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Abstract. Fuzzy Description Logics (f-DLs) have been proposed as ex-
tensions of classical Description Logics able to handle imprecise and
vague knowledge. Although several extensions to expressive DLs have
been proposed today and many reasoning algorithms exist there is still no
scalable and efficient reasoning system reported, mainly due to inherited
computational complexity from crisp DLs and the lack for optimisation
techniques for fuzzy DL reasoning algorithms. Following the paradigm
of classical DLs, fuzzy extensions to tractable DLs have been proposed.
In the current paper we present a fuzzy extension to the tractable DL
EL+, creating f-EL+. Besides the syntax and the extended semantics
we also provide a reasoning algorithm for f-EL+. Interestingly, our algo-
rithm supports classification over fuzzy subsumption for which scalable
reasoning is not known.

1 Introduction

Fuzzy Description Logics (f-DLs) [12] have been proposed as formalisms capable
of capturing and reasoning about imprecise and vague knowledge. Such exten-
sions are particularly useful in knowledge based applications that face a consider-
able amount of imprecise and vague knowledge. Similarly to DLs, recent research
in f-DLs is mainly focused on providing reasoning algorithms for very expressive
fuzzy DLs, like the results in [11, 10]. Interestingly, there currently exist three
f-DL reasoners, the tableaux based FiRE3 [11], which supports fKD-SHIN (a
fuzzy extension of SHIN [5] with the fuzzy operators of Zadeh logic; see sec-
tion 2), the mixed integer programming reasoner fuzzyDL4 [13], which supports
fKD-SHIf(D) and fL-SHIf(D) (fuzzy SHIf(D) with the fuzzy operators of
Lukasiewicz logic) and the reduction to crisp DLs based one DELOREAN [3],
which supports fKD-SROIQ (a fuzzy extension of SROIQ [6]). Unfortunately,
there is no report for scalable reasoning with any of the aforementioned systems.
Moreover, it is obvious that regarding practical behavior they will perform even
worse than crisp DL systems due to the addition of fuzziness. Thus, quite re-
cently the focus in f-DLs was also shifted on fuzzy extensions to tractable DLs.
First, Straccia presented a fuzzy version of the DL-Lite language (f-DL-Lite)
3 http://www.image.ece.ntua.gr/∼nsimou
4 http://gaia.isti.cnr.it/∼straccia



[15], while Pan et. al. [9] presented the very first efficient and scalable system
for f-DL-Lite which is able to answer expressive fuzzy conjunctive queries over
millions of data. Finally, Vojtás [16] presented a fuzzy extension of the DL EL.
His extension is quite different than the usual ones of fuzzy-DLs [12, 11] in that
he interprets conjunction as a fuzzy aggregation rather than fuzzy intersection.
Moreover, the approach is focused on query answering, and no algorithm for
classification was presented.

In the current paper we will present a fuzzy extension to the tractable DL
EL+ [1]. Besides the syntax and semantics of fuzzy-EL+ (f-EL+) we will present
a detailed reasoning algorithm for classifying f-EL+ ontologies. An interesting
feature is that we will extend concept axioms with degrees of truth, thus allowing
for fuzzy subsumption [14]. It is well known that EL+ is very good in perform-
ing classification tasks, thus providing a scalable algorithm for classifying fuzzy
ontologies that use such axioms, as far as we know, hasn’t been studied in the
literature.

Besides the efficiency of the EL+ DL, and thus our evident interest in it, our
work on extending concept subsumption with fuzzy subsumption in a tractable
DL, was heavily motivated by the area of ontology alignment [7] and view-based
searching in Semantic portals [4]. For example in [4] the authors use the concept
of fuzzy subsumption in order to create fuzzy mapping between concepts of an
annotation ontology and and hierarchy of search views. For example the authors
use the fuzzy mappings,

Diseases v0.1 Food&Diseases

Nutrition u Exercise v0.9 Food&Diseases

to fuzzy map the concept Diseases and the intersection of the concepts Nutrition
and Exercise of an annotation ontology to the search view Food&Diseases. Addi-
tionally in the hierarchy of search views Food&Diseases is a sub-view of Nutrition
(fuzzy subsumption to degree 1). By reasoning over such fuzzy mappings would
be able to derive interesting inferences between concepts Nutrition and Exercise
and super-views of Food&Diseases, like Nutrition. As was pointed in [4] the ap-
proach uses only lightweight ontologies to perform the mappings, compared to
the expressivity of OWL DL, thus the EL+ tractable DL and its mechanisms
for classification is also clearly motivated.

In the current paper we contribute the the fuzzy DL literature by presenting
the syntax, semantics and reasoning algorithm of the fuzzy DL language f-EL+.
The algorithm of f-EL+ is the first ever to be reported offering for efficient
classification of fuzzy knowledge bases, which allow for fuzzy subsumption.

2 Fuzzy Sets

Fuzzy set theory and fuzzy logic are widely used for capturing imprecise knowl-
edge [8]. While in classical set theory an element either belongs to a set or not,
in fuzzy set theory elements belong only to a certain degree. More formally, let X
be a set of elements. A fuzzy subset A of X, is defined by a membership function
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µA(x), or simply A(x), of the form µA : X → [0, 1] [8]. This function assigns any
x ∈ X to a value between 0 and 1 that represents the degree in which this element
belongs to X. In this new framework the classical set theoretic and logical opera-
tions are performed by special mathematical functions. More precisely fuzzy com-
plement is a unary operation of the form c : [0, 1] → [0, 1], fuzzy intersection and
union are performed by two binary functions of the form t : [0, 1]× [0, 1] → [0, 1]
and u : [0, 1]× [0, 1] → [0, 1], called t-norm and t-conorm operations [8], respec-
tively, and fuzzy implication also by a binary function, J : [0, 1]×[0, 1] → [0, 1]. In
order to produce meaningful fuzzy complements, conjunctions, disjunctions and
implications, these functions must satisfy certain mathematical properties. For
example the operators must satisfy the following boundary properties, c(0) = 1,
c(1) = 0, t(1, a) = a and u(0, a) = a. Due to space limitations we cannot present
all the properties that these functions should satisfy. The reader is referred to
[8] for a comprehensive introduction. Nevertheless, it worths noting here that
there exist two distinct classes of fuzzy implications, those of S-implications,
given by the equation J (a, b) = u(c(a), b), and those of R-implications, given
by J (a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b}. Examples of fuzzy operators are the
Lukasiewicz negation, cL(a) = 1 − a, t-norm, tL(a, b) = max(0, a + b − 1), t-
conorm uL(a, b) = min(1, a + b), and implication, JL(a, b) = min(1, 1 − a + b),
the Gödel norms tG(a, b) = min(a, b), uG(a, b) = max(a, b), and implication
JG(a, b) = b if a > b, JG(a, b) = 1 otherwise, and the Kleene-Dienes implication
(KD-implication), JKD(a, b) = max(1− a, b).

Similarly, we can define the notion of n-ary fuzzy relations, by membership
functions of the form R : ∆I × . . . × ∆I → [0, 1]. Given two fuzzy relations
R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1] we define the sup−t composi-
tion as, [R1 ◦t R2](a, c) = supb∈Y {t(R(a, b), R(b, c))}. The operation of sup−t
composition satisfies the following properties:

(R1 ◦t R2) ◦t R3 = R1 ◦t (R2 ◦t R3),
(R1 ◦t R2)

− = (R−
2 ◦t R−

1 )

Due to the associativity property we can extend the operation of sup−t com-
position to any number of fuzzy relations. In that case we will simply write
[R1 ◦t R2 ◦t . . . ◦t Rn](a, b).

3 The Fuzzy-EL+ Language

In this section we introduce a fuzzy extension to the EL+ DL. Our semantics as
well as the reasoning algorithm will be tailored for the operators of the Gödel
logic we call our language fG-EL+.

As usual concept descriptions are inductively defined by a set of concept
names (CN) and a set of role names (RN) taken together with a set of con-
structors which help us construct such descriptions [2]. More precisely fG-EL+-
concepts are defined by the following abstract syntax:

C,D ::= > | A | C uD | ∃r.C
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where A ∈ CN.
As in the classical case, a fG-EL+ ontology consists of a finite set of concept

and role axioms. But differently, and following Straccia [14], we allow for fuzzy
general concept inclusions (f-GCIs) of the form 〈C v D,n〉, where n ∈ (0, 1]
and C,D are fG-EL+-concepts. Intuitively, these axioms say that the degree of
subsethood of C to D is at-least equal to n. On the other hand we choose not
to fuzzify role axioms of EL+. Thus, role inclusions axioms (RIAs) of fG-EL+
are defined by an axiom of the form r1 ◦ . . . ◦ rk v s. Note that we choose not to
allow for fuzzy subsumptions for role inclusion axioms.

The semantics of fuzzy DLs are provided by a fuzzy interpretation [12]. A
fuzzy interpretation consists of a pair I = (∆I , ·I) where the domain ∆I is a
non-empty set of objects and ·I is a fuzzy interpretation function, which maps,

– an individual a to an element of aI ∈ ∆I ,

– a concept name A to a membership function AI : ∆I → [0, 1], and

– a role name r to a membership function rI : ∆I ×∆I → [0, 1].

Using the fuzzy set theoretic operations, fuzzy interpretations can be extended
to interpret fG-EL+-concepts. The complete set of semantics are depicted in
Table 1, where JG is the Gödel fuzzy implication. Our choice of operators is
justified by the fact that Gödel implication is an R-implication and thus it holds
that 〈C v D, 1〉 iff CI(a) ≤ DI(a),∀a ∈ ∆I . Intuitively, if C is fully subsumed
by D, then the membership function of D is greater or equal than that of C in
all cases. Additionally, this also has the effect that a concept C is always fully
subsumed by itself.

Constructor DL Syntax Semantics

top > >I(a) = 1

conjunction C uD (C uD)I(a) = min(CI(a), DI(a))

existential restriction ∃r.C (∃r.C)I(a) = sup
b∈∆I

{min(rI(a, b), CI(b))}

Fuzzy GCIs 〈C v D, n〉 inf
a∈∆I

JG(CI(a), DI(a)) ≥ n

RIAs r1 ◦ . . . ◦ rk v s [rI1 ◦t . . . ◦t rIk ](a, b) ≤ sI(a, b)

Table 1. Syntax and Semantics of fG-EL+

The basic inference problem of fG-EL+ is fuzzy concept subsumption: A con-
cept C is fuzzy subsumed by a concept D to a degree n ∈ (0, 1] w.r.t. an fG-EL+
ontology O, written 〈C vO D,n〉 if infa∈∆I .JG(CI(a), DI(a)) ≥ n for every
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model I ofO. Moreover we are also interested in the problem of classifying an fG-
EL+ ontology which contains fuzzy-GCIs, i.e. compute all fuzzy subsumptions
between concepts of the ontology.

4 Classifying with Fuzzy Subsumption

In the current section we will provide a detailed presentation of the algorithm
for classifying fuzzy subsumption in f-EL+ ontologies. As we will see in the
following the algorithm for fG-EL+ is quite similar to the algorithm for classical
EL+ modulo the degrees of fuzzy-GCIs.

4.1 Normal Form for f-EL+ Ontologies

Before applying the polynomial algorithm for classification a f-EL+ ontology
needs to be normalized [1].

Given an ontology O, we write CN>O and CNO to denote the set of concept
names with and without the top concept (>), respectively. Then, an fG-EL+
ontology O is in normal form if

1. all fuzzy GCIs in O have one of the following forms, where Ai ∈ CN>O and
B ∈ CNO:

〈A1 u . . . uAk v B,n〉
〈A1 v ∃r.A2, n〉

〈∃r.A1 v B,n〉, and

2. all role inclusions are of the form r v s or r1 ◦ r2 v s.

As shown in [1] every EL+ ontology O can be turned into a normalized one
O′ by exhaustively applying proper normalization rules, which introduce new
concept and role names in the ontology. The complete set of normalization rules
for fG-EL+ is described below.

Lemma 1. A fG-EL+ ontology O is satisfiable iff the normalized one O’ is
satisfiable.

Theorem 1 ([1]). Subsumption w.r.t. f-EL+ ontologies can be reduced in linear
time to subsumption w.r.t. normalized ontologies in f-EL+.

In the following, and without loss of generality, we assume that an input ontology
O is in normal form.
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NF1 r1 ◦ . . . ◦ rk v s  r1 ◦ . . . ◦ rk−1 v u, u ◦ rk v s

NF2 〈C1 u . . . u Ĉ u . . . u Ck v C, n〉  〈Ĉ v A, n〉, 〈C1 u . . . uA u . . . u Ck v C, n〉

NF3 〈∃r.Ĉ v D, n〉  〈Ĉ v A, n〉, 〈∃r.A v D, n〉

NF4 〈Ĉ v D̂, n〉  〈Ĉ v A, n〉, 〈A v D̂, n〉

NF5 〈B v ∃r.Ĉ, n〉  〈B v ∃r.A, n〉, 〈A v Ĉ, n〉

NF6 〈B v C uD, n〉  〈B v C, n〉, 〈B v D, n〉

where Ĉ, D̂ 6∈ CN>O, Ci, C, D are arbitrary concept descriptions, B ∈ CN>O, u denotes

a new role name and A denotes a new concept name

Table 2. Normalization rules for fG-EL+

4.2 An Algorithm for Classification in f-EL+

Let O be an f-EL+ ontology in normal form. Our subsumption algorithm for
normalized fG-EL+ ontologies can be restricted to subsumption checking be-
tween concept names. More precisely, 〈C vO D,n〉 iff 〈A vO′ B,n〉, where
O′ = O ∪ {〈A v C, n〉, 〈D v B,n〉} with A and B new concept names.

Let RNO be the set of all role names occurring in O. The algorithm computes:

– A mapping S assigning to each concept name of CNO a subset S(A) of
CN>O × [0, 1], and

– A mapping R assigning to each role name r of RNO a ternary relation R(r)
which is a subset of CN>O × CN>O × [0, 1].

As we can see, due to the presence of fuzzy subsumptions we have extended the
mappings S(A), R(r) to range over subsets of CN>O×[0, 1] and CN>O×CN>O×[0, 1],
respectively. As with crisp EL+ intuitively, these mappings make implicit fuzzy
subsumption relationships explicit in the sense that

– 〈B,n〉 ∈ S(A) implies 〈A v B,n〉, and

– 〈A,B, n〉 ∈ R(r) implies 〈A v ∃r.B, n〉.

The mappings are initialized as follows:

– S(A) = {A,>}, for each A ∈ CNO

– R(r) = ∅, for each r ∈ RNO

Then, the sets S(A) and R(r) are extended by applying the completion rules
shown in Table 3 until no more rules are applied.

Theorem 2. The algorithm runs in polynomial time and it is sound and com-
plete, i.e. after it terminates on input O, we have for all A,B ∈ CN>O, n ∈ (0, 1]
that 〈A vO B,n〉 iff 〈B,n′〉 ∈ S(A), for some n′ ∈ (0, 1], with n′ ≥ n.
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R1 If 〈A1, n1〉 ∈ S(X), . . . , 〈Al, nl〉 ∈ S(X), 〈A1 u . . . uAl v B, k〉 ∈ O and

〈B, m〉 6∈ S(X), where m = min(n1, . . . , nl, k)

then S(X) := S(X) ∪ {〈B, m〉}, where m = min(n1, . . . , nl, k)

R2 If 〈A, n〉 ∈ S(X), 〈A v ∃r.B, k〉 ∈ O, and

〈X, B, m〉 6∈ R(r), where m = min(n, k)

then R(r) := R(r) ∪ {〈X, B, m〉}, where m = min(n, k)

R3 If 〈X, Y, n1〉 ∈ R(r), 〈A, n2〉 ∈ S(Y ), 〈∃r.A v B, n3〉 ∈ O, and

〈B, m〉 6∈ S(X), where m = min(n1, n2, n3)

then S(X) := S(X) ∪ {〈B, m〉}, where m = min(n1, n2, n3)

R4 If 〈X, Y, n〉 ∈ R(r), r v s ∈ O, and 〈X, Y, n〉 6∈ R(s)

then R(s) := R(s) ∪ {〈X, Y, n〉}

R5 If 〈X, Y, n1〉 ∈ R(r), 〈Y, Z, n2〉 ∈ R(s), r ◦ s v f ∈ O,

and 〈X, Z, m〉 6∈ R(f), where m = min(n1, n2)

then R(f) := R(f) ∪ {〈X, Z, k〉} where m = min(n1, n2)

Table 3. Completion rules for fG-EL+

4.3 The Optimised Algorithm

As it was pointed in [1] although EL+ is a tractable DL, in practice the above
algorithm might fail to provide truly tractable, scalable and efficient reasoning.
This is due to the fact that the application of rules is performed using a naive
brute-force search. This effect is remedied by proposing a refined algorithm which
is shown to provide truly scalable practical reasoning. The algorithm is realized
by introducing a set of queues, one for each concept name, which intuitively
guide the application of the expansion rules. In the following we sketch the
necessary modifications to the EL+ refined algorithm in order to also provide
optimisations for the fG-EL+ algorithm.

Our entries of the queues are of the form

B1, . . . , Bm → 〈B′, n′〉 and 〈∃r.B, n〉

with B1, . . . , Bm, B and B′ concept names, r role name, m ≥ 0 and n, n′ ∈ (0, 1].
For m = 0 we simply write 〈B′, n′〉. Intuitively,

– an entry B1, . . . , Bm → 〈B′, n′〉 ∈ queue(A) means that 〈B′, k〉, with k =
min(n′, n1, . . . , nm) has to be added in S(A) if S(A) already contains infor-
mation for B1, . . . Bm, i.e. entries 〈B1, n1〉, . . . , 〈Bm, nm〉, and

– 〈∃r.B, n〉 ∈ queue(A) means that 〈A,B, n〉 has to be added to R(r).

Similarly to the optimised algorithm of EL+ we use the mapping Ô from concepts
to sets of queue entries as follows: For each concept name A ∈ CN>O, Ô(A) is the
minimal set of queue entries such that:
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– if 〈A1 u . . . uAm v B,n〉 ∈ O and A = Ai, then

A1, . . . Ai−1, Ai+1, . . . , Am → 〈B,n〉 ∈ Ô(A) and

– if 〈A v ∃r.B, n〉 ∈ O, then 〈∃r.B, n〉 ∈ Ô(A).

Similarly, for each concept ∃r.A, Ô(∃r.A) is the minimal set of queue entries
such that, if ∃r.A v B ∈ O, then 〈B,n〉 ∈ Ô(∃r.A).

Using the above changes the refined algorithm of EL+ can be changed ac-
cordingly in order to also take into account fuzziness in subsumption axioms and
provide an algorithm for processing the queue entries.

Theorem 3. The refined algorithm runs in polynomial time and it is sound
and complete, i.e. after it terminates on input O, we have for all A,B ∈ CN>O,
n ∈ (0, 1] that 〈A vO B,n〉 iff 〈B,n′〉 ∈ S(A), for some degree n′ ∈ (0, 1], with
n′ ≥ n.

5 Conclusions

In the current paper we have presented a fuzzy extension of the well-known
tractable DL EL+, creating the fG-EL+. Besides the syntax and semantics we
have also shown how the classification algorithm of EL+ can be extended in
order to provide reasoning for this fuzzy EL+ DL. Our approach is interesting
in several directions. On the one hand it presents a fuzzy extension of a tractable
DL, which is expected to perform very well in practice compared to expressive
fuzzy DL reasoning systems for which no report or evidence on scalable reasoning
exists yet. On the other hand our algorithm is also able to handle and perform
scalable and efficient classification over fuzzy subsumption using the semantics
of the Gödel R-implication. To achieve this goal we have also investigated the
refined (optimised) algorithm of EL+ in the fuzzy case in order to provide an
optimised algorithm for classifying with fuzzy subsumption.

Regarding future work we plan to implement the proposed optimised algo-
rithm and apply an extensive evaluation in order to assess its practical perfor-
mance. Additionally, we also plan to apply the algorithm in a real case scenario
and more precisely in the scenario of view-based searching in Semantic portals
[4] and assess the added value of it.
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