
Research Interests

Mathieu Roger

Laboratory TIMC-IMAG- Osiris Team
Mathieu.Roger@imag.fr

My main interests are the domains of data models for Database, Programming Languages and Knowledge Bases.
I am working on the OSIRIS system [Simonet et al., 94] which is a mixture of database and knowledge base. In
this system I am implementing the following features:
• Inheritance as set inclusion (contrary to sub-typing)
• A view mechanism, analogous to defined concepts in DL
• Automatic instance classification
• A multi-methods mechanism (that relies on instance classification)
• A constraint language on functions and methods (that relies on instance classification)
• Constraints on transaction (i.e., modifying the state of a universe) and completion (adding coherent

information about the state of the universe)

My work has followed two main directions. The first one is the comparison of the OSIRIS system with DLs
[Roger et al., 00 ; Roger et al., 01]. The second one is the study of inheritance mechanisms in OO models, and
especially programming languages. I have recently discovered that our data model, initiated by [Simonet 84],
can be partially described through the concepts from [Guarino and Welty 01] : we partition the universe into
rigid classes that supplies a global identity (these classes are called p-type in [Simonet 84]), which is not an
imposed constraint onto DL schemas. As shown in [Guarino and Welty 00] this is not a strong hypothesis
because every schema can be expressed that way.

I am implementing a prototype version of OSIRIS which is based on translating both schema data and instance
data into the DL reasoner RACER [Haarslev and Moller 01] on which I rely for all deduction features. In the
near future, I will also translate data into the object database AceDB (www.acedb.org) for persistency.
Translation into DL allows our system to be more expressive, and releases me from the burden of writing a
logical demonstrator. With class (or concept) and object (or instance) classification, it will be possible to express
constraints on transactions [Roger et al., 02]. Classical type and sub-typing theory rely on a closed world
assumption (the type is the only callable things onto its objects). I release this assumption by expressing
constraints on methods, which solves problems that occur with binary methods and with mixing modification
and sub-typing. In the following I rapidly describe the syntax for the Osiris data modelisation language and an
example.

Abstract classes are classes that do not carry any identity. They describe only a small part of their objects'
structure. The "canonical" example of an abstract class is the class THING that contains all objects: one cannot
build a “thing” because one cannot decide if one already knows it or not!

abstract-class-definition ::
abstract class name

[(all|some) abstract-class-formula]
[attribute-declarations]
[constraints]
[method-constraints]

end

Concrete classes are the most important kind of classes; they are the equivalent in this model to the “standard”
notion of class in OO models. An object is created in a unique concrete class and remains in it during its lifetime.
More precisely:
1. they are primitive classes, in the sense of Description Logics
2. they supply an identity, so there exists a constructor for such a class
3. they are rigid, i.e., an object belonging to a concrete class will remain in it forever
4. they are pairwise disjoint.
Because of these properties, an object belongs to a unique concrete class and never changes.

class-definition ::
concrete class name

[some abstract-class-formula]
[attribute-declarations]
[constraints]
[method-constraints]
identity identity ;

end

identity ::
always new |
key attribute-name (, attribute-name)*

A virtual class is a subset of a unique concrete class. It is defined by a logical constraint, including set formula
over other virtual classes.

virtual-class-definition ::
virtual class name

[(all|some) classes-formula]
[attribute-declarations]
[method-constraints]
[constraints]

end

Example.

abstract class Aged
age : int ;
modify_age(a:int) -> Aged ;
modify_age(a:[0..10]) -> Young ;

end

abstract class Young all Aged
age in [0..10] ;

end

concrete class Person some Aged
age in [0..150] ;
name : string ;

end

virtual class Minor all Person
age in [0..18[;
change_age(a:[18..150]) -> not Minor ;

end

concrete class Car some Aged
motor : string in {“diesel”, ”gasoline”} ;
change_motor(m:string) -> Car ;

end

virtual class Diesel all Car
motor in {“diesel”} ;

end

 [Guarino and Welty 01] Nicolas Guarino and Christopher Welty, Identity and subsumption, in R. Green, C. A. Bean, and S.
Hyon Myaeng (eds.), The Semantics of Relationships: An Interdisciplinary Perspective, Kluwer 2001

[Haarslev and Moller 01] Volker Haarslev and Ralf Moller, RACER System Description, IJCAR’01
[Roger et al., 00] Mathieu Roger, Ana Simonet et Michel Simonet, A Description Logics-like Model for a Knowledge and

Data Management System, in DEXA 2000
[Roger et al., 01] Mathieu Roger, Ana Simonet et Michel Simonet, Object Space partitioning in a DL-like database and

knowledge base management system, DEXA 2001
[Roger et al., 02] Mathieu Roger, Ana Simonet et Michel Simonet, Toward updates in Description Logics, KRDB 02
[Simonet 84] Ana Simonet, Types Abstraits et Bases de Données: formalisation du concept de partage et analyse statique de

contraintes d’intégrité, PhD, University of Grenoble, 1984
[Simonet et al., 94] Ana Simonet and Michel Simonet, Objects with Views and Constraints: From Databases to Knowledge

bases, OOIS’94

