-operations
[if condition]
then action-list
[precedes rule-list]
[follows rule-list]

define rule rule-name
[in ruleset-name]
[priority priority-val]
[on event]
[if condition]
then action

 Table 2 shows ARML DTD. It consists of the rule description part and the method
call part representing vocabularies and structural information of an XML-based active
rule.

Its design principles are (1) to make ARML rules easily bound with any rule defini-
tion language, (2) to achieve readability, and (3) to give uniform rule language fea-
tures such as rule priorities, rule structure, and coupling modes. ARML’s vocabulary
and structural information can easily be shared by other languages through DTD. It
gives developers an efficient way to implement ARML interpreter with a human-
readable structure and semantics of ARML rules. It consists of two major part, rule
description and method call by way modifying the DTD of XML-RPC, a simple pro-
tocol to represent the request and response of a remote procedure call in the form of
XML. Modifying XML-RPC into ARML, we added a new element, variable to ex-
press variable type parameter. ARML makes use of only the requesting part of XML-
RPC to describe condition predicates and actions but not the response part of it. The
element rule as the root element of an ARML rule should have seven sub-elements;
ruleDef, event, condition, action, coupling, precedence, and info. The element ruleDef
defines the rule with a rule name, a rule set, and a rule table. The element info repre-
sents metadata of the ARML rule. Other sub-elements represent the notions of tradi-
tional ECA construct as follows.

<!ELEMENT rule (ruleDef, event ,

condition ,action , coupling, precedence,
info)>

<!ELEMENT ruleDef
(ruleName, table?, ruleSet?)>

<!ELEMENT event (eventName | algebra)?>
<!ELEMENT condition

(methodCall | boolean | algebra)?>
<!ELEMENT action (methodCall+)>
<!ELEMENT coupling (ec? , ca?)>
<!ELEMENT precedence (after?, before?)>
<!ELEMENT info

(designer*, description?, category?)>
<!ELEMENT algebra (and | or | seq)>
<!ELEMENT and

((eventName | methodCall)+ , algebra?)>
<!ELEMENT or

((eventName | methodCall)+ , algebra?)>
<!ELEMENT seq

((eventName | methodCall)+ , algebra?)>
<!ELEMENT before (ruleList?)>
<!ELEMENT after (ruleList?)>
<!ELEMENT ruleList (ruleName)*>
<!ELEMENT ruleName (#PCDATA)>
<!ELEMENT table (#PCDATA)>
<!ELEMENT ruleSet (#PCDATA)>
<!ELEMENT eventName (#PCDATA)>

<!ELEMENT designer (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT category (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT ec (#PCDATA)>
<!ELEMENT ca (#PCDATA)>
<!ELEMENT methodCall

(methodName, params)>
<!ELEMENT methodName (#PCDATA)>
<!ELEMENT params (param*)>
<!ELEMENT param (value)>
<!ELEMENT value (i4 | int | boolean | string |

dateTime.iso8601 | double | base64 |
variable | struct | array)>

<!ELEMENT i4 (#PCDATA)>
<!ELEMENT int (#PCDATA)>
<!ELEMENT boolean (#PCDATA)>
<!ELEMENT string (#PCDATA)>
<!ELEMENT double (#PCDATA)>
<!ELEMENT variable (#PCDATA)
<!ELEMENT dateTime.iso8601

(#PCDATA)>
<!ELEMENT data (value*)>
<!ELEMENT base64 (#PCDATA)
<!ELEMENT array (data)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT member (name, value)>
<!ELEMENT struct (member*)>

Table 2 DTD of ARML

The element event may have a sub-element eventName or algebra. The element
eventName represents a primitive event and algebra depicts a composite event by
combining primitive events with the sub-element of algebra. Some algebraic operators,
such as disjunction, conjunction, sequence, not, closure, and history are used for com-
bining multiple events [5]. In the current implementation, we employ three operators:
conjunction, disjunction, and sequence that are defined as the sub-elements and, or,
and seq, respectively. The element condition may consist of a sub-element methodCall,
boolean, or algebra. The sub-element methodCall represents application-specific
conditions. When a rule is triggered, the boolean value of the condition method re-
turns to determine whether an action be triggered or not. The sub-element boolean is
used for specifying absolute condition, i.e., true or false. The sub-element algebra is
required for specifying multiple conditions.

The element action has a series of sub-element methodCalls to describe simple or
complex business logic. The element methodCall of ARML follows the syntax and the
structure of XML-RPC. XML-RPC provides ARML with a well-defined representa-
tion of a method call. The element coupling has two sub-elements: ec and ca. They
specify the transactional relationship between event and condition, and condition and
action, respectively. We consider three possible coupling modes: immediate, deferred,
and decoupled. The element precedence can be composed of sub-element before, after,
or both. Each has a sub-element ruleList to define a partial order of triggered rules
which schedules the rule execution. When rule R1 specifies rule R2 in its BEFORE
list and both rules are triggered, R1 will be executed before R2. Likewise, if R1 speci-
fies R2 in its AFTER list, this indicates that when both rules are triggered, R2 will be
executed before R1. The element info used as a metadata has multiple elements of
designer, description, and category. The sub-element designer represents who devel-
ops the rule; the description specifies the usage of the rule; and category element
specifies the category of the rule. Meta information of a rule can be used to make rule
indexes in searching and categorization.

3 Interoperability of ARML Rules

3.1 Interoperability by ARML Rule Mediation

The rules written in a rule language cannot be used by another active rule system and
are hardly understood each other because of different syntactic and semantic charac-
teristics. ARML plays the role of mediation between active rule systems with different
language environments. In that, business logics represented and implemented in rules
in a system can be made operable by other systems through ARML, thus saving the
rule designers the trouble of developing and implementing complex rules from scratch.

For this, ARML rules and the underlying system rules need a language translation
interface. It translates an ARML active rule into system-executable rule code and
binds the method call of ARML with the method of business objects. It finally gener-
ates an active rule written in a system-dependent rule definition language.

ARML integrates various ECA features into a uniform rule description in XML. It
makes a business logic modeled in active rules sharable through a uniform rule de-
scription. Once a business rule running on a specific active database is converted into
an ARML active rule, it can be executed on other active systems through ARML facil-
ity. Fig. 1 shows how ARML supports interoperability through ARML. The rule me-
diation architecture through ARML translates an ARML active rule into system-
executable rule code and binds the method call of ARML with the method of business
objects.

In Fig. 1, each system should have a set of classes which implement business tasks
bound with ARML method calls. The Rule #1, an ARML active rule enters into each
ARML rule interpreter and they generate AIMS_Rule #1, Star_Rule #1, and
Ariel_Rule #1 written in their own rule definition languages. At the same time, the rule
interpreter binds the method calla of an ARML rule to the methods of a class. After
each interpreter translates and binds an ARML rule (i.e., Rule #1), the systems are
able to execute the generated rules (i.e., AIMS_Rule #1, Star_Rule #1, and Ariel_Rule
#1).

AIMS_Rule #1

AIMS Starburst Ariel

Star_Rule #1 Ariel_Rule #1

ARML Active Rule

Rule #1

AIMS Rule
Interpreter

Starburst Rule
Interpreter

Ariel Rule
Interpreter

ARML
Layer

Input

Output
Binding

Class
Set

Class
Set

Class
Set

Rule
Register

AIMS_Rule #1

AIMS Starburst Ariel

Star_Rule #1 Ariel_Rule #1

ARML Active Rule

Rule #1

AIMS Rule
Interpreter

Starburst Rule
Interpreter

Ariel Rule
Interpreter

ARML
Layer

Input

Output
Binding

Class
Set

Class
Set

Class
Set

Rule
Register

Fig. 1 Rule Mediation Architecture

3.2 Rule Interpretation: Example

In this section, we show an example of an ARML rule and its interpretation into a
specific rule language to show how business logics can be shared by two different
systems through ARML. We consider two rule definition languages, AIMS and Star-
burst. Their active rules can be described and implemented in ARML and vice versa
through the mediation interface.

As an example, we use the rule sal-control that controls employees’ salaries given
in [6]. This rule implies “whenever a new employee is inserted into employee table, or
his/her salary field is changed, check whether the average salary exceeds 50 or not. If
exceeds, the rule deletes the employees whose salary exceeds 80.”

Table 3 Example of an ARML Rule, sal-control

Table 3 shows the description of the rule. An ARML active rule begins by declar-

ing the <rule> tag, the document element. It should have the seven sub-elements that
define specific operations of ECA construct and meta-information of a rule (refer back
to Section 2 for details).

The <ruleDef> defines a rule name as sal-control and a rule table on which the
rule is defined as employee. A rule name is unique in the system so that the application
can identify a rule by its name. The <event> defines a composite event. It consists of
two primitive events, inserted and updated salary which are connected by <or> tag.
Each event name will later be translated into a proper event description according to
the system-dependent rule definition language, such as update_emp_salary and in-
sert_emp of AIMS event description (shown in Table 4).

The <condition> specifies constraints of a rule to determine whether the action of a
rule be executed or not. The example uses <methodCall> for the condition, em-
ploy.checkSalary to determine whether the average salary exceeds 50 which is encap-
sulated by <params> tag.

<rule>
<ruleDef>
<ruleName>sal-control</ruleName>
<table>employee</table>

</ruleDef>
<event>
<algebra>

<or>
<eventName>

inserted
</eventName>
<eventName>

updated salary
</eventName>

</or>
</algebra>

</event>
<condition>
<methodCall>

<methodName>
employ.checkSalary

</methodName>
<params>
<param>

<value><int>50</int></value>
</param>

</params>
</methodCall>

</condition>

<action>
<methodCall>

<methodName>
employ.deleteHighSalary

</methodName>
<params>
<param>

<value><int>80</int></value>
</param>

</params>
</methodCall>

</action>
<coupling>
<ec>immediate</ec>
<ca>immediate</ca>

</coupling>
<precedence>
<before>

<ruleList>
<ruleName>cascade</ruleName>

</ruleList>
</before>

</precedence>
<info>
<designer>escho </designer>
<description>

salary control
</description>
<category>business</category>

</info>
</rule>

The <action> may have several <methodCall> tags to define the rule’s action
which implements the business logic. The employ.deleteHighSalary is bound with the
method deleteHighSalary of a business object (i.e., employ) for executing the actual
business operation. It deletes employees whose salary exceeds the threshold value of
80 that has been passed by <params> tag. The <coupling> element has <ec> and
<ca> tags represents the transactional relationship among event, condition, and action.
If the system does not support coupling modes, they are merely ignored during the
interpretation. The couple modes in the example shows are immediate.

The <precedence> tag defines the rule priority between rules triggered by the same
event. Although a way to define a rule priority is different among active systems, they
can be expressed with <before> and <after> tags and encoded into the proper rule
code by ARML interpreter. Since the rule cascade is defined in the <before> tag of
sal-control, the rule sal-control has a lower priority than cascade, thus sal-control is
triggered after executing cascade when both of them are triggered by the same event.
The <info> is used for specifying meta-information of a rule. It does not affect rule
execution and it is ignored during the interpretation. It has <designer>, <description>,
and <category> tags. It is useful for searching and categorization of rules.

Table 4 shows the rule sal-control written in AIMS and Starburst rule definition
language. They are interpreted from ARML active rule in Table 3. The AIMS rule has
a composite event, update_emp_salary OR insert_emp. It calls the methods checkSal-
ary and deleteHighSalary of Employ class for condition and action, respectively. The
detailed implementation of two methods is in class Employ. Since AIMS supports a
method call in active rules, an AIMS rule in Table 4 can be registered and triggered
without modification. During the interpretation, AIMS interpreter ignores the <table>
tag of ARML rule because it is not applicable in AIMS.

4 An ARML-based Active Information Management System

4.1 Architecture

We have implemented an ARML-defined rule management system called
AIMS/ARML as an extension to our prototype active information management system,
AIMS. The original AIMS adopted a layered architecture and Java facility to support
active capability on the top of the conventional relational database systems. It pro-
vides composite event description and detection, three typical coupling modes (i.e.,
immediate, deferred, and decoupled), rule priorities, Java-based rule definition lan-
guage, termination analysis, etc.

Fig. 2 shows the architecture of our prototype system in which ARML and AIMS
are integrated in a layered implementation consisting of two major parts: ARML In-
terpreter as an ARML layer and AIMS as an underlying active information system.
The ARML Interpreter parses ARML rules and associates ARML method call with
the method of business objects. AIMS gives a high degree of automation to the exist-
ing database through ECA rule processing.

AIMS Starburst
//rule definition
DEFINE RULE sal-control
EVENT

update_emp_salary OR insert_emp
CONDITION
 DEC
 Employ employ = new Employ(aof);
EXP

employ.checkSalary(50);
ACTION
 employ.deleteHighSalary(80);
MODE
 IMMDIATE, IMMEDIATE
BEFORE cascade

//class definition
class Employ {
 void checkSalary(int avg) {

//checking procedure
}

void deleteHighSalary(int threshold){

 //deleting procedure
}

}

//intermediate Rule Definition
create rule sal-control on employee
when inserted, updated(salary)
if(select avg(salary) from emp) > 50
then
 employ.deleteHighSalary();
precedes cascade

//class definition
class Employ {
 void checkSalary(int avg){
 //checking procedure

}
void deleteHighSalary(int threshold){

 //deleting procedure
}

}

// complete rule definition
// after interpretation
create rule sal-control on employee
when inserted, updated(salary)
if(select avg(salary) from emp) > 50
then
delete from emp
where em-no in (select emp-no from
 inserted union select emp-no from
 new-updated)
and salary > threshold
precedes cascade

Table 4 Active rules, sal-control interpreted from the ARML rule in Table 3

ARML Interpreter consists of Parser, Method Binder, and Comparator. Parser
checks the validation and well-formedness of an ARML rule and it generates the
document tree of an ARML rule reflecting the hierarchical structure and semantics of
an active rule. Method Binder receives a document tree as an input and associates
XML-based method call with the method of business objects to generate a Rule Code.
The connection between system interface and ARML interface is made through
Method Binder. It requests Comparator to check whether the association be made by
inspecting the business objects. That is, it checks whether the methods specified in
ARML exist in Class Storage. If there is no method to be bound, Comparator issues
an error. If there is no error found on validation, well-formedness, and association, a
system-executable Rule Code is generated. Rule Register loads Rule Code to the rule
processor. Class Storage retains the business objects associated with the method call

in ARML. A loaded Rule Code is executed just like the original active rule specified
in AIMS rule definition language. That is, the rule is triggered when the event detector
of the system detects the proper event and the condition is satisfied.

Rule Interpreter

<rule>
…
<methodCall>
…
</methodCall>
<methodCall>
…
</methodCall>
…
</rule>

<!ELEMENT rule … >
<!ELEMENT condition ..>
…

Rule
Processor

Class
Storage

Parser

Rule
Register

ARML Rule

Method
Binder

Comparator
Database

Connectivity

DATABASE

ARML DTD

Rule
Code

Module

Output

Error
Message

AIMS

TX, Rule Mgr,
Event Detector

Error
Message

Document
Tree

Rule Interpreter
<rule>
…
<methodCall>
…
</methodCall>
<methodCall>
…
</methodCall>
…
</rule>

<!ELEMENT rule … >
<!ELEMENT condition ..>
…

Rule
Processor

Class
Storage

Parser

Rule
Register

ARML Rule

Method
Binder

Comparator
Database

Connectivity

DATABASE

ARML DTD

Rule
Code

Module

Output

Error
Message

AIMS

TX, Rule Mgr,
Event Detector

Error
Message

Document
Tree

Fig. 2 Architecture of AIMS/ARML

4.2 Rule Interpretation Process

In order for ARML rules to be executed on AIMS, rules are compiled and registered
to the RuleBase. ARML interpreter receives the DTD of ARML and ARML rules as
inputs. It communicates with Class Storage for checking the validity of method bind-
ing. ARML interpreter generates intermediate rule definition written in AIMS rule
definition language. The generated AIMS rules are sent to rule compiler which then
reads rule definition and generates the source file of a rule class, which is again con-
verted to Java class file. Then, it invokes Java compiler and redirects Java compiler’s
output to itself. It creates a rule object after it compiles a rule description. Finally, it
registers the rule in RuleBase to be triggered by AIMS. These ARML rule interpreta-
tion and rule object generation steps are integrated seamlessly so that the users can
easily define and execute their rules. Fig. 3 shows the rule compilation process in
AIMS/ARML.

The ARML interpretation procedure executed within ARML Interpreter is further
detailed in Fig. 4. First, ARML parser checks well-formedness and validation of an
ARML document. Since ARML is one of XML applications, this verification step is
required for the remaining rule processes. Well-formed ARML means that an ARML
rule comply with all XML syntax rule and all elements are correctly positioned.
ARML’s strict adherence to ordering and nesting rules allows data to be parsed and
handled much more quickly than when using markup languages without these con-
straints. And, validation can ensure that an ARML active rule received from other
application or newly written for the business application is correctly formatted. This

helps avoid errors in referring ARML active rules from erroneous data input. If there
is any mismatch between DTD and active rules, ARML parser reports this situation
and the rule designer can fix it.

ARML Rule
definition

Interpreting
result

ARML
Interpreter

ARML
DTD

Class
StorageValidation

check

Binding Check

Rule
Creation

Active Rule

Rule Compiler

Compile
result

RuleBase

register

Rule Class
Source

JAVAC

compose

compile

Rule
object

Redirect
output

create

input

ARML

AIMS

ARML Rule
definition

Interpreting
result

ARML
Interpreter

ARML
DTD

Class
StorageValidation

check

Binding Check

Rule
Creation

Active Rule

Rule Compiler

Compile
result

RuleBase

register

Rule Class
Source

JAVAC

compose

compile

Rule
object

Redirect
output

create

input

ARML

AIMS

Fig. 3 ARML-AIMS Rule Compilation Structure

After checking validation and well-formedness, ARML parser generates DOM tree
containing all information of an ARML rule. To generate DOM tree, we use JDOM
package, which gives many advantages such that it provides a Java-centric, so it is
very well with out system because AIMS and ARML are implemented in Java; it al-
lows a user to deal with an XML document in tree form without the idiosyncrasies of
DOM; it allows very quick parsing because it is very light; it supports validation
through DTDs at building DOM tree; and it is concrete classes not abstract.

In extracting the first level element step, ARML parser analyzes DOM tree and it
extracts root’s sub-elements i.e., root’s sub-trees, for interpreting each element sepa-
rately. Each sub-element is processed for generating the rule code. We use a divide-
and-conquer strategy so as to reduce implementation complexity. After extracting,
Interpretation and Binding Method is executed on each sub-element. Method Binder
examines each node and extracts rule information. It composes the method call and
checks the possibility of method binding through the communication with Comparator.
Comparator talks with Class Storage to reply the request from Method Binder and
returns binding information. Class Storage is constructed by parsing the business
object source file and extracting the corresponding method.

During Interpretation and Binding Method step, partial rule codes related with
each root’s sub-element are generated. These partial rule codes are integrated into the
rule source to complete the rule code and the rule source is stored in a file during
Integrating Code Set and Creating Rule Code processes. The generated rule source is
passed to rule compiler and registered for rule triggering.

DOM Tree

Element Set

Bound Code Set

In-memory Rule Code

ARML rule

Building DOM Tree

Checking Validation & Well-Formedness

Extract The First Level Elements

Interpretation and Binding Method

Integrating Code Set

Method Validation Checking

Rule Code

Creating Rule Code

DOM Tree

Element Set

Bound Code Set

In-memory Rule Code

ARML rule

Building DOM Tree

Checking Validation & Well-Formedness

Extract The First Level Elements

Interpretation and Binding Method

Integrating Code Set

Method Validation Checking

Rule Code

Creating Rule Code

Fig. 4 ARML-AIMS Interpretation Procedure

5 Conclusion

In this paper, we proposed an XML-based ECA rule definition language, called Active
Rule Markup Language (ARML). ARML provides rule definition facility with the
uniform description of active rules for heterogeneous systems and therefore makes
complex business rules exchangeable among different systems. ARML allows the rule
developers to reduce the time and effort in rule development and maintenance by
reusing and sharing business rules with other systems. XML facility makes active rule
description simple to use and easy to implement. With rule interpreters between
ARML and underlying rule systems and APIs representing the business tasks, active
rules can be shared, reused, and exchanged between business partners saving them the
cost of developing a large number of complex business rules.

In the present implementation, ARML active rules are defined manually, that is,
application rule designer writes ARML tags and fills out the context. A graphical rule
management tool would make users define active rules more conveniently and dimin-
ish errors through automatic code generation. The use of meta-information is another
task to be accomplished as a future work.

References

1. Hanson, E.: The design and implementation of the Ariel active database rule system. IEEE
Transactions on Knowledge and Data Engineering. (1996) Vol. 8, Issue: 1, 157-172

2. Buchmann, A. P., et al.: The REACH active OODBMS. Proc. of the ACM SIGMOD Inter-
national Conference on Management of Data. (1995) 476

3. Bray, T., et al.: Extensible Markup Language (XML) 1.0 (Second Edition) W3C
Recommendation 6 October 2000

4. Kaplan, A., and Lunn, J.: FlexXML: engineering a more flexible and adaptable web. IEEE
Information Technology: Coding and Computing. (2001) 405-410

5. Paton, N. W., Díaz, O.: Active database system. ACM Computing Serveys. (1999) 31(1), 63-
103

6. Widom, J.: The Starburst active database rule system. IEEE Transactions on Knowledge and
Data Engineering. (1996) Vol. 8, Issue: 4, 583-595

7. UserLand Software, Inc.: XML-RPC. information available at http://www.xmlrpc.com
8. Kiyomitsu, H., Takeuchi, A., Tanaka, K.: ActiveWeb: XML-based Rules for Web View

Derivations and Access Control. ITVE 2001, IEEE. (2001) Vol. 23, No. 6, 31-39
9. Adler, S., et al.: Extensible Stylesheet Language (XSL) Version 1.0 W3C Candidate Rec-

ommendation 15 October 2001
10. Boley, H., et al.: Rule Markup Language. information available at http://www.dfki.uni-

kl.de/ruleml/
11. Min, H.J.: Design and Implementation of an Object-oriented Rule Management System for

Active Database Services. Master Dissertation, ICU, Korea. (2000)
12. McCarthy, D., Dayal, U.: The Architecture Of An Active Data Base Management System.

Proc. of the ACM SIGMOD. (1989) 215-223
13. Gatziu, S., et al.: SAMOS: An active object-oriented database system. IEEE Data Engineer-

ing, Special issue on active databases. (1992) 15(1-4): 23-26
14. Robin Cover and OASIS: Business Rules Markup Language (BRML). information avail-

able at http://www.oasis-open.org/cover/brml.html
15. Grosof, B., Chan, H., et al.: IBM CommonRules home pages. information available at

http://www.research.ibm.com/rules/ and http://alphaworks.ibm.com
16. Bonifati, A., et al.: Pushing Reactive Services to XML Repositories using Active Rules.

10th International World Wide Web Conference. (2001) 633-641
17. jdom.org: JDOM. information available at http://www.jdom.org
18. Gatziu, S., Dittrich, K. R.: Events in an Active Object-Oriented Database System. In Pro-

ceedings of the 1st International Workshop on Rules in Database Systems. (1993) 23-39
19. Türker, C., Gertz, M.: Semantic integrity support in SQL:1999 and commercial (object-)

relational database management systems. VLDB Journal (2001) 10(4): 241-269

