
Towards Semantic-Based Aspect Interaction Detection 

Gunter Mussbacher1, Jon Whittle2, Daniel Amyot1

 
1 SITE, University of Ottawa, 800 King Edward, Ottawa, ON, K1N 6N5, Canada 

{gunterm, damyot}@site.uottawa.ca 
2 Dept. of Computing, InfoLab21, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK 

whittle@comp.lancs.ac.uk 

Abstract. Interactions between dependent or conflicting aspects are a well-
known problem with aspect-oriented development. These interactions are 
potentially dangerous and can lead to unexpected or incorrect results when 
aspects are composed. To date, there have been very few attempts to address 
this issue at the modeling level. We present a new approach for detecting 
interactions that is based on lightweight semantic annotations of aspect models. 
Each aspect model is annotated with domain-specific markers and a separate 
goal model describes how semantic markers from different domains influence 
each other. When aspect models are composed, the composed model is 
inspected for any semantic markers that potentially conflict. This is achieved by 
propagating values through the goal model to see which goals (typically non-
functional properties) are satisficed by the composition and which are not. The 
technique can be used both to highlight potential aspect conflicts and to trade-
off aspects. We illustrate the approach using two aspect techniques.   

Keywords: Aspect Interaction, Goal Models, Aspect-Oriented Modeling 

1 Introduction 

A well-known problem with aspect-oriented modeling (and also with aspect-oriented 
programming) is that multiple aspects may be applicable at a given point in the base 
model. This is known as the aspect interaction problem. In the best case, aspects may 
simply be ordered so that they are applied in an order which respects their 
dependencies. In the worst case, there may be deep semantic conflicts between 
aspects that require a rethinking of which aspects should be applied or require a 
remodeling of the aspects themselves. An example of the former is where an aspect 
assumes certain modeling elements in the base that must be introduced by another 
aspect. An example of the latter is a conflict between two non-functional aspects 
where there are inherent trade-offs that arise irrespective of the order in which the 
aspects are applied. A security aspect, for example, will inevitably affect a 
performance aspect because security mechanisms must be enforced. Conversely, a 
performance aspect may affect a security aspect – if, for example, the performance 
aspect caches results, which must then be protected. In such a case, it is not simply a 
matter of ordering the aspects in a certain way.  



The aspect interaction problem is still largely unsolved1. One approach has been to 
explicitly document aspect interactions [2, 3]. This is useful but does not offer 
automated help in detecting interactions. Formal methods (e.g., model checking [4] or 
static analysis [5, 6]) have been applied to detect interactions, usually at the 
programming level. In previous work, we applied critical pair analysis to detect 
structural interactions between aspect models [7]. These techniques work well for 
interactions that can be detected by examining syntactic elements alone. They cannot 
handle cases that require a semantic interpretation of the model elements. 

In this paper, we present a new approach for automatically detecting aspect 
interactions based on a lightweight semantic interpretation of model elements. Each 
aspect model is (manually) tagged with domain-specific semantic markers that define 
an interpretation of relevant model elements. In a distribution aspect model, for 
example, a server might be stereotyped as <<local>> or <<remote>>. In a security 
aspect model, a server that stores sensitive data might be stereotyped as 
<<confidential>>. When multiple aspects are applied to a model, certain model 
elements may end up with conflicting semantic markers. Applying both a distribution 
and a security aspect, for instance, could leave a server labeled both as 
<<confidential>> and <<remote>>. This is potentially a problem because 
confidential data sent across a network to a remote server must therefore be 
appropriately secured, whereas, for confidential data stored on a local server, the 
security implications are more modest. 

Our technique relies on a set of domain-specific annotations for each aspect 
domain, as well as a model of how annotations from different domains influence each 
other. The latter is required for automatically analyzing interactions when multiple 
aspects are applied. In this paper, we represent influences between domain 
annotations as a goal model [8, 9]. This allows us to leverage existing analysis 
techniques for goal models to reason about trade-offs between conflicting aspects. 
Although the approach is generic to any kind of model, we illustrate it here with two 
different scenario modeling languages – aspect-oriented use case maps [9, 10] and 
aspect-oriented UML sequence diagrams [11]. 

The paper is structured as follows. Section 2 presents an example, which will be 
used throughout the paper as an illustration. Section 3 motivates the problem of 
semantically detecting aspect interactions. Section 4 presents the new approach. 
Section 5 describes related work and is followed by conclusions in Section 6. 

2 Example: Electronic Voting 

The focus in this paper is on models used for scenario-based requirements analysis. 
The underlying concepts, however, are applicable to any modeling language with a 
well-defined meta-model. 

As an illustrative example, we will use a scenario model of an electronic voting 
machine (EVS) based on a description of Diebold’s EVS in [12]. Diebold’s EVS has 
two principal actor roles: voters who cast ballots, and poll officials who carry out a 

                                                           
1 and is, of course, highly related to the feature interaction problem [1] 



series of administrative tasks such as collecting the votes from a voting machine and 
reporting them to the voting authority. One of the principal use cases is the Reporting 
use case in which a responsible poll official interacts with the EVS to transmit the 
voting results to a central backend server. The Reporting use case will serve as the 
base model in this paper and is shown in Fig. 1 as a UML sequence diagram and as a 
use case map. (We use both use case maps and sequence diagrams to illustrate the 
broad applicability of the approach, but the paper can, in fact, be read focusing on one 
notation alone. In figures, sequence diagrams will be presented on the left and use 
case maps on the right.) 

 

:Voting
Machine

: Backend
Server

Poll Official

saveResults

presentOptions

selectReport

 

Poll Official Voting Machine

presentOptions

reported

report

selectReport

Backend Server

saveResults

 

Fig. 1. Reporting use case. 

We will not dwell on the details of the notations but will explain syntax as it arises. 
On the right-hand side (RHS) of Fig. 1, a reporting scenario is given by a use case 
map, which starts with a solid dot and ends with a solid bar. Crosses denote 
responsibilities attached to components. For example, the Voting Machine is 
responsible for presenting reporting options. 

We will now consider how to apply three key aspects to the base model in Fig. 1: 
• Smart-card based authentication aspect, which authenticates an actor 

before allowing him/her to carry out actions by providing authorized users 
with a smart card and PIN.  

• Remote Service, which models provision of a remote service. 
• Caching, which models a caching proxy on a local server.  

These three aspects will be modeled as generally as possible and then applied to 
the base model so that: (1) polling officials are authenticated; (2) authentication is 
done by querying a remote database server; (3) authentication results are cached 
locally (since a polling official may need to access an EVS multiple times during the 
course of a voting session).  

Fig. 2 shows aspect-oriented sequence diagrams and use case maps for the three 
aspects. The notation used for sequence diagram aspects is that of the MATA aspect 
modeling tool [11]. For use case maps, AoUCM (Aspect-oriented Use Case 
Maps) [13] is used. Both notations follow similar principles for modeling aspects. For 
each, an aspect is made up of two parts: a pattern to match against in the base model 
and an aspect which defines how the pattern is modified (e.g., by adding messages 
before or after messages in the base or by adding responsibilities to the base). In both 
cases, patterns may contain variables that may match any element in the base. 
Variables may be atomic variables that match a single element in the base or 
sequence variables that match a sequence of elements in the base. 



 

:Voting
Machine

: Authentication
Server

Poll Official

<<create>>authenticate

<<create>>insertSmartCard

<<create>>displayLogin

<<create>>enterPIN

<<create>>
takeSmartCard

alt

[fail]

[success]

any

<<create>>
ejectSmartCard

<<create>>

<<create,confidential>>

presentOptions<<context>>

Aspect (Authentication)

:Voting
Machine

: Authentication
Server

authenticate

<<create,remote>>add <<local>>

: Authentication
Server

authenticate<<create>>

Aspect (Remote Service)

: |X : |Y

<<remote>>

<<create>>checkCache

alt

[found]

[not found]

<<create>>

|mess<<context>>

saveToCache

add <<cache>>

Aspect (Caching)

:Voting
Machine

: Authentication
Server

Poll Official

<<create>>authenticate

<<create>>insertSmartCard

<<create>>displayLogin

<<create>>enterPIN

<<create>>
takeSmartCard

alt

[fail]

[success]

any

<<create>>
ejectSmartCard

<<create>>

<<create,confidential>>

presentOptions<<context>>

Aspect (Authentication)

:Voting
Machine

: Authentication
Server

authenticate

<<create,remote>>add <<local>>

: Authentication
Server

authenticate<<create>>

Aspect (Remote Service)

: |X : |Y

<<remote>>

<<create>>checkCache

alt

[found]

[not found]

<<create>>

|mess<<context>>

saveToCache

add <<cache>>

: |X : |Y

<<remote>>

<<create>>checkCache

alt

[found]

[not found]

<<create>>

|mess<<context>>

saveToCache

add <<cache>>

Aspect (Caching)  

Aspect Map
(Remote Service)

Poll Official Voting Machine

displayLogin

end

authenticate

enterPIN

<<confidential>>
Authentication
Server

authenticate

insertSmartCard

takeSmartCard
P

requiresAuthentication

[fail]

[success]

eject
SmartCard

Poll Official Voting Machine

presentOptions

reported

*

Aspect Map
(Authentication)

Pointcut Map

<<local>> Local Server <<remote>> 
Remote Server

accessedRemote

accessRemote remoteService

requires
RemoteAccess

[true]

[false]

Voting Machine Authentication Server

authenticate

Pointcut Map

P

A A

A

B

B

Aspect Map
(Caching)

<<cache>> Server

cachedcache

saveToCache
requires
Caching

[found]

[not found]

<<local>> * <<remote>> *

*

Pointcut Map

P

C

C

checkCache

 

Fig. 2. Authentication, remote service, and caching aspects. 

MATA makes use of a simple UML profile consisting of stereotypes <<create>>, 
<<delete>>, and <<context>>. The pattern consists of any elements without a 
stereotype or stereotyped with <<delete>> or <<context>>. The aspect consists of 
elements stereotyped with <<create>>. The aspect creates elements marked with 
<<create>> and removes elements marked with <<delete>>. Note that for container 
elements, such as interaction fragments, if <<create>> is applied to the container, it 
is by default applied to all contained elements unless a contained element is marked 
with <<context>>. Atomic variables in MATA are preceded by a vertical bar ‘|’ and 
sequence variables are given by a special interaction fragment with operator any 
which matches against a sequence of messages. As an example, in Fig. 2, the Remote 
Service aspect matches against an authenticate message from the voting machine to 



an object of type Authentication Server. The effect of the aspect is to add the 
<<local>> tag to the server, create a new server tagged with <<remote>>, and 
forward the message to the <<remote>> server. In the Authentication aspect in Fig. 2, 
the pattern is any sequence of messages beginning with presentOptions. The effect of 
the aspect is to wrap a new alt fragment around this sequence, to add a new 
authentication server and to add new authentication messages. The Caching aspect 
matches against any message sent to a <<remote>> object. The aspect converts the 
sending object into a cache and adds messages for dealing with local caching. 

The principles for aspect-oriented use case maps are similar. Patterns are defined 
by pointcut maps which visually describe elements to match against in a base UCM 
model. Elements on a pointcut map may be variables. The aspect is defined by an 
aspect map. Pointcut stubs (represented by a dashed diamond) in an aspect map act as 
placeholders for any matches of the pattern found in the base UCM. The causal 
relationship of the pointcut stub and the aspect’s properties visually defines how the 
aspect needs to be composed with the UCM model. Hence, in the top right of Fig. 2, 
the Authentication aspect matches against a path in the base consisting of 
presentOptions followed by any path of unspecified length (where the asterisk 
denotes any path and is hence a sequence variable). Composing this aspect with the 
base would result in a UCM that does an authentication check before options are 
presented.  

The Remote Service aspect UCM in Fig. 2 generically represents a replacement of 
the matched pattern with behavior on the true branch which is always executed and 
invokes a remote service. The pointcut stub is placed on the false branch, indicating 
that it is never executed when the aspect is applied. The aspect does not specify what 
the remoteService is, since the aspect models the remote service in a generic way. It is 
the pointcut map that applies it to the authentication service. URN links (shown as 
small triangles in Fig. 2) allow an aspect to reuse matched behavior or structure from 
the pointcut map. For example, authenticate corresponds to remoteService and 
Authentication Server corresponds both to the local and remote server. 

The Caching aspect applies to any interaction between a local and remote server 
and introduces a check against the cache and saving to the cache. A URN link is used 
to indicate that the local server is also the caching server. 

Note that the models in Fig. 2 include domain-specific markers (<<local>>, 
<<remote>>, <<confidential>>, etc.). These will be used in our approach to give 
semantic meaning to model elements. We expect such markers to come from a pre-
defined ontology or profile relevant to a particular domain. 

3 Automatically Detecting Aspect Interactions 

We distinguish between syntactic and semantic aspect interactions. Syntactic 
interactions can be detected by comparing the syntactic structures of two aspects to 
see if they overlap. Semantic interactions, on the other hand, require a deeper analysis 
of the semantics of model elements across aspects. Syntactic aspect detection is 
relatively easy to implement but cannot detect all kinds of interactions. 



In previous work [7], we applied critical pair analysis (CPA), a graph 
transformation analysis technique, to detect syntactic interactions between MATA 
aspects. Since MATA aspects are graph rules, CPA can be used to examine overlaps 
between rules. An overlap corresponds either to: a dependency – one aspect requires a 
model element only introduced by another aspect; or a conflict – one aspect modifies 
the base in such a way that another aspect can no longer be applied. 

Conflicts and dependencies usually imply that the rules should be applied in a 
particular order since the result may be different depending on which aspect is applied 
first. A conflict may also mean that two rules that should both be applied cannot be, 
and therefore, the rules themselves should be modified. The MATA tool applies CPA 
to automatically provide feedback on dependencies and conflicts. 

As an example, consider the Remote Service and Authentication aspects from Fig. 
2. There is a clear dependency between these two aspects since Remote Service needs 
to match in the base against an interaction between the Voting Machine and an 
authentication server. Since the Authentication aspect introduces this interaction, it 
must be applied before Remote Service. That is, there needs to be a local service 
before it can be converted to a remote service.  

CPA is limited to detecting syntactic interactions because it is based solely on an 
analysis of the patterns used to define where the aspects match. For example, CPA 
can tell the modeler that Authentication should be applied before Remote Service, but 
there remains a semantic conflict between these two aspects even if they are applied 
in the correct order. This is because Remote Service sends data over a network. By 
itself, this presents no issues. However, when combined with the Authentication 
aspect, the data that is transmitted becomes confidential data, resulting in the 
transmission of sensitive data over a potentially insecure channel. There is therefore a 
conflict. The solution would be, of course, to secure the network, which would require 
an additional Encryption aspect. Our aim in this paper is to be able to flag such 
semantic conflict situations automatically. 

Intuitively, our technique works by composing the model and looking for 
composed elements with more than one domain-specific marker. In this example, the 
composed model would contain a server marked as both <<confidential>> and 
<<remote>>. Given a separate semantic model that describes potential conflicts 
between these markers, the modeler can be notified of a possible problem. This 
simple idea is what we formalize in the remainder of the paper. 

4 Semantic-Based Interaction Detection 

4.1 Outline of the Approach 

Our technique relies on a set of domain-specific semantic markers for each aspect 
domain, as well as a goal model of how semantic markers from different domains 
influence each other. The overall approach is illustrated in Fig. 3. First, a set of aspect 
models is defined (either in MATA or AoUCM) as well as a base model with which 
these aspects will be composed. Semantic markers are used to annotate each aspect 



model, thus adding semantic meaning. The semantic markers are implemented as 
UML stereotypes in MATA and as domain-specific metadata for AoUCM and can be 
applied to any model element. In Fig. 2, the authentication aspect introduces the 
semantic marker <<confidential>>, the remote service aspect introduces the 
semantic markers <<local>> and <<remote>>, and the caching aspect introduces 
the semantic marker <<cache>>. Note that since semantic markers are also just 
another model element, they can also be used in aspect pattern matching. 

Second, when an aspect is applied, the composition mechanism of MATA or 
AoUCM yields a new scenario model. In this composed scenario model, model 
elements may be tagged by several semantic markers. If more than one semantic 
marker is present on a model element, a conflict may be indicated. Therefore, each of 
these model elements is further investigated in the next step with the help of a goal 
model. 

Third, a separate model defines the relationship between semantic markers in 
different domains. This model is used to identify semantic interactions between 
aspects. For example, there may be a relationship indicating that, in general, 
performance is negatively affected by security mechanisms. We represent this model 
as a goal model. A goal modeling language is used because there are well-defined 
relationships, as well as tool support, for specifying influences such as “hurts” (a 
negative impact) or “helps” (a positive impact). 

Fourth, the elements in the goal model that represent semantic markers are 
instantiated based on the semantic markers of model elements in the composed model 
with more than one semantic marker. The goal model is then analyzed (evaluated) to 
see whether there is a potential conflict between such markers.  

 

MATA / AoUCM

MATA / AoUCM

Semantic Markers (SM)

Composition

GRL Goal Model

Values for initial
satisfaction levels

Ev
al

ua
tio

n

Strategies

<<SM.A>> C1 <<SM.B>> C2

R1
P

<<SM.C>> <<SM.B>> C2

R1R

High-Level Goal 1

High-Level Goal n
+

+ -

<<SM.A>> <<SM.B>> <<SM.C>>

-
-

<<SM.A>>O1 <<SM.B>>:|O

|m1

m3 <<create>>

m2

<<SM.A>>O1

m1

m3

m2

<<SM.C>>
<<SM.B>>O2

Semantic Markers

 
Fig. 3. Semantic-based aspect interaction detection. 

In Fig. 2, the Authentication Server is <<confidential>> with only the 
Authentication aspect applied. By adding the Remote Service aspect, a <<local>> 
and a <<remote>> Authentication Server are introduced, both of which are still 



<<confidential>>. Finally, if the Caching aspect is also applied, then the 
<<confidential>> <<local>> Authentication Server is additionally tagged with 
<<cache>>. The goal model can be analyzed to see if there is a conflict between 
<<confidential>>, <<local>> and/or <<cache>>. In this case, the user will be 
notified of a potential conflict between caching and confidentiality. 

The process requires two additional activities to be undertaken by the modeler: 
1. Each domain requires a set of domain-specific semantic markers that must 

be applied to aspect model elements. 
2. There must be a goal model describing relationships between markers 

from different domains. 
We expect ultimately that this additional modeling effort can be carried out once 

and then reused across many different applications. Aspects should be defined in as 
reusable a way as possible and then customized to a particular application context. 
Hence, we advocate the development of generic aspects each annotated with semantic 
markers. This means that the semantic marking need not be derived for each 
application. In a similar manner, the goal model need only be defined once and only 
needs to be updated incrementally when a new aspect is added. The result of the 
process described in Fig. 3 is a list of potential conflicts. Note that these are only 
potential conflicts because the semantic information provided by the markers is 
limited. It is up to the modeler to make a final decision on how to address the 
conflicts. 

We make use of the Goal-oriented Requirement Language (GRL) to model and 
analyze the required goal model as explained in the next section. 

4.2 Goal-oriented Requirement Language 

We briefly present GRL and then illustrate the overall approach using the ongoing 
example. GRL combines the Non-Functional Requirements (NFR) framework [14] 
and i* framework [15] to support reasoning about goal models. The syntax of 
GRL (Fig. 4) is based on the syntax of the i* framework. A GRL goal graph is an 
AND/OR graph of intentional elements that optionally reside within an actor 
boundary. An actor represents a stakeholder of the system. A goal graph shows the 
high-level business goals and non-functional requirements of interest to a stakeholder 
and the alternatives for achieving these high-level elements. Often, alternatives 
represent functional properties of the system. A goal graph also documents beliefs 
(rationales) important to the stakeholder. Intentional elements can be softgoals, goals, 
tasks, and resources. Softgoals differentiate themselves from goals in that there is no 
objective measure of satisfaction for a softgoal. In general, softgoals are related more 
to NFRs, whereas goals are related more to functional requirements. Tasks represent 
solutions to (or operationalizations of) goals or softgoals. In order to be achieved, 
softgoals, goals, and tasks may require resources to be available. 

Various kinds of links connect the elements in a goal graph. Decomposition links 
allow an element to be decomposed into sub-elements. AND as well as OR 
decompositions are supported. Contribution links indicate desired impacts of one 
element on another element. A contribution link has a qualitative contribution type 
(Fig. 4.d). Correlation links are similar to contribution links, but describe side effects 



rather than desired impacts. Finally, dependency links model relationships between 
actors (one actor depending on another actor for something). 

Our technique uses GRL goal models as the reasoning framework for aspect 
interaction detection. While the scenario models in MATA or AoUCM describe the 
software system, the GRL goal model describes the complex semantic dependencies 
between the aspects that are being considered for the software system. GRL supports 
reasoning about goals, as it shows the impact of often conflicting goals and various 
alternative solutions proposed to achieve the goals. The solutions in our case are the 
semantic markers that identify the aspect domains, while the high-level goals are the 
non-functional requirements associated with the aspects. A GRL strategy describes a 
particular configuration of alternative solutions in the GRL model and consists of a 
set of initial satisfaction ratings for elements in the GRL model. Typically, the 
satisfaction level (Fig. 4.c) of a chosen alternative is set to Satisficed. From the NFR 
framework, GRL borrows the notion of an evaluation mechanism [8] that propagates 
these low-level decisions regarding alternatives to satisfaction ratings of high-level 
goals, thus providing an assessment of the suitability of the proposed solution. Several 
strategies can be defined for a goal model, allowing trade-off analyses to be 
performed by exploring and comparing various configurations of alternatives. A more 
complete coverage of the notation elements is available in [9, 16]. 

 

DependencyContribution

Correlation Decomposition

(b) GRL Links

(a) GRL Elements

Satisficed

Undecided

Weakly
Satisficed Denied

Weakly
Denied

Conflict

(c) GRL Satisfaction Levels

(d) GRL Contributions Types 

Break Hurt Some-

Make Help Some+

<no icon> … Unknown

Actor
Boundary

Goal  

Softgoal

Belief

Resource

Task  

Actor

 
Fig. 4. Basic elements of GRL notation. 

4.3 Electronic Voting Example 

We now resume the presentation of the EVS example. The sequence diagram in Fig. 5 
and use case map in Fig. 6 show the complete composed scenario model of the 
electronic voting machine introduced in Section 2 with all three aspects – 
Authentication, Remote Service, and Caching – applied, thus illustrating which 
semantic markers are merged onto which components. Note that an end point 
connected to a start point in a UCM acts like a sequence. 

 



:Voting
Machine

: Backend
Server

Poll Official
insertSmartCard

displayLogin

enterPIN

takeSmartCard

alt

[fail]

[success]

ejectSmartCard

presentOptions

: Authentication
Server

<<confidential,local,cache>>

: Authentication
Server

<<confidential,remote>>

checkCache

alt

[found]

[not found] authenticate

saveToCache

selectReport saveResults

authenticate

:Voting
Machine

: Backend
Server

Poll Official
insertSmartCard

displayLogin

enterPIN

takeSmartCard

alt

[fail]

[success]

ejectSmartCard

presentOptions

: Authentication
Server

<<confidential,local,cache>>

: Authentication
Server

<<confidential,remote>>

checkCache

alt

[found]

[not found] authenticate

saveToCache

selectReport saveResults

authenticate

 
Fig. 5. Sequence diagram for composed electronic voting machine. 

Poll Official Voting Machine

displayLogin

end

report

enterPIN

insertSmartCard

takeSmartCard
[fail]

[success]

eject
SmartCard

<<confidential>><<remote>> 
Authentication Server

authenticate

<<confidential>><<local>>
<<cache>> Authentication Server

saveToCache

[found]

[not found]checkCache

presentOptions

reported

selectReport
Backend Server

saveResults

 
Fig. 6. Use case map for composed electronic voting machine. 

The goal model for this set of domains is shown in Fig. 7. There are three high-
level goals – Confidentiality, Consistency, and Performance – and five tasks that 
correspond to the semantic markers <<confidential>>, <<remote>>, <<local>>, 
<<cache>> and <<encrypted>>. The contribution links and contribution types in 
the goal model indicate that Authentication has a positive impact on Confidentiality. 
Remote Server as well as Caching, however, negatively impact Confidentiality, 
because data transferred across a network as well as cached data is potentially 
vulnerable to security attacks. Encryption, on the other hand, ensures that 
Confidentiality is achieved. Caching improves performance and therefore has a 
positive impact on Performance, but both Encryption and Remote Service in general 
result in performance penalties because of additional processing and network delays, 



respectively. Authentication, on the other hand, does not have considerable positive or 
negative performance implications and therefore does not impact Performance. In 
terms of Consistency, Authentication as a non-remote service is problematic, because 
the distribution and update of data to local machines needs to be managed at setup 
time. A Remote Service with its tagged tasks Remote Server or Local Server, 
however, ensures that Consistency is achieved as the most-up-to-date information is 
always accessed. 

The composed models in Fig. 5 and Fig. 6 show two model elements with more 
than one semantic marker – there are two authentication servers, one marked as 
confidential and remote, and one marked as confidential, local and caching. We call 
model elements with more than one marker potential conflict elements. The GRL 
model can now be used to analyze the implications of potential conflict elements.  

For each potential conflict element, its marking is converted to a GRL strategy as 
follows. A task in the GRL model is given the maximum satisfaction value (100) if all 
its semantic markers are present on the potential conflict element. All other tasks are 
set to zero. After this, GRL’s propagation algorithm is used to propagate satisfaction 
levels throughout the GRL graph. 

 

<<confidential>>
Authentication

Confidentiality

Consistency

Performance

<<remote>>
Remote Server

<<local>>
Local Server

<<cache>>
Caching

Remote
Service

<<encrypted>>
Encryption

or

<<confidential>>
Authentication

<<confidential>>
Authentication

ConfidentialityConfidentiality

ConsistencyConsistency

PerformancePerformance

<<remote>>
Remote Server

<<remote>>
Remote Server

<<local>>
Local Server

<<local>>
Local Server

<<cache>>
Caching

<<cache>>
Caching

Remote
Service
Remote
Service

<<encrypted>>
Encryption

<<encrypted>>
Encryption

or

 
Fig. 7. Goal model for electronic voting machine. 

<<confidential>>
Authentication

Confidentiality

Consistency

Performance

<<remote>>
Remote Server

<<local>>
Local Server

<<cache>>
Caching

Remote
Service

<<encrypted>>
Encryption

75

*100 *100

0

0 0 0

100

or

-25

<<confidential>>
Authentication

<<confidential>>
Authentication

ConfidentialityConfidentiality

ConsistencyConsistency

PerformancePerformance

<<remote>>
Remote Server

<<remote>>
Remote Server

<<local>>
Local Server

<<local>>
Local Server

<<cache>>
Caching

<<cache>>
Caching

Remote
Service
Remote
Service

<<encrypted>>
Encryption

<<encrypted>>
Encryption

75

*100 *100

0

0 0 0

100

or

-25

 
Fig. 8. <<confidential>> <<remote>> Authentication Server.  

Fig. 8 shows the resulting GRL for the authentication server tagged with 
<<confidential>> and <<remote>>. Initial satisfaction levels are indicated by a * 



next to the satisfaction level. The markers for the Remote Server task and the 
Authentication task in the GRL are present, so these tasks are given an initial 
satisfaction level of 100. All other tasks are set to zero. The propagation algorithm 
(results shown in Fig. 8) determines that consistency is reasonably satisfied (value 75) 
whereas confidentiality is only partially satisfied (value 0), and performance may be 
problematic (value -25). Fig. 9 shows the results for the other authentication server.  

The propagated results for the high-level goals of the two strategies are shown in 
column two and three of Table 1. At this point, there is no strategy that satisfies 
sufficiently Confidentiality and Performance at the same time. This is a sign to the 
modeler that there are aspect conflicts that must be addressed. The modeler could 
decide to add encryption to increase confidentiality at the cost of performance 
between the local and remote servers and also to the cache. If a new Encryption aspect 
is composed with the existing model, the local Authentication Server would have the 
markers: <<confidential>> <<local>> <<cache>> <<encrypted>>. The remote 
Authentication Server would have the markers: <<confidential>> <<remote>> 
<<encrypted>>. The propagated results are shown in Table 1.  

 

<<confidential>>
Authentication

Confidentiality

Consistency

Performance

<<remote>>
Remote Server

<<local>>
Local Server

<<cache>>
Caching

Remote
Service

<<encrypted>>
Encryption

75

*100 *100

0

0 0

100

or

50

*100

<<confidential>>
Authentication

<<confidential>>
Authentication

ConfidentialityConfidentiality

ConsistencyConsistency

PerformancePerformance

<<remote>>
Remote Server

<<remote>>
Remote Server

<<local>>
Local Server

<<local>>
Local Server

<<cache>>
Caching

<<cache>>
Caching

Remote
Service
Remote
Service

<<encrypted>>
Encryption

<<encrypted>>
Encryption

75

*100 *100

0

0 0

100

or

50

*100

 
Fig. 9. <<confidential>> <<local>> <<cache>> Authentication Server. 

Table 1. Propagated results for Authentication Server. 

 confidential 
remote 

confidential 
local cache 

confidential 
remote 

encrypted 

confidential 
local cache 
encrypted 

Confidentiality 0 0 100 100 
Consistency 75 75 75 75 
Performance -25 50 -50 25 

5 Related Work 

Despite a large body of work on aspect-oriented modeling (e.g., [17-20]), there have 
been few attempts to handle aspect interactions during modeling. One approach has 
been to supply notations for explicitly documenting interactions, such as aspect 



interaction templates [2], precedences [2, 3], and aspect interaction charts [21]. 
MATA uses a numeric ordering scheme to capture precedence [7]. Since these 
approaches only document interactions, they could usefully be combined with the 
work in this paper, which instead detects interactions automatically. 

As noted earlier, MATA employs critical pair analysis to detect syntactic 
interactions [7]. In [22], the authors use Alloy [23] to detect interactions between 
aspects written in the Aspect-UML language. The approach, however, requires formal 
pre- and post-condition specifications and thus is not as lightweight as our approach. 
At the programming level, such work is more mature. Typical approaches apply static 
analysis to detect shared joinpoints (e.g., [5, 24]). More recently, some work has tried 
to go beyond shared joinpoints to detect control flow-based interactions [25]. 

We are not aware of any work that takes into account the semantics of model 
elements when detecting interactions. The idea of semantically-informed aspect 
development, however, builds upon previous work in semantic-based aspect weaving. 
For example, in aspect-oriented requirements engineering, Chitchyan et al [26] use 
natural language processing to take into account English semantics when composing 
textual documents. For modeling, Klein et al [17] weave UML sequence diagrams by 
matching semantically equivalent but syntactically different sequences. 

The aspect interaction problem is, of course, similar to the feature interaction 
problem [1]. Once again, however, we are unaware of the use of semantic annotations 
as in our approach. Rather, approaches are typically based on detecting structural 
interactions (e.g., [27]) or on applying formal methods, such as model checking [28].  

6 Conclusion 

This paper presented the first steps towards an approach for semantically detecting 
interactions between aspect models. The overall aim is to provide guidance to model 
developers as to how to build and compose aspect-oriented models. Tool support for 
the approach is provided by the MATA tool [11] for UML sequence diagrams and 
jUCMNav [29] for use case maps. Currently, not all parts of the process have been 
automated. jUCMNav includes a graphical editor for use case maps and for GRL goal 
models and support for semantic markers in jUCMNav is provided. Right now, 
however, the propagation algorithms in GRL do not take semantic markers into 
account and so the connection between goals in the GRL model and the semantic 
markers has to be done manually. It is straightforward to implement this in GRL.  

Clearly, there is additional modeling effort required by our approach, and, in the 
future, empirical studies are needed to compare the benefits versus the additional 
effort required. The intention, however, is that aspect models will be defined in a 
reusable and generic manner so that, for a given application, the markup effort is 
minimal. In a similar way, the GRL models can be defined incrementally and reused 
in many different contexts. The use of domain-specific semantic markers is in keeping 
with a general trend in modeling to use domain-specific abstractions and, therefore, 
we are not suggesting a radical shift in the way that models are developed. Our 
technique does require, however, domain-specific annotation languages to be 
developed for each aspect domain. We would expect existing domain-specific 



languages (e.g., UML profiles) to be usable directly. Hence, the intention is not to 
develop a new set of profiles but to use existing standardized profiles wherever 
possible. 

References 

[1] L. du Bousquet and J.-L. Richier, Feature Interactions in Software and 
Communication Systems IX (ICFI): IOS Press, 2007. 

[2] F. Sanen, N. Loughran, A. Rashid, A. Nedos, A. Jackson, S. Clarke, E. Truyen, 
and W. Joosen, "Classifying and Documenting Aspect Interactions," in 
Workshop on Aspects, Components and Patterns for Infrastructure Software at 
AOSD, Bonn, Germany, 2006. 

[3] J. Zhang, T. Cottenier, A. Van den Berg, and J. Gray, "Aspect Composition in 
the Motorola Aspect-Oriented Modeling Weaver," Journal of Object 
Technology, vol. 6, pp. 89-108, 2007. 

[4] P. Shaker and D. Peters, "Design-Level Detection of Interactions in Aspect-
Oriented Systems," in Aspects, Dependencies and Interactions Workshop at 
ECOOP 2006, 2006. 

[5] R. Douence, P. Fradet, and M. Südholt, "Composition, reuse and interaction 
analysis of stateful aspects," in Aspect Oriented Software Development, 2004, 
pp. 141-150. 

[6] D. Balzarotti, A. Castaldo, and M. Monga, "Slicing AspectJ Woven Code," in 
4th Workshop on Foundations of Aspect-Oriented Languages, Chicago, USA, 
2005. 

[7] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa, "Model Composition in 
Product Lines and Feature Interaction Detection using Critical Pair Analysis," in 
International Conference on Model Driven Engineering, Languages and Systems 
(MODELS), Nashville, TN, 2007. 

[8] ITU-T, "User Requirements Notation (URN), ITU-T Draft Recommendation 
Z.151", Geneva, Switzerland, September 4, 2008 
(http://www.UseCaseMaps.org/urn) (accessed September 2008). 

[9] D. Amyot, "Introduction to the User Requirements Notation: Learning by 
Example," Computer Networks, vol. 42, pp. 285-301, 2003. 

[10] G. Mussbacher, D. Amyot, J. Whittle, and M. Weiss, "Flexible and Expressive 
Composition Rules with Aspect-Oriented Use Case Maps (AoUCM)," in Early 
Aspects Workshop at AOSD 2007, vol. LNCS 4765, pp. 19-38, 2007. 

[11] J. Whittle and P. Jayaraman, "MATA: A Tool for Aspect-Oriented Modeling 
Based on Graph Transformation," in Models in Software Engineering: 
Workshops and Symposia at MODELS 2007, 2008, pp. 16-27. 

[12] T. Kohno, A. Stubblefield, A. Rubin, and D. Wallach, "Analysis of an Electronic 
Voting System," in IEEE Symposium on Security and Privacy: IEEE Computer 
Society Press, 2004, pp. 27-40. 

[13] G. Mussbacher, D. Amyot, and M. Weiss, "Visualizing Early Aspects with Use 
Case Maps," Transactions on Aspect-Oriented Software Development III, vol. 
LNCS 4620, pp. 105-143, 2007. 



[14] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional 
Requirements in Software Engineering: Kluwer Academic Publishers, 2000. 

[15] E. Yu, "Modeling Strategic Relationships for Process Reengineering," PhD 
thesis, Department of Computer Science, University of Toronto, Canada, 1995. 

[16] J.-F. Roy, "Requirements Engineering with URN: Integrating Goals and 
Scenarios," MSc. thesis, OCICS, University of Ottawa, Canada, 2007. 

[17] J. Klein, L. Hélouët, and J.-M. Jézéquel, "Semantic-Based Weaving of 
Scenarios," in Aspect-Oriented Software Development (AOSD), Vancouver, 
Canada, 2006, pp. 27-38. 

[18] R. France, I. Ray, G. Georg, and S. Ghosh, "Aspect-oriented approach to early 
design modeling," IEE Proceedings - Software, vol. 151, pp. 173-186, 2004. 

[19] S. Clarke and E. Baniassad, Aspect-Oriented Analysis and Design: The Theme 
Approach: Addison Wesley, 2005. 

[20] T. Cottenier, A. van den Berg, and T. Elrad, "Motorola WEAVR: Model 
Weaving in a Large Industrial Context," in Aspect-Oriented Software 
Development (AOSD), Vancouver, Canada, 2007. 

[21] S. Bakre and T. Elrad, "Scenario based resolution of aspect interactions with 
aspect interaction charts," in 10th International Workshop on Aspect Oriented 
Modeling (at AOSD), Vancouver, Canada, 2007, pp. 1-6. 

[22] F. Mostefaoui and J. Vachon, "Design-level Detection of Interactions in Aspect-
UML models using Alloy," Journal of Object Technology, vol. 6, pp. 137-165, 
2007. 

[23] D. Jackson, Software Abstractions: Logic, Language and Analysis: MIT Press, 
2006. 

[24] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Segura-Devillechaise, and 
M. Sudholt, "An Expressive Aspect Language for System Applications with 
Arachne," in Aspect-Oriented Software Development (AOSD), Chicago, Illinois, 
2005, pp. 27-38. 

[25] B. de Fraine, P. D. Quiroga, and V. Jonckers, "Management of Aspect 
Interactions using Statically Verified Control Flow Relations," in Workshop on 
Aspects, Dependencies and Interactions (at ECOOP), 2008. 

[26] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters, "Semantics-Based 
Composition for Aspect-Oriented Requirements Engineering," in Aspect-
Oriented Software Development (AOSD), Vancouver, Canada, 2007, pp. 36-48. 

[27] J. Liu, D. Batory, and S. Nedunuri, "Modeling interactions in feature oriented 
systems," in International Conference on Feature Interactions (ICFI), 2005. 

[28] L. du Bousquet, "Feature Interaction Detection using Testing and Model 
Checking: Experience Report," in World Congress on Formal Methods in the 
Development of Computing Systems, 1999, pp. 622-641. 

[29] jUCMNav website. http://jucmnav.softwareengineering.ca./jucmnav (accessed 
June 2008). 

 


