
A Framework for Efficient Design, Maintaining,
and Evolution of a System of XML Applications?

Martin Nečaský and Irena Mlýnková

Department of Software Engineering, Charles University in Prague, Czech Republic
{necasky,mlynkova}@ksi.mff.cuni.cz

A Framework for Efficient Design, Maintaining,
and Evolution of a System of XML Applications?

Martin Nečaský, Irena Mlýnková

Department of Software Engineering, Charles University in Prague, Czech Republic
{necasky,mlynkova}@ksi.mff.cuni.cz

Abstract. The today’s applications usually form a system of sub-appli-
cations, each being responsible for a particular functionality. Hence, the
design and maintenance of such a complex system is not a simple task. In
addition, the user requirements can change and the affected parts need
to be identified and evolved. Similarly, new components or even whole
system may need to be integrated.
In this paper we describe a framework that enables one to face the de-
scribed issues. For this purpose we exploit verified technologies, such as
conceptual modeling, data semantics, matching algorithms etc. Using a
set of examples we show that our approach enables one to design, main-
tain, and evolve a system of applications efficiently and precisely. We
depict the features on an XML system represented by a set of web ser-
vices that exchange XML data. However, the concepts are general and
can easily be extended for any kind of data format.

1 Introduction

The current applications are often based on two concepts. First, they do not
form a monolithic piece of software, but they are usually composed of a set of
simpler sub-applications, each being responsible for a particular execution part.
Second, such sub-applications usually exploit a set of web technologies so that
they can be distributed and communicate with each other. Hence, we usually
speak of a complex system of applications which involves a huge amount of data
formats being exchanged and processed by its components.

Considering such a complex system, there occurs a number of related issues.
First, the data formats need to be designed. With regard to the existing data
design techniques we need a kind of conceptual model, general enough to cover
any of the formats. Second, we need to design the formats correctly, so that they
cover all the required information, but avoid redundancies. Hence, we cannot
design the particular formats independently. And, last but not least, when the
system is designed and implemented, there occurs the problem of evolution.
The requirements of users can change which can lead to changes in several data
formats and consequently the respective components that process and exchange

? Supported by the Czech Science Foundation (GAČR), grants no. 201/09/P364 and
P202/10/0573.

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 38–49, ISBN 978-80-7378-116-3.



A Framework for Efficient Design, Maintaining, and Evolution . . . 39

the data. It can also influence storage and manipulation strategies of the data
formats. And, similarly, new applications may need to be incorporated, or even
whole systems may be mutually integrated.

The aim of this paper is to describe a framework that faces the described is-
sues and identifies related problems that have not been solved yet by researchers.
The proposed framework covers the whole life cycle of a system of applications
from design and maintenance to evolution. Its main advantages are as follows:

– It involves a conceptual level of both the data and the business processes
which enable one to describe the user requirements easily and precisely.

– It creates and preserves the relations between applications and their data.
Hence, any evolution change can be propagated to all affected components.

– The system is open, thus new applications can be semi-automatically incor-
porated or it can be integrated with a whole other system.

– The additional information are exploited in various parts of the system, such
as storage strategies or matching of components during integration.

Probably the most common example of the described system is represented
by the principle of Service Oriented Architecture (SOA) and its most common
implementation – web services [16]. A web service (WS) is a software system
designed to support machine-to-machine interaction over the Internet using mes-
sage exchanging. Most of the functionality of a WS is based on XML [8] – its
interface is described in WSDL [11], the data is exchanged using SOAP [9] mes-
sages, etc. For simplicity we will consider only such type of system – so-called
XML system of applications that exchange and process data in XML format.
However, the framework can easily be extended for various other formats.

The paper is structured as follows: Section 2 provides a running example of
an XML system. Section 3 describes basic decomposition of an XML system and
Section 4 describes advanced components that form the framework. Section 5
provides conclusions.

2 Running Example

Let us consider a real-life purchasing application, in particular a simple business
process of purchasing goods. The diagram of the business process modeled in
BPMN [13] is depicted in Figure 1. The process starts with receiving a purchase
order from a customer. Firstly, the trader checks the provided credit card details
and rejects the purchase when the check fails. Otherwise, the trader arranges
delivery of the purchased goods and sends an invoice back to the customer.

The business process is implemented by a publicly available WS PurchaseWS
depicted in Figure 2. The WS provides an operation ProcessPurchase that re-
ceives a purchase order as the input from a customer. When a customer’s credit
card cannot be validated the WS sends a rejection message back to the cus-
tomer. Otherwise, the customer receives an invoice with the delivery details as
a response from the WS.



40 Martin Nečaský, Irena Mlýnková

Receive Purchase

Check Credit 

Card
Credit Card O.K.

Reject 

Purchase

Arrange 

Delivery
Send Invoice

Fig. 1. Purchasing Business Process Dia-
gram

PurchaseWS

ProcessPurchase

CreditCardValidatorWS

ValidateCard

UPCShipmentWS

GetShipmentRates

ProcessShipment

FedExDeliveryWS

GetUSRates

ArrangeDelivery

GetWorldRates

Customer

Fig. 2. PurchaseWS WS

Figure 2 also depicts third-party WSs exploited in the implementation of
PurchaseWS. CreditCardValidator WS is exploited for validating credit cards
of customers. WSs of various logistics companies are exploited. To arrange a
shipment, shipment offers are retrieved from these services and the cheapest is
selected. The figure depicts WSs of the UPS1 and FedEx2 companies.

3 Basic System Decomposition

The full architecture of our framework is depicted in Figure 3. In this section
we describe so-called run-time parts, i.e. parts that form the run time of an
XML system. In the following section we describe extensions we need to design,
maintain and evolve such XML system efficiently.

The run-time parts of the system are XML Schema part, Web Services part,
Database part, and Semantics part. We denote them XS, WS, DB, and SEMAN-
TICS, respectively.

The XS component is a mandatory part of each XML system. It covers
XML schemas that specify XML formats applied in the system and integrity
constraints that enhance XML schemas with advanced conditions that cannot
be expressed with XML schema languages. XML schemas can be expressed in
languages such as, e.g., XML Schema [5, 6], or Relax NG [25]; for expressing
XML constraints, XML pattern languages, e.g. Schematron [19], can be applied.

Example 1. The running example in Section 2 exploits several XML formats.
For example, there is a format for XML messages with purchase orders sent by
customers to PurchaseWS or two formats for XML messages with delivery infor-
mation sent by PurchaseWS to UPCShipmentWS and FedExDeliveryWS. There
are also advanced integrity constraints – for example, an integrity constraint
specifying that “check sum equals to the sum of prices of individual items”.

1 http://www.ups.com/
2 http://fedex.com/



A Framework for Efficient Design, Maintaining, and Evolution . . . 41

 
Figure 2: Run-time and Design-time Components 

 
1. Complex design 
 

• Motivation: 
o XML system can comprise many components such as XML schemas, 

WSDL schemas, database schemas, integration scripts etc. However, 
these components do not provide an overall picture of the whole data 
domain and business processes as they implement different viewpoints 
of various participants (e.g. users, other systems, standardization 
efforts, etc.). 

• Solution: 
o Techniques for designing an overall conceptual model of the data 

domain and business processes will be developed. It is represented by 
the two desing-phase parts of the XML system architecture depicted in 
Figure 2: 

 DM (Domain Model) part covers a conceptual model of the data 
domain. It comprises 

• PIM (Platform-Independent Model) which contains 
conceptual diagrams of the data domain. PIM models 
important aspects of the data domain (i.e. concepts and 
relationships) independently of its representation at logical 
levels, i.e. XML and DB. Diagrams can be expressed with 
existing UML class diagrams. 

• Integrity constraints extend PIM with advanced integrity 
constraints that can not be expressed with the PIM 
modeling language. Existing OCL (Object Constraints 
Language) can be exploited. 

 BPM (Business Process Model) part covers a conceptual model 
of the business processes. It comprises 

Fig. 3. System Architecture

The WS part covers business processes implemented by the XML system.
A WS is comprehended as a standalone software component that implements a
business process. Data mediators can then implement transformation of XML
messages between WSs, and orchestration/choreography allows for composition
of individual WSs into complex services ones. Transformations can be specified
as XSLT [1] scripts. To describe orchestration/choreography, languages such as
WSBPEL [10] can be applied.

Example 2. In our sample system we specify WS interfaces as WSDL descrip-
tions. Moreover, PurchaseWS exploits the two external UPCShipmentWS and
FedExDeliveryWS and also two trader’s internal WSs InventoryWS and Ac-
countingWS for checking the amount of a particular product on the stock and
issuing invoices, respectively. In other words, PurchaseWS orchestrates these
WSs. Since the input XML formats of both UPCShipmentWS and FedExDeliv-
eryWS differ from the output XML format of PurchaseWS, it is necessary to
incorporate XSLT data mediators that transform the messages respectively.

The DB (Database) part covers databases that persist XML data involved
in the system. The XML documents can be stored centrally in a single database
or distributed across different databases. Native XML databases allow for storing
XML messages in their native form. Object-relational databases require decom-
position of XML messages into object-relational tables.

Example 3. The data in the exchanged XML messages in our sample XML sys-
tem are stored in a relational database. When a purchase order arrives from a
customer, it is shredded into records of relational tables. The same is for other
information, e.g. delivery details, invoices etc. Conversely, because of legal con-
straints, each trader needs to store the invoices from suppliers as they come
instead of converting them to normalized relational tables. Therefore, the trader
exploits a native XML database in this case.



42 Martin Nečaský, Irena Mlýnková

The SEMANTICS part exploits ontologies to express semantics of the
data domain and business processes in a machine-readable way. Domain ontolo-
gies specify semantics of the data domain, e.g., in OWL [3]. Process ontologies
specify semantics of business processes, e.g., in OWL-S [2] or WSMO [7]. This
enables one to exploit various advanced semantic techniques to, e.g., dynami-
cally discover PurchaseWS or mediate other business processes to the business
process implemented by the XML system.

Example 4. For customers equipped with solutions based on the Semantic Web
technologies, a trader can provide additional semantics part of the XML sys-
tem. The trader exploits a standardized BMO3 business ontology to specify the
important concepts, e.g. customer, product, purchase etc., and the purchasing
business process at the semantic level.

When two or more run-time parts are present in the system, we need them
to work together. This internal integration is covered by integration parts called
XML VIEWS, SEMANTIC VIEWS, XML GROUNDING, and WS GROUND-
ING depicted in Figure 3 as double-colored rounded boxes.

XML VIEWS cover integration of the XML and DB parts. They transform
data from its database representation to XML representation and vice versa. An
XML view can be expressed in XML query languages such as SQL/XML [18].

Example 5. In our example we need XML views expressed in SQL/XML to
transform the data stored in the relational database (e.g. purchase orders and
delivery data) to XML formats specified by the XML schemas in the XS part
and vice versa. These views allow to access the data in their various XML rep-
resentations even if it is logically stored in relational tables.

SEMANTIC VIEWS cover integration of SEMANTICS and DB parts.
They transform data from its database representation to the ontological rep-
resentation, e.g. RDF [4] triples, and vice versa. This allows for expressing
the semantics of the data in a machine-readable way and, at the same time,
database-supported semantic reasoning and querying. A SEMANTIC view can
be expressed in an XML query language, such as SQL/XML, as RDF triples can
be represented in XML.

Example 6. Our sample system provides semantics-enabled customers with the
purchase, invoice, and delivery data represented in the ontological representation
conforming to the ontologies from the SEMANTICS part. This is achieved by
semantic views that convert, e.g., purchase order data in relational tables to
RDF triples and vice versa.

XML GROUNDING integrates SEMANTICS and XS parts. It comprises
mutual mappings of XML schemas to domain ontologies and as XSLT scripts
that specify data transformation between XML and ontological representation.
It is similar to SEMANTIC VIEWS part but instead of DB there is the XS part.
3 http://www.bpiresearch.com/Resources/RE_OSSOnt/re_ossont.htm



A Framework for Efficient Design, Maintaining, and Evolution . . . 43

Example 7. When a semantics-enabled customer receives an XML message with
delivery information, (s)he needs to know the semantics of parts of the XML
message, e.g. delivery date, packaging etc., in the terms of the domain ontology.
This is expressed by the XML grounding that provides mapping of parts of the
XML schema for the XML message to the domain ontology.

WS GROUNDING integrates SEMANTICS and WS parts. It enhances
XML GROUNDING by adding mappings of WS operations, orchestration, and
choreography to process ontologies in order to specify semantics of, e.g., in-
puts/outputs of WSs.

Example 8. Similarly to XML grounding, it is necessary to provide mapping of
the WSDL description of PurchaseWS to the process ontology that specifies the
semantics of our purchasing business process.

4 System Extensions

The components described in the previous section (or, in simpler cases, their
various subsets) form the XML system and are present at run time. They need
to be designed, implemented, and maintained. In addition, since an XML system
usually evolves, the components need to be modified or even whole new XML
components need to be integrated. Our framework involves techniques and tools
that enable one to manage the whole life cycle of an XML system in a user-
friendly and effective way.

Complex Design As we have outlined, an XML system involves XML schemas,
WSDL schemas, database schemas, integration scripts etc. They implement dif-
ferent and often limited viewpoints of various participants (i.e. users, other sys-
tems, standardization efforts etc.). Therefore the primary component of the ex-
tended system is a family of conceptual models [27], related integrity constraints
[31], and a complex design tool [12] that supports them. In Figure 3 they are
represented by the two design-phase parts of the architecture – DM and BPM.

The DM (Domain Model) part covers a conceptual model of the data do-
main. It involves platform-independent model (PIM ) which provides conceptual
diagrams of the domain and integrity constraints. PIM models important aspects
of the data domain (i.e. concepts and relationships) regardless its representation
at logical levels, e.g. XML or DB, using classical UML [15] class diagrams. In-
tegrity constraints extend PIM with information that cannot be expressed with
the PIM modeling language. For this purpose (OCL) [14] is exploited.

Example 9. Figure 4 depicts a PIM diagram4 of our sample problem domain.
Concepts are expressed as classes, e.g. Customer or Order. Relationships between
concepts are expressed as associations.

4 It was modeled in XCase [12], a modelling tool that implements basic features de-
scribed in this paper.



44 Martin Nečaský, Irena Mlýnková

Fig. 4. DM PIM

Fig. 5. DM PSM

The BPM (Business Process Model) part covers a conceptual model of
the business processes. It involves PIM which provides conceptual diagrams of
the business processes and integrity constraints. PIM models activities, events,
and messages participating in business processes independently of their imple-
mentation in WS part in BPMN [13].

Integrity constraints extend PIM with advanced constraints specific for indi-
vidual WSs (e.g. pre-conditions and post-conditions of activities and events or
constraints on exchanged messages). Again OCL can be applied.

Example 10. A sample business process PIM diagram is depicted in Figure 1.
Each message, e.g. purchase order, credit-card check, invoice etc., specified by
the business process represents part of the data domain. This part is modeled
as a PIM diagram which is part of the whole PIM diagram from Figure 4. For
example, the PIM diagram for invoice messages contains Order, ProductItem,
Product, and Customer classes.

Note that the existing modeling languages [15, 13] consider data modeling and
business-process modeling separately. In our framework we interconnect these
two areas and model them uniformly at PIM level. Hence, PIM gives an overall
picture of the data domain and business processes independently of their imple-
mentation; the interconnection enables one to describe the required applications
more precisely.

We survey methods for conceptual modeling techniques in [26], where we
show that current methods allow modeling XML formats only at the PSM level.
In [27] we introduced a conceptual model for XML that allows for modeling
XML formats also at the PIM level.

Regarding business process modeling, there are languages such as BPMN
[13]. However, we are missing methods for modeling data in current BPM PIM
modeling languages, i.e. methods interconnecting BPM and DM PIMs. These
languages must therefore be further extended. Probably the first step towards
this aim is paper [21], where the authors deal with transformations of BPM to
UML using XSLT.



A Framework for Efficient Design, Maintaining, and Evolution . . . 45

Forward Engineering Manual coding of all components of the XML system
(e.g. XML and WSDL schemas, XSLT scripts, database schemas etc.) consumes
a lot of effort and is error-prone. Hence, our framework is based on a family of
conceptual models [27] and respective technologies. Apart from PIM, it involves
so-called platform-specific model (PSM ) represented by the XML PSM integra-
tion part, where each diagram takes part of the PIM diagram(s) and specifies
how it is represented in a particular XML format. The diagram can also be
comprehended as a mapping between PIM and XML schemas. Similarly, our
framework involves techniques for specification of implementation of the busi-
ness processes by WSs. This is represented by the WS PSM integration part and
comprises WS PSM diagrams. Again each diagram specifies implementation of
parts of a business process.5

The translation of PSMs to respective representations is done semi-automati-
cally. In particular it involves translation of:

– XML PSM to XML schemas (DM-to-XS ),
– XML PSM to database schemas (DM-to-DB) and XML VIEWS,
– WS PSM to WSDL descriptions, XSLT data mediation scripts, BPEL or-

chestrations, and WS-CDL choreographies (BPM-to-WS ), and
– PIM to ontologies (DM&BPM-to-SEMANTICS ) and SEMANTIC VIEWS.

Forward engineering is depicted in Figure 3 by white-filled arrows.

Example 11. A sample XML PSM diagram is depicted in Figure 5. It models how
invoices are implemented in XML, i.e. how instances of classes from the DM PIM
diagram in Figure 4, e.g. Order, Customer, or Product, are represented. From
the XML PSM diagram, an XML schema, XML view, and XML grounding for
this particular XML format are derived. Similarly, forward engineering of BPM
PIM to WSs specification can be solved via BPM PSM.

Consequently, the manual coding of WS, XML, DB, and SEMANTICS parts
components is significantly reduced to design of XML PSM and WS PSM di-
agrams which is more user-friendly and natural. The user does not need to
bother with syntactic details, specifics of particular format etc. What is more,
the common PIM diagram also formally interrelates components of WS, XML,
DB, and SEMANTICS run-time parts. Such information is further exploited in
the following sections.

In [26], we also study techniques of translating conceptual diagrams in various
conceptual modeling languages to XML schemas. There are also methods for
translating BPMN diagrams to BPEL scripts [34]. The translation is done only
automatically. However, designers need a possibility to influence the translation
process which is missing in the current literature.

In [29], we study derivation of an optimal native XML database schema from
a set of XML PSM diagrams and their DM PIM diagram. In [33], the authors

5 Note that in the same way the system can be extended with PSM of relational data
(e.g. ER diagrams [32]), classes and objects (e.g. UML [15]), etc.



46 Martin Nečaský, Irena Mlýnková

study methods of derivation of an optimal hybrid database schema for a given
XML schema. These methods should be further extended for deriving a hybrid
database schema for a set of XML PSM diagrams.

Reverse Engineering When a new XML component needs to be incorporated
into the XML system, it is usually necessary to integrate it with other compo-
nents manually. In simple cases it is possible, however in complex situations it can
be a very hard task. For this purpose our framework involves (semi-)automatic
techniques for reverse engineering of:

– XML schemas to XML PSM diagrams
– WS components (i.e. WSDL schemas, BPEL, and WS-CDL scripts) to WS

PSM diagrams
– external domain ontologies to DM PIM, and
– external process ontologies to BPM PIM.

Example 12. Suppose that the trader wants the XML system to support also
managing supplies from the suppliers. The suppliers provide WSs for managing
supplies; however, the interfaces are different. This requires to integrate the
WSDL descriptions and XML schemas of the suppliers with the trader’s XML
system. Instead of doing this manually, we enable one to map the XML schemas
to the DM PIM diagram through XML PSM diagrams (semi-)automatically
derived from the XML schemas. WSDL descriptions can be also mapped in a
similar way to a BPM PIM diagram specifying the supply management business
process from the trader’s point of view. Then, all other components can be
derived automatically using the forward engineering procedures.

Having the (semi-)automatic strategy, we significantly reduce the manual
work when incorporating third-party components, e.g. XML schemas, WSDL
descriptions, or ontologies of standardization organizations, business partners
etc., into an existing XML system.

As we have described in [28] the reverse engineering approach cannot be
purely automatic since in several cases there can be multiple options of a suitable
mapping. However, using verified strategies, such as similarity matching [23],
evaluation of semantics etc., our approach enables one to reduce the options to
reasonable amount. In addition, it even provides several metrics that enable one
to evaluate quality of the options from distinct points of view.

Note that similarly we can support integration of whole XML systems at PIM
level. Again, if a given system does not involve our DM and BPM extensions, they
can be reverse engineered. Then the PIM integration specifications are directly
translated to XSLT data mediators and BPEL business process mediators.

Evolution and Versioning Management As mentioned before, sooner or
later user requirements can change and, hence, the respective data need to be
modified. The problem is that such modifications can affect multiple components
of the system, such as, e.g., XML schemas, WSDL descriptions, database schemas



A Framework for Efficient Design, Maintaining, and Evolution . . . 47

etc. And not only can such modifications be demanding, but, in complex systems,
they can also be very hard to identify.

For the purpose of complex evolution management we exploit the previously
described features described. Similarly to design phase, we assume that most
users express their modifications in PIM since again (s)he does not have to bother
with specific features of particular formats. Such changes are then propagated
to all related run-time parts by exploiting the forward-engineering methods –
we speak about downwards propagation. On the other hand, when a change
needs to be done in a run-time part, it can be propagated to PIM by exploiting
the reverse-engineering methods – we speak about upwards propagation – and
then to all the related system parts again using downward propagation [30].
To perform the respective modifications, our framework involves techniques for
(semi-)automatic derivation of XSLT scripts.

Example 13. In our sample scenario, we may need to represent names of cus-
tomers in purchase orders as a pair first name and surname instead of a single
value name. This requires to modify the XML schema for purchase orders. It
may need to be propagated to the existing XML messages to preserve validity
against the evolved XML schema as well as to the corresponding XML PSM dia-
gram to preserve consistency with the XML schema. However, this also requires
to change the DM PIM diagram or mapping from the XML PSM diagram to
the PIM diagram. When the DM PIM diagram is changed, the change must be
propagated downward to the other XML schemas in the system.

Similarly to the case of reverse engineering, also in case of evolution manage-
ment the key advantage of our approach is reduction of manual work when the
XML system evolves.

As we have studied in [30], the amount of approaches to XML evolution is
surprisingly low and the approaches are trivial. They only deal with separate
aspects, such as propagation of modification of XML schema level to XML doc-
uments or vice versa [22], several papers also deal with modifications of a kind of
abstraction of the XML schema – either visualization [20] or UML diagram [17],
i.e. a kind of PSM. However, none of them views the problem from the point of
view of multiple applications sharing common domain.

Run-Time Support During the run time of the system we need further system
components, such as storage strategies and respective query operations, platform
for running WSs, support for semantic operations etc. All these components can
also benefit from the design-time components and exploit the complex informa-
tion on the whole system at run time.

For example, in most XML systems the XML data that are processed and ex-
changed by its components usually need to be persistently stored and retrieved.
In general, there seems to be no generally optimal storage strategy. Since require-
ments of various XML applications significantly differ, for each type of processing
of XML data the respective appropriate approach should be used [24]. And it is
even often further optimized in a specific way. However, manual optimization of,



48 Martin Nečaský, Irena Mlýnková

e.g., database schemas with respect to the expected data retrieval and manip-
ulation is complicated task. The more information are taken into account, the
better, however the more complicated the search for optimum becomes.

As we have already described, our framework involves complex information
on multiple applications that process the XML data, data mediators, schema
versions etc. Consequently, the respective storage strategies can be found more
precisely and in more broader context of multiple application views. In addition,
they can be adjusted to centralized or distributed architecture.

5 Conclusion

The aim of this paper was a description of a framework that enables one to
simplify, clarify, and streamline the design, maintenance, and evolution of a
complex system of applications. Due to space limitations we have described a
general architecture of an XML system, the most common issues that need to be
solved during its life cycle and, in particular, how they can be simplified using
the described framework, i.e. extension of the system.

Our current work naturally covers the full implementation of the key compo-
nents of the framework. Some of them have already been covered by XCase [12]
which we currently extend with modeling of business processes and storage level.
Our future work will focus mainly on support of non-XML data models such as
ER model, UML, etc. and application of the system in real-world use cases.

References

1. XSL Transformations (XSLT) Version 1.0. W3C, 1999. http://www.w3.org/TR/

xslt.
2. OWL-S: Semantic Markup for Web Services. W3C, 2004. http://www.w3.org/

Submission/OWL-S/.
3. OWL Web Ontology Language. W3C, 2004. http://www.w3.org/TR/

owl-features/.
4. RDF/XML Syntax Specification (Revised). W3C, 2004. http://www.w3.org/TR/

rdf-syntax-grammar/.
5. XML Schema Part 1: Structures (Second Edition). W3C, 2004. http://www.w3.

org/TR/xmlschema-1/.
6. XML Schema Part 2: Datatypes (Second Edition). W3C, 2004. http://www.w3.

org/TR/xmlschema-2/.
7. Web Service Modeling Ontology (WSMO). W3C, 2005. http://www.w3.org/

Submission/WSMO/.
8. Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C, 2006. http:

//www.w3.org/XML/.
9. SOAP Version 1.2 Part 0: Primer. W3C, 2007.

http://www.w3.org/TR/soap12-part0/.
10. Web Services Business Process Execution Language (WSBPEL) TC. OASIS, 2007.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
11. Web Services Description Language (WSDL) Version 2.0 Part 0: Primer. W3C,

2007. http://www.w3.org/TR/wsdl20-primer/.



A Framework for Efficient Design, Maintaining, and Evolution . . . 49

12. XCase – A Tool for XML Data Modeling. 2008. http://kocour.ms.mff.cuni.cz/

~necasky/xcase/.
13. Documents Associated with Business Process Modeling Notation (BPMN) 1.2.

OMG, 2009. http://www.omg.org/spec/BPMN/1.2/.
14. Object Constraint Language Specification, version 2.0. OMG, 2009. http://www.

omg.org/technology/documents/formal/ocl.htm.
15. Unified Modeling Language. OMG, 2009. http://www.uml.org/.
16. Web Services Activity. W3C, 2009. http://www.w3.org/2002/ws/.
17. E. Dominguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving XML Schemas

and Documents Using UML Class Diagrams. In DEXA’05, pages 343–352, Berlin,
Heidelberg, 2005. Springer.

18. ISO/IEC 9075-14:2003. Part 14: XML-Related Specifications (SQL/XML). Int.
Organization for Standardization, 2006.

19. R. Jelliffe. The Schematron – An XML Structure Validation Language using Pat-
terns in Trees. 2001. http://xml.ascc.net/resource/schematron/.

20. M. Klettke. Conceptual XML Schema Evolution – the CoDEX Approach for Design
and Redesign. In BTW Workshops, pages 53–63. Aachen, 2007.

21. O. Macek and K. Richta. The BPM to UML Activity Diagram Transformation
Using XSLT. In DATESO’09, volume 471, pages 119–129, Spindleruv Mlyn, Czech
Republic, 2009. CEUR-WS.

22. M. Mesiti, R. Celle, M. A. Sorrenti, and G. Guerrini. X-Evolution: A System for
XML Schema Evolution and Document Adaptation. In EDBT’06, pages 1143–
1146, Berlin, Heidelberg, 2006. Springer.

23. I. Mlynkova. Similarity of XML Schema Definitions. In DocEng’08, pages 187–190,
2008.

24. I. Mlynkova. Standing on the Shoulders of Ants: Towards More Efficient XML-to-
Relational Mapping Strategies. In XANTEC’08, pages 279–283, Turin, Italy, 2008.
IEEE.

25. M. Murata. RELAX (Regular Language Description for XML). 2002. http:

//www.xml.gr.jp/relax/.
26. M. Necasky. Conceptual Modeling for XML: A Survey. In DATESO’06, volume

176, pages 40––53, Cerna Ricka, Czech Republic, 2006. CEUR-WS.
27. M. Necasky. Conceptual Modeling for XML. IOS Press, Heidelberg, Netherlands,

2008.
28. M. Necasky. Reverse Engineering of XML Schemas to Conceptual Diagrams. In

APCCM’09, pages 117––128, Wellington, New Zealand, 2009. CRPIT.
29. M. Necasky and T. Knap. Reconstruction of Normalized XML Documents. In

Innovations’08, pages 213––217, Al Ain, UAE, 2008. IEEE.
30. M. Necasky and I. Mlynkova. On Different Perspectives of XML Schema Evolution.

In FlexDBIST’09, Linz, Austria, 2009. IEEE.
31. M. Necasky and K. Opocenska. Designing and Maintaining XML Integrity Con-

straints. In MoViX’09, Linz, Austria, 2009. IEEE.
32. Ch. Peter. Entity-Relationship Modeling: Historical Events, Future Trends, and

Lessons Learned. pages 296–310, 2002.
33. L. Stromback, M. Asberg, and D. Hall. HShreX — a Tool for Design and Evaluation

of Hybrid XML Storage. In FlexDBIST’09, Linz, Austria, 2009. IEEE.
34. S. A. White. Using BPMN to Model a BPEL Process. IBM Corp., USA, 2005.

http://bpmn.org/Documents/Mappingf.


