
Querying Objects with Description Logics

Martin Peim, Enrico Franconi, Norman W. Paton and Carole A. Goble
Department of Computer Science, University of Manchester

lastname@cs.man.ac.uk

Abstract
This paper presents an approach to answering queries over an ontology mod-

elled using a description logic. The ontology acts as a global schema, providing
a declarative description of the concepts of the domain, the instances of which
are stored in (potentially many) object-wrapped sources. Queries are expressed
using terms from the rich vocabulary of the ontology, and are translated into an
equivalent calculus expression, which references only the objects available in
the source databases. The query is then optimised on the basis of information
from the ontology and the source databases.

1 Introduction
This paper presents an approach to answering queries over an ontology modelled us-
ing a description logic. Queries are formulated over the ontology in a query language
which is itself a DL. The system translates these high-level user queries into queries
over the definitions at the wrapper layer. In a wider technical context, the proposal
presented in this paper is part of a collection of results on knowledge based query
processing in distributed information systems. Such proposals can be classified as
global as view (e.g., SIMS [1], OBSERVER [11]) or local as view (e.g. Information
Manifold [10], DWQ [3], Picsel [8]), depending on how constructs from a specific
source are related to those in the global model [13].

The query evaluator executes queries over a collection of object wrapped sources.
Sources descriptions consist of a set of class declarations described using the ODMG’s
object definition language ODL—that is, an ODL schema—plus information needed
for physical query optimisation, such as access paths (existence of indices, for ex-
ample) and cost information. Extent names in the wrapper layer are associated with
certain terms (which are referred to as ground terms) in the ontology by an Ontology-
to-Object-Model mapping.

The translation process of a DL query can be broken down into several phases:

• The query rewriting phase rewrites the query as an expression containing only
ground terms; in our case this is based on a global-as-view approach. Note,
however, that a more sophisticated rewriting system based on the local-as-view
technology could be used without affecting the rest of the system [13, 4]. Any
ground term which appears in the rewritten query must be mapped to source
constructs in the Ontology-to-Object-Model (OOM) mapping.

• The query translation phase translates the rewritten query into an expression in
Fegaras’ Monoid Comprehension Calculus [7], enriched with a match() opera-
tor to perform object fusion. The match() operator supports the reconstruction
of a unique object by gathering sparse information coming from one or more
sources. The translation process works in a compositional fashion, using the
OOM mapping to translate DL terms, and handling logical connectives using a
set of rules given in Section 4.

• The semantic optimisation phase takes the (possibly deeply nested) calculus
expression generated by the query translation algorithm and performs simpli-
fying transformations on it. The ontology is used at this stage to improve the
calculus expression by identifying redundant generators (potential iterations)
over source extents.

• The calculus-to-algebra translation and the logical and physical optimisation
phases. From this point on, the translation system is an adaptation of Fegaras’
OQL optimiser [7]. Firstly, a calculus expression is translated to a correspond-
ing expression in a logical query algebra based on the nested-relational algebra.
This logical algebra is then subject to heuristic optimisation by a logical opti-
miser, and then the logical algebra operators are replaced by operators in a
physical algebra during physical optimisation. For lack of space, the logical
and physical optimisers are not described further in this paper.

2 The Conceptual Model and Query Language
At the top level of the system, a unified and user-centred view of the source data is
abstracted in a global conceptual schema expressed in the DLALCQI.: the ontology.
Figure 1 contains a small example ontology in the bioinformatics field that will be
used throughout the paper to illustrate query processing. Queries are formulated with
respect to this i.e., the user may use any term from the ontology in the query, without
knowing where the data actually is, how it is structured, and how it should be merged
and reconciled to fit the global schema.

Given an ontology, such as that in Figure 1, a concept description can be taken as
a query to retrieve all instances of the concept. For example, the following query asks
for all proteins found in mammals:

protein u ∃has-species.mammal (15)

The following query, which is revisited later, asks for all proteins referred to in
important journals.

protein u ∃cited-in.(∃has-journal.top-journal) (16)

The query rewriting phase rewrites the query as an expression containing only
ground terms. The query rewriting task can be phrased in general terms as follows.

enzyme v protein u ∃catalyses.reaction (1)

enzyme .
= ∃enz-protein−

.> (2)
∃catalyses.> v protein (3)

sp-protein v protein (4)
pir-protein v protein (5)

protein v (∃has-sequence.>) u (∃≤1has-sequence.>) (6)

sp-protein v (∃sp-acc.>) u (∃≤1sp-acc.>) u (∀has-species.species) (7)

pir-protein v (∃pir-acc.>) u (∃≤1pir-acc.>) u (∀cited-in.reference) (8)

species v (∃common-name.>) u (∃≤1common-name.>) (9)

u (∃latin-name.>) u (∃≤1latin-name.>)

mammal v species (10)

reference v (∃has-author.>) u (∃has-journal.>) u (∃≤1has-journal.>) (11)

u (∃has-year.>) u (∃≤1has-year.>)

enz-entry v (∃enz-protein.>) u (∀enz-protein.sp-protein) u (∃enz-reaction.>) (12)

u (∃has-journal.>) u (∃≤1has-journal.>)

u (∃has-year.>) u (∃≤1has-year.>)

journal .
= ∃has-journal−.> (13)

top-journal v journal (14)

Figure 1: The example ontology.

Given a query Q, an ontology, and a set of view definitions that characterise the actual
source data, reformulate the query into an expression, the rewriting, that refers only to
the views, and provides the answer to Q. In our case, the view definitions correspond
to the classes and relationships of the object wrapped sources. In this paper we do
not describe the rewriting process, for we we do not provide any new result; in our
practical application we use a pure global-as-view approach.

Once a query has been rewritten into an equivalent query containing only ground
terms, it is important to check that the query is safe [6]. Essentially, a query (or
concept) is considered safe if answering that query does not involve looking up infor-
mation not referred to in the query. This is crucial to restrict the scope of a query. Our
translation scheme in Section 4 only produces translations for safe queries. For ex-
ample, the query ∀R.C is unsafe because answering it involves, among other things,
finding all individuals with no R fillers, and this information is not available from
extents for R and C. Let Q be a concept expression which contains only ground con-
cept names and has been rewritten into negation normal form. Then Q is safe if it has
the form ⊥, A (where A is a ground concept), ∃R.C or ∃≥nR.C (provided n ≥ 1).
It is unsafe if it has the form >, ¬A, ∀R.C or ∃≤nR.C. A conjunction is safe if and
only if at least one of its conjuncts is safe. A disjunction is safe if and only if all of
its disjuncts are safe. Note that, under this definition, a concept expression is safe if

and only if its negation is unsafe.

3 The Object Model and Calculus Queries
The query translator takes a DL query and translates it into a calculus expression over
an object model. The object model is described in Section 3.1, and the calculus in
Section 3.3.

3.1 The Object Model
The source databases are presented to the rest of the system by software wrappers in
such a way that they can be seen as forming an object database, conforming to the
ODMG data model [5]. From an implementation point of view, this is a practical
choice because of its compatibility with CORBA and the fact the model is associated
with well understood query processing techniques [7]. The structure of the objects
returned by the wrappers is given by a schema in the ODMG’s Object Definition
Language (ODL).

Each ground concept in the ontology is viewed as a named persistent set of
database objects. This set may be an extent over an ODL class or a set of values
of some simple type like String. For the sake of brevity, we will refer to all such
named collections as source extents. So that we can use the DL reasoner to assist in
query optimisation (as described in Section 5), we require that each source name be
represented by a name in the knowledge base, and we record any information about
containment between sources in the ontology.

Figure 2 shows wrapper class definitions for the domain represented by the ontol-
ogy in Figure 1. For example, the interface Protein represents protein data from
the sources SwissProt and PIR, which are represented by the classes SP Protein
and PIR Protein.

The attribute SPAccessionNumber in the source class SP Protein corre-
sponds to the accession number of a SwissProt entry. It is a unique identifier for the
entry. The species attribute contains the set of species in which the protein can
be found. Finally, sequence is a string representation of the protein’s amino acid
sequence.

Like SwissProt, PIR also identifies its protein entries with an accession number
(see PIR Protein). Note that PIR accession numbers are not the same as SwissProt
accession numbers, so the attributes must be given different names and correspond to
different roles at the DL level. The references attribute is a set of descriptions
of references to the protein in the scientific literature. As with SP Entry, the string
sequence represents the amino acid sequence.

3.2 The Ontology-to-Object-Model Mapping
The OOM Mapping describes how ground DL concepts and roles relate to object
model classes and relationships. For the example application, Table 1 gives the map-

interface Protein {
attribute String sequence;

}

class SP_Protein (extent sp_proteins)
extends Protein {
attribute String SPAccessionNumber;
attribute Set<Species> species;
attribute String sequence;

}
class PIR_Protein (extent pir_proteins)

extends Protein {
attribute String PirAccessionNumber;
attribute Set<Reference> references;
attribute String sequence;

}
class Species (extent species) {

attribute String common_name;
attribute String latin_name;

}
class Reference (extent references) {

attribute Set<String> authors;
attribute String title;
attribute String journal;
attribute String year;

}
class EnzEntry (extent enz_entries) {

attribute String enz_id;
attribute Set<SP_Protein> enz_proteins;
attribute Set<String> reactions;
attribute Set<String> cofactors;

}
class Enz_catalyses_class (extent enz_catalyses) {

attribute SP_Protein base;
attribute String filler;

}
Set<Species> mammals
Set<String> top_journals

Figure 2: Declarations of source classes.

ping between DL concepts and source extents, and Table 2 shows the mapping of DL
roles to class attributes.

DL roles are divided into enumerated roles, which are represented by the OOM
mapping directly as sets of pairs, and attribute roles, which are represented as at-
tributes of the base objects. An enumerated role R is represented by a set of source
extents. Each of these is an extent e over a class of the form

class C (extent e){
attribute T1 base;
attribute T2 filler;

}

Concept Source extents
protein sp proteins

pir proteins
sp-protein sp proteins
pir-protein pir proteins
enz-entry enz entries
species species

reference references
top-journal top journals
mammal mammals

Table 1: Concept to source mapping for biological example

Role Attribute Cardinality
sp-acc SPAccessionNumber Single
pir-acc PirAccessionNumber Single

has-species species Multiple
has-sequence sequence Single

cited-in references Multiple
common-name common name Single

latin-name latin name Single
has-author authors Multiple

has-title title Single
has-journal journal Single
has-year year Single

enz-id enz id Single
enz-protein enz proteins Multiple
enz-reaction reactions Multiple

cofactor cofactors Multiple

Table 2: Attribute role mappings for biological example

The attribute names base and filler are used to refer to the first and second components
of the binary relation represented by R. We say that e has type T1 × T2.

The model contains a single enumerated role, catalyses, which represents the
relationship between an enzyme and the reaction it catalyses. This role is mapped
to the extent enz catalyses of Figure 2, which is implemented as part of the
wrapper on the Enzyme database.

An attribute role R is represented by an attribute name aR. The attribute may be
defined in several classes, and may have a different value type in each. For example,
the fillers for a role like has-name may be simple strings in most classes, but struc-
tured objects (for example, botanical names of plants) in others. An attribute role can
be either single-valued or multiple-valued. We require that a single-valued attribute
role be represented by an attribute whose value type is a simple class name in each
class which supports it, and that a multiple-valued attribute role be represented by an
attribute whose value type is Set(T) for some class name T .

3.3 The Monoid Comprehension Calculus
The target language for the first stage of query translation is the Monoid Comprehen-
sion Calculus of Fegaras [7]. The calculus provides a uniform notation for collection
types such as lists, bags and sets, based on the observation that the operations of set
and bag union and list concatenation are monoid operations (that is, they are asso-
ciative and have an identity element). Monoids for collection types are known as
collection monoids. Operations like conjunctions and disjunctions on booleans and
integer addition over collections can also be expressed in terms of so-called primitive
monoids. A monoid comprehension has the form

⊗{e | q1, . . . , qn}. (17)

The symbol ⊗ is a monoid operator, and determines the type of the comprehen-
sion. The expression e is called the head of the comprehension. Each qi is a qualifier,
which can either be a generator of the form v ← e′, where v is a variable and e′

is a collection-valued expression, or a filter of the form p, where p is a predicate (a
boolean-valued expression). Each variable v is assigned a type T , and the correspond-
ing collection monoid must have an element type which is a subtype of T . We will
usually omit the variable type from our notation, except where it needs to be empha-
sised. If qi is a filter, then the head expression e and the qj for j > i can contain free
occurrences of the variable v. The identity, or zero, element of the monoid whose
operation is ⊗ is denoted by Z⊗.

The primitive monoids used in examples below are: (i) The logical-and monoid
∧. This is a simple monoid whose underlying type is boolean. The monoid operation
is boolean conjunction and Z∧ = true. (ii) The plus-monoid +. This is also a
simple monoid whose underlying type is integer. The monoid operation is integer
addition and Z+ = 0. The plus-monoid is used in examples in the form +{1 | s̄}, to
compute cardinalities of sets. The result of this expression is the number of distinct
assignments to the generator variables in s̄ which satisfy all the filters.

3.3.1 The Match-Union Monoid

A single individual belonging to the extension of a DL concept or query may be rep-
resented by several database instances (with distinct OIDs), coming from different
sources. For example, protein instances may be represented in both the SwissProt
and PIR sources. Thus, a query may have alternative answers if more than one choice
of database instance is available for some of the relevant individuals. In order to
support the reconstruction of a unique individual object from the sparse information
coming from the same or different sources, we introduce a new boolean-valued op-
erator match(x, y) which returns true if the database instances x and y represent the
same individual.

This match(,) operator is really a collection of operators matchS1,S2
(,), one

for each pair of source databases S1, S2 (we can also divide it according to different
object types returned by each source). We require that match() defines an equivalence
relation—that is, it must be reflexive, symmetric and transitive. We also assume that

distinct elements from the same source are intended to represent distinct individuals,
so that if x and y come from the same source S, matchS,S(x, y) reduces to x = y. The
match() operator extends to tuples of objects in the obvious way. It can be interpreted
as a simple equality test for domain values like integers and strings.

At the physical level, the implementation of match() for any given pair of sources
may consist of a function which performs a comparison between certain key attributes
of the objects concerned. Alternatively, if the two source classes do not have a com-
mon key, it might be necessary to use a binary table to associate the corresponding
elements.

An answer to a query, then, is a set S of object references, such that

for all x, y ∈ S, match(x, y) = false unless x = y. (18)

Such sets are referred to as match-sets—they are still sets (rather than bags) even if
we regard match() as equality.

In order to capture query answers as match-sets, comprehensions are written in
terms of a collection monoid whose merge operation ⊕ (read as match-union) is like
the set union operation but preserves the uniqueness condition (18). So, if S1 and S2

satisfy (18) then S1 ⊕ S2 may be any set W ⊆ S1 ∪ S2 of object references, such that
for each x ∈ S1∪S2 there is precisely one w ∈W such that match(x,w) = true. For
those elements of S1 which match some element of S2, we can choose which element
to include in S1 ⊕ S2. This choice can be made by the system on the basis of user
preference or cost estimation or, if we have no preference, by taking the representative
for S1 whenever possible.

4 Translating Queries to Monoid Comprehensions
The rules given in this section show how to translate a safe ALCQI concept expres-
sion C into an expression E in the monoid comprehension calculus. To save space,
we only consider expressions whose subexpressions are all safe. The implemented
system [12] also deals with cases where this is not so. The modifications to the trans-
lation rules for these cases are indicated below. The rules constitute a compositional
syntax-directed translation scheme. The expression E is a collection monoid com-
prehension using the monoid operation ⊕ described in Section 3.3.1. If the element
type of this comprehension (the type of its head expression) is T we will say that E
is a translation of C having type T .

The Empty Concept. The unsatisfiable concept ⊥ is translated by the empty ⊕-
monoid Z⊕.

Atomic Terms. To translate a ground atomic concept (a concept name) A we con-
sult the OOM mapping to find the set of database extent names which represent A.
Each extent name has a type (a class name) Ti and refers to a set Si of object refer-
ences of type Ti. Let T be the most specific superclass of the Ti. Then

⊕
i Si is a

translation of A having type T .

Concept Translation Type
∃R.C ⊕{r.base | r ← R′, c← C′, match(c, r.filler)} T1

∃≥nR.C ⊕{r.base | r ← R′, +{1 | s← R′, c← C′, match(s.base, r.base) ∧ match(s.filler, c)} ≥ n} T1

Table 3: Translation of enumerated roles.

For instance, in our example application the concept protein is mapped to the
source extents sp proteins and pir proteins, and so it has the translation
sp proteins⊕ pir proteins (of type Protein).

Conjunctions. If C and D are safe concepts with translations C ′ and D′ of type TC′

and TD′ then C u D can be translated to either of the following, with types TC′ and
TD′ respectively:

⊕{c | c← C ′, d← D′, match(c, d)} (19)

⊕{d | c← C ′, d← D′, match(c, d)} (20)

If we don’t want to commit to choosing all our answers from one of C ′ and D′

and we have a choice function choose(x, y) which selects one of x and y according
to some unspecified criteria, we can make a third translation with the type, T which
is the most specific superclass of T1 and T2:

⊕{choose(c, d) | c : T ← C ′, d : T ← D′, match(c, d)} (21)

Note the use of type specifiers for the variables c and d to emphasise that we are
assigning subclass references to superclass reference variables. That is, we just take
the ⊕ merge of C ′ and D′ but interpret the references as having type T .

In the case where C is safe but D is unsafe, we must filter the instances of C for
non-membership (up to match()) of the safe concept ¬D rather than for membership
of D.

Disjunctions. If C, D are safe concepts with translations C ′ and D′ of type TC′ and
TD′ , let T be the most specific superclass of TC′ and TD′ . Then

(⊕{c | c : T ← C ′})⊕ (⊕{d | d : T ← D′}) (22)

is a translation of C tD of type T .

Existentially Quantified and At-least Formulae. Existentially quantified formu-
lae and at-least formulae are closely related, since ∃R.C is equivalent to ∃≥1R.C;
they are handled together here.

• If R is an enumerated role, let {R′i} be the set of source tables for R and let the
type of R′i be Ti1 × Ti2. Let T1 be the most specific superclass of the Ti1, let T2

be the most specific superclass of the Ti2, and let

R′ =
⊕

i

(⊕{r | r : 〈base : T1,filler : T2〉 ← R′i}). (23)

Concept Translation Type
∃R.C ⊕{d | d← DR, c← C ′, match(d.aR, c)} T1

∃R−.C ⊕{d | d← DR, c← C ′, match(d.aR, c)} T2

∃≥nR−.C ⊕{d.aR | d← DR,+{1 | c← C ′, match(c, d)} ≥ n} T2

Table 4: Translation of single-valued roles.

Concept Translation Type
∃R.C ⊕{d | d← DR, f ← d.aR, c← C′, match(f, c)} T1

∃R−.C ⊕{f | d← DR, f ← d.aR, c← C′, match(c, d)} T2

∃≥nR.C ⊕{d | d← DR, +{1 | f ← d.aR, c← C′, match(f, c)} ≥ n} T1

∃≥nR−.C ⊕{f | d← DR, f ← d.aR, +{1 | e← DR, g ← e.aR, c← C′, match(g, f) ∧ match(c, e)} ≥ n} T2

Table 5: Translation of multiple-valued roles.

Suppose C is safe and has a translation C ′. Table 3 gives translations for enu-
merated roles.

Inverses of enumerated roles (for example, in ∃R−.C) can be handled similarly,
by exchanging the roles of base and filler (and of T1 and T2).

• If R is a single-valued attribute role, let {Di} be the set of domains for R. Let
Ti1 be the type of Di and let Ti2 be the value type of the attribute aR in Di.
Let T1 be the most specific superclass of the Ti1 and let T2 be the most specific
superclass of the Ti2. Let

DR =
⊕

i

⊕{d | d : T1 ← Di} (24)

Then DR represents the (potential) domain of the relation R.

Suppose C is safe and has a translation C ′. Table 4 gives translations for single-
valued roles. The translation of ∃≥nR.C is equivalent to ∃R.C if n = 1 and is
empty if n > 1.

As an example of the translation of a single-valued attribute role, consider the
translation of ∃has-journal.top-journal. According to the OOM mapping in
Table 2, the role has-journal is a single-valued attribute role. It is mapped to
the attribute journal, which is supported by the class extent references.
The concept top-journal is mapped to the extent top journals, as described
in Table 1. Using the translation for ∃R.C in Table 4, with renaming of vari-
ables, the translation is

⊕{r1 | r1 ← references, t← top journals, match(r1.journal, t)}
(25)

• If R is a multiple-valued attribute role, let {Di}, Ti1, Ti2 T1 and T2 be defined
as for single-valued attributes above, except that the value type of aR in Ti1 is
now Set(Ti2)

Suppose C is safe and has a translation C ′. Table 5 gives translations for
multiple-valued roles.

An expression such as ∃R.C or ∃≤nR.C where C is unsafe is translated in a
similar manner to the above, except that, instead of checking that objects related to a
given instance of the domain of R are match()-equivalent to instances of C we must
check that they are not equivalent to any instace of the safe concept ¬C.

4.1 Example Translation
As an example of the query translation process, consider query (16), which asks for
all proteins referred to in important journals. To translate this query, we first translate
the subquery:

∃has-journal.top-journal. (26)

This gives rise to the calculus expression (25) described above. Proceeding in this
way we obtain the monoid comprehension:

⊕{p2 | p2 ← sp proteins⊕ pir proteins,

p3 ← ⊕{p1 | p1 ← pir proteins,

r2 ← p1.references,

r3 ← ⊕{r1 | r1 ← references,

t← top journals,

match(r1.journal, t)},

match(r2, r3)},

match(p2, p3)},

(27)

supposing that the system decides to use both sources for the concept protein. This
rather unwieldy form can be considerably simplified by the methods of Section 5.

5 Optimisation
For the most part, the optimisation of the queries that result from the translation pro-
cess described in Section 4 follows that of Fegaras’ optimiser [7]. Following transla-
tion, a normalisation algorithm rewrites the comprehension into a normal form. The
normalisation rules are given in Section 5.1. In an extension to Fegaras’ normali-
sation algorithm, certain optimisations are made during the normalisation process,
to remove unnecessary iterations or generators. Unlike [9]—where both the con-
straints introduced by the ODL schema and the OQL queries are translated into a
Datalog program, and semantic optimisation is performed by adding extra conditions
or “residues” coming from the integrity constraints to the query optimiser—and un-
like [2]—where the system computes the complete explicit semantic expansion of
the original query—we base the semantic optimisations on oracle calls to the DL
reasoner from the standard Fegaras’ OQL optimiser. These calls check containment

〈A1 = e1, . . . , An = en〉.Ai −→ ei (28)
⊗{e | q̄, v ← Z�, s̄} −→ Z⊗ (29)

�{e | q̄, v ← e1 ⊕ e2, s̄} −→ (�{e | q̄, v ← e1, s̄})� (�{e | q̄, v ← e2, s̄}) (30)
+{e | q̄, v ← e1 ⊕ e2, s̄} −→ (+{e | q̄, v ← e1, s̄})

+ (+{e | q̄, v ← e2,∧{¬match(v, w) | w ← e1}, s̄}) (31)
⊗{e | q̄,∨{pred | r̄}, s̄} −→ ⊗{e | q̄, r̄, pred, s̄} (32)

⊗{e | q̄, v ← ⊕{e′ | r̄}, s̄} −→ ⊗{e[e′/v] | q̄, r̄, s̄[e′/v]} (33)
∗{∗{e | r̄} | s̄} −→ ∗{e | s̄, r̄}, (34)

Figure 3: Normalisation rules for the calculus.

⊕{e | q̄, v ← X, r̄, w ← Y, s̄, match(v, w) ∧ p} −→ ⊕{e[v/w] | q̄, v ← X, r̄, s̄[v/w], p[v/w]}, if X v Y (36)

⊕{e | q̄, v ← X, r̄, w ← Y, s̄, match(v, w) ∧ p} −→ ⊕{e[v/w] | q̄, v ← Y, r̄, s̄[v/w], p[v/w]}, if Y v X (37)

⊕{e | q̄, v ← X, r̄, w ← Y, s̄, match(v, w) ∧ p} −→ ∅, if X u Y
.
= ⊥. (38)

⊕{e | q̄, x← X ⊕ Z, r̄, p} −→ ⊕{e | q̄, x← X, r̄, p}, if can-restrict(x, X, p, concat(q, r)) (39)

Figure 4: Semantic optimisation rules for the calculus.

between sub-queries given the semantic information specified in the ontology. The
optimisation rules are given in Section 5.2.

5.1 Normalisation

The first stage of Fegaras’ optimiser [7] is a normalisation process which does some
unnesting of nested comprehensions. The process results in a canonical form which
is (in our case) a ⊕-merge of comprehensions of the form

⊕{e | v1 ← path1, . . . , vn ← pathn, pred}, (35)

where each pathi is a database extent name or an expression of the form v.a1 . . . an,
where v is a bound variable and the ai are attribute names. Note that the head e and
the predicate pred may still contain nested comprehensions, though these will also
be in canonical form. The normalisation rules needed to convert the comprehension
expressions produced by the algorithm in Section 4 are given in Figure 3. In the
figure, ⊗ and � may be any of the monoid operations ⊕, ∨, ∧ or +, ∗ may be ∨, ∧ or
+, and � may be ⊕, ∧ or ∨. The notation e[e′/v] denotes the result of substituting e′

for the free occurrences of v in e. Further details on the normalisation of the monoid
calculus can be obtained from [7].

5.2 Semantic Optimisation
The translations given in Section 4 are applicable to any concept expression. How-
ever, in certain circumstances more efficient translations can be produced by exploit-
ing knowledge about the types returned by translations of subexpressions and the
containment relationships stored within the ontology.

In order to be meaningful for query optimization purposes, the knowledge stored
in the ontology should state constraints on the extensional state of the database. This
means that the database must strictly conform to the constraints, and it can not contain
incomplete information.

For example, the concept Cu∃R.D (where R is a multiple-valued attribute role, C
is translated as C ′ and D as D′) is translated to a monoid comprehension which, after
normalisation (ignoring for the moment the fact that C ′ and DR may be ⊕-unions),
looks like

⊕{c | c← C ′, x← DR, f ← x.aR, d← D′, match(c, x), match(f, d)}. (40)

However, if the type of C ′ is such that the elements can be guaranteed to be in DR, the
iteration over x can be dispensed with. In this case, each instantiation of the variable c
has its own set c.aR of R-fillers and the query can be answered by the comprehension

⊕{c | c← C ′, f ← c.aR, d← D′, match(f, d)} (41)

The optimisation rules (36) and (37) in Figure 4 achieve the required simplification.
Similarly, if a comprehension has two generators whose variables are supposed to

match but whose domains are known to be incompatible from the ontology, then the
comprehension is empty. This is captured by rule (38) in Figure 4.

Another optimisation can be applied to a comprehension C that contains a gener-
ator of the form x ← X ⊕ Z. If the predicate of C implies matches between x and
other variables, then it may be that the intersection of the ranges of those variables
is contained in X . In that case we can restrict x to range only over X . The formal-
isation of this rule (rule (39) in Figure 4) refers to the predicate can-restrict defined
as follows. Let x be a variable, X a union of extents, p a predicate and r̄ a sequence
of generators. Let {yi} be the set of expressions which are related to x by match()
conjuncts in p, not including x itself. The yi are the elements (excluding x) of the
connected component of the graph defined by the match() conjuncts in p. Each yi is
either a variable or a path expression of the form z.a1 . . . an where z is a variable and
the aj are attributes. So each yi has a type which corresponds to a DL concept Yi.
Let X ′ be the DL concept corresponding to X . Then can-restrict(x,X, p, q̄) is true if
(
∏

i Yi) v X ′ (which we can find out from the DL classifier) and false otherwise.

5.3 Simplification Example
As an example of query simplification, we can consider the translation (27) of query (16)
from Section 4. This form immediately admits a simplification by rule (39), since the
type of p3 is PIR Protein which corresponds to the concept pir protein so that the

sp proteins summand in the domain of p2 can be eliminated. Normalisation then
yields

⊕{p2 | p2 ← pir proteins, p1 ← pir proteins,

r2 ← p1.references, r1 ← references,

t← top journals, match(r1.journal, t)∧

match(r2, r1) ∧ match(p2, p1)}.

(42)

Two applications of rule (36) then eliminate the variables p1 and r1, leaving the form

⊕{p2 | p2 ← pir proteins, r2 ← p2.references,

t← top journals, match(r2.journal, t)}.
(43)

Note that the match() comparison which remains is between values of type String
and so it will be evaluated by a simple equality test.

6 Conclusions
The provision of knowledge-based information integration systems has been a focus
of research activity for a considerable period, as it holds out the hope that high-level,
declarative representations of resources can be used for schema reconciliation and
query answering. This paper seeks to contribute to this line of research by bringing
together recent results on expressive description logics and object database query pro-
cessing to provide more expressive modelling and query processing to global-as-view
query systems. The paper not only shows how queries over anALCQI ontology can
be mapped to the monoid calculus for evaluation, but has also demonstrated how in-
formation from the ontology can be used to simplify the resulting calculus expression.

References
[1] Y. Arens, C.A. Knoblock, and W-M. Shen. Query Reformulation for Dynamic Information

Integration. J. Intelligent Information Systems, 6(2/3):99–130, 1996.

[2] S. Bergamaschi, D. Beneventano, C. Sartori, and M. Vincini. Odb-qoptimizer: A tool for se-
mantic query optimization in oodb. In Proc. of the Thirteenth International Conference on Data
Engineering (ICDE’97), page 578, 1997.

[3] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Information integra-
tion: Conceptual modeling and reasoning support. In Proc. of the 6th Int. Conf. on Cooperative
Information Systems (CoopIS’98), pages 280–291, 1998.

[4] D. Calvanese, G. De Giacomo, M. Lenzerini, and Moshe Y. Vardi. View-based query processing
and constraint satisfaction. In Proc. of the 15th IEEE Sym. on Logic in Computer Science (LICS
2000), 2000.

[5] R. G. G. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow,
T. Stanienda, and F. Velez, editors. The Object Data Standard: ODMG 3.0. Morgan Kaufmann,
2000.

[6] P. T. Devanbu. Translating description logics to information server queries. In CProc. of the Sec-
ond International Conference on Information and Knowledge Management (CIKM’93), pages
256–263, 1993.

[7] L. Fegaras and D. Maier. Optimizing object queries using an effective calculus. ACM Transac-
tions on Database Systems, 2001. (to appear).

[8] F. Goasdoue, V. Lattes, and M-C. Rousset. The use of CARIN language and algorithms for
information integration: the picsel system. International Journal on Cooperative Information
Systems, 2000.

[9] J. Grant, J. Gryz, J. Minker, and L. Raschid. Semantic query optimization for object databases.
In Proc. of the Thirteenth International Conference on Data Engineering (ICDE’97), pages 444–
453, 1997.

[10] A.Y. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation in Global Information
System s. J. Intelligent Information Systems, 5:121–143, 1995.

[11] E. Mena, A. Illarramendi, V. Kashyap, and A.P Sheth. OBSERVER: An approach for query
processing in global information systems based on interoperation across pre-existing ontologies.
Distributed and Parallel Databases, 8(2):223–271, 2000.

[12] M. Peim, E. Franconi, N. W. Paton, and C. A. Goble. Query processing with description logic on-
tologies over object-wrapped databases. Technical report, Dept. of Computer Science, University
of Manchester, UK, 2001.

[13] J. D. Ullman. Information integration using logical views. In Proc. of the 6th International
Conference on Database theory (ICDT’97), volume 1186, pages 19–40. Springer-Verlag, 1997.

