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Abstract. The use of Description Logic as the basis for Semantic Web
Languages has led to new requirements with respect to scalable and non-
standard reasoning. In this paper, we address the problem of scalable
reasoning by proposing a distributed, complete and terminating algo-
rithm that decides satisfiability of terminologies in ALC. The algorithm
is based on recent results on applying resolution to description logics.
We show that the resolution procedure proposed by Tammet can be dis-
tributed amongst multiple resolution solvers by assigning unique sets of
literals to individual solvers. This results provides the basis for a highly
scalable reasoning infrastructure for Description logics.

1 Introduction

The use of description logics as one of the primary logical languages for knowl-
edge representation on the Web has created new challenges with respect to rea-
soning in these logics. In order to be able to support the vision of a semantic
web of interrelated ontologies, reasoning procedures have to be highly scalable
and able to deal with physically distributed knowledge models. A natural way
of addressing these problems is to rely on distributed inference procedures that
can distribute the load between different solvers thus reducing potential bottle-
necks both in terms of memory and computation time. Currently, almost all the
work on description logic reasoning still assumes a centralized approach where
the complete terminology has to be present on a single system and all inference
steps are are carried out on this system. Exceptions to this rule are approaches
like Distributed Description Logics (DDL) [2] that support local reasoning at
the price of sacrificing expressiveness in the links between local models and by
dropping some formal properties on the level of the overall model. In DDL for
example, certain types of inconsistencies are not propagated on the global level.
The goal of our work is to support local reasoning in description logics with-
out the need to reduce the expressiveness of links between local models. Based
on results in resolution reasoning for description logic [6], we present an algo-
rithm that decides satisfiability of a set of ALC ontologies. This algorithm allows
us to provide distributed reasoning support on sets of terminologies that share
non-logical symbols without merging the modules. A possible application is the
provision of distributed reasoning support for (ALC equivalent parts of) OWL
ontologies linked by import statements. Our method guarantees that the global
semantics is preserved.



The contribution of this paper is twofold: (1) We identify general require-
ments for a resolution procedure needed to guaranteeing soundness and com-
pleteness. (2) we show that the resolution method proposed in [6] satisfies these
requirements. The paper is organized as follows: after a brief discussion of re-
lated work in the remainder of this section, we first explain the general idea of
distributing standard resolution and discuss the problems that have to be solved
for guaranteeing completeness. We then discuss ordered resolution as a adequate
basis for distribution and its adaptation to ALC knowledge bases. Finally, we
discuss implementation issues of our algorithm as well as possible optimizations.

1.1 Related Work

Modular DL Reasoning Current approaches to distributed reasoning on de-
scription logic mostly rely on tableaux methods. Distribution by solving the two
choices of nondeterminitic tableaux rules in parallel is difficult as it hampers the
application of optimization and blocking strategies. Instead most distributed
tableaux approaches try to identify all possible conflicts, i.e. all axioms that
might follow from another module and would cause a contradiction and send
these as queries to the other modules. So far, this is only done for links with
rather restricted expressiveness between the modules.
The most prominent actually distributed T-Box reasoning implementation for
ontologies Distributed Description Logic (DDL) [2] supports only a special type
of links (called bridge rules) between ontologies. The local domains have to be
disjoint, i.e. there is no real subsumption between elements of different modules.
Like DDL, E-connections [3] treat local domains as disjoint and do not support
subsumption relations between modules. The same authors are working on a
modular ontology framework based on Conservative Extensions [5]. This frame-
work, however, does not allow complex interactions between axioms in different
modules. This allows the authors to work with local reasoning without any com-
munication between the modules. We think that this approach overshoots the
mark and poses too many restrictions on the way axioms might be distributed
across different sites.

Distributed Resolution Methods Resolution is used by all successful FOL
provers. Approaches to distributed first order reasoning are motivated by effi-
ciency considerations, performance is improved by using multiple processors in
parallel. Roo[4], for example, is a parallelization of the widely (re)used first order
reasoner Otter.
Parallelization differs from the distribution setting, while the former usually
uses a shared memory, the latter constitutes a physical separation of modules
and resulting higher communication costs. Partition-Based Reasoning [1] is a
distributed resolution strategy that requires local reasoning to be complete for
consequence finding. The requirement inevitably causes derivation of much more
clauses than necessary for refutation. Nevertheless the method was shown to
speed up some resolution strategies in a parallel setting without communication
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costs. The requirement of being complete wrt. consequence finding means that
we cannot directly apply this approach to description logics as to the best of our
knowledge, there is no method that satisfies this requirement for ALC.

Resolution for Description Logics The main problem with applying FOL
approaches for DL is that termination is not guaranteed. Although DL is a
decidable fragment of FOL, causing a FOL reasoner to terminate on DL input
requires considerable adaption of the algorithm. This paper is based on resolution
methods introduced to description logics by [7] that decide satisfiability. The
algorithm we present can be seen as a distributed version of the algorithm for
deciding ALC satisfiability described in [6].

2 Distributed Standard Resolution

Analyzing the applicability of the Partition-Based Reasoning approach of [1] to
description logic revealed that the only way to avoid redundant derivations is to
perform the same tasks as a common resolution reasoner instead of connecting
a set of blackbox reasoners. Therefore, the basic idea proposed in this paper
is to distribute common standard resolution by allocating each derivation step
to a unique site in the distributed system. We assume a DL knowledgebase
transformed into first order clauses and give an allocation function that maps
each occuring clause to the specific module that contains this clause. In general,
a complete calculus could require an allocation relation that is not functional but
contains pairs (c,mi), (c,mj) allocating some clause c to two different modules
mi and mj . Modules are thus sets of clauses that can be derived from the given
knowledge base. Different ontologies that share terms (e.g. one ontologie uses
a concept defined in another ontology) can be considered as modules, too. The
ontologies can be translated into clauses seperately and an allocation relation
can be defined for allocating newly derived clauses to modules.

Definition 1 (Resolution). For literals A,¬B clauses C ∨A,D ∨ ¬B

Resolution
C ∨A D ∨ ¬B

Cσ ∨Dσ

where σ is the most general unifier of A and B.

Resolution is a sound and complete calculus for deciding satisfiability of first
order theories. However, additional rules are necessary for obtaining a decision
procedure that potentially terminates on realistic input. Most important in prac-
tice are reduction rules, that delete redundant clauses and thereby reduce the
options for new derivations.
In this paper we focus on the distribution of derivation, because reduction can
be constricted without sacrificing completeness. We expect that local reduction
(i.e. deleting clauses that are redundant wrt. the module they are contained in)
is sufficient in practice. Inter-module reduction is discussed briefly in section 5.
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Definition 2 (Distributed Resolution). For a given resolution calculus R
and allocation function a, the corresponding distributed calculus is obtained by
adding the restriction ∃m : a(P1,m), . . . , a(Pn,m) to every rule P1,...,Pn

D with
premises Pi, i = 1...n.

For rules with only one premise this restriction is trivially true and may be
omitted. These restrictions constitute a seperation into modules. Implementation
is realized by connecting a set of standard reasoners:

– Every module is saturated seperately
– Newly derived clauses are propagated according to the allocation relation

The system stops if the empty clause is derived in one of the modules or all
are saturated. In difference to the centralized case, a module that is saturated
locally may have to continue reasoning once a new clause is propagated from
another module.

2.1 Distributed Resolution Challenge

In general, clauses might have to be allocated to more than one module to make
sure that the premises of every derivation step are allocated to the same module.
In order to achieve an efficient method, we have to avoid duplication and allocate
every clause to as few sites as possible. Even if we assume the case of only two
modules where each may use terms defined by the other distributing standard
resolution might cause most of the axioms in inferences be copied to the other
module. To make sure that every pair of clauses that can be resolved with each
other meets in a module, we need to send all clauses containing a foreign term
(i.e. a term defined in the other module) to the other module. Unfortunately
the resolvent of clauses from different modules is very likely to contain terms
from both modules that were only used locally before, thus it has to be copied
to both modules. If we extend the approach to multiple modules we can expect
further increase of the number of duplicates. Nevertheless, we will show that it
is possible to define a distributed resolution method for ALC that is sound and
complete, and terminates. It does not require duplication of axioms, every clause
is allocated to exactly one module.

3 Ordered Resolution

The distributed reasoning algorithm we propose relies on a special parameteriza-
tion of ordered resolution. Intuitively, the idea of ordered resolution is to derive
a certain clause only once and not in different ways. If at a point in the deriva-
tion process one clause could be resolved on multiple literals with multiple other
clauses (one for each literal) it is not necessary to try all permutations of the
literal sequence. Instead the literals are ordered and only one sequence of deriva-
tions is executed. Moreover some steps can be combined to a single inference
(hyperresolution) because the intermediate results are redundant, resulting in
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an additional speed up.
Ordered resolution depends on two parameters that can be modified to improve
performance e.g. for restricted subsets of first order logic like description logic.
First paparmeter is the order of literals (for defining the maximal literals) that
can be defined on top of an order of predicate symbols, function symbols and con-
stants. The second parameter is the selection function that maps every clause
C to a subset S(C) of it’s negative literals. Essentially the selection function
changes the order of literals in a clause, the selected literals are moved to the
front. In addition, the combination of multiple inferences for skipping redundant
intermediate results (i.e. hyperresolution) is controlled by selection.
We use ordered resolution in combination with positive factoring. The two rules
can be combined with hyperresolution into one inference but for the sake of
simplicity we use the seperate notation.

Definition 3 (Ordered Resolution).

Ordered resolution:

C ∨A D ∨ ¬B

Cσ ∨Dσ

1. σ is the most general unifier of A and B
2. either B is selected in D ∨ ¬B or else nothing is

selected in D ∨ ¬B and Bσ is maximal w.r.t. Dσ
3. Aσ is strictly maximal with respect to Cσ
4. nothing is selected in Cσ ∨Aσ

Positive factoring:

C ∨A ∨B

Cσ ∨Aσ

1. σ is the most general unifier of A and B
2. Aσ is maximal with respect to Cσ ∨Bσ
3. nothing is selected in Cσ ∨Aσ ∨Bσ

For the first rule, (C ∨ A) is the side premise and (D ∨ ¬B) is main premise.
Compared to unrestricted resolution, many derivations are skipped in ordered
resolution. A literal A that is not selected in a clause C can only be resolved
upon if nothing is selected in the clause and Aσ is maximal.

3.1 Adaptation to DL

The problem with applying first order methods for DL is loosing decidability.
A DL-ontology input to a complete first order reasoner will not terminate in
general. [7] showed that using ordered resolution, decidability of ALC can be
preserved by transforming the ontology into a special normal form.

Definition 4 (Description Logic Resolution). With RDL we denote the fol-
lowing reasoning method:
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Clausification Before skolemization the DL concept definitions are replaced by
their definitorial form1.

Rules The resolution rules applied are ordered resolution and positive factoring.
Ordering The literal ordering is a lexicographic path ordering (definition be-

low) based on a total precedence > with f > P > ¬ for every function
symbol f and predicate symbol P . (This implies that R(x, f(x)) � ¬C(x)
and D(f(x)) � ¬C(x), for all function symbols f , and predicates R,C, and
D.)

Selection The selection function selects every negative binary literal in each
clause.

Definition 5 (Lexicographic Path Ordering).
A lexicographic path ordering (LPO) is a term ordering induced by a well-founded
strict precedence > over function, predicate and logical symbols, defined by:
s = f(s1, . . . , sm) � g(t1, . . . , tn) = t if and only if
at least one of the following holds

(i) f > g and s � ti for all i with 1 ≤ i ≤ n
(ii) f = g and for some j we have (s1, . . . , sj−1) = (t1, . . . , tj−!), sj � tj and

s � tk for all k with j < k ≤ n
(iii) sj � t for some j with 1 ≤ j ≤ m

LPOs have the subterm property, i.e. E[E′] � E′ for every expression E. Fur-
thermore, if > is total, the LPO induced by > is total on ground terms.

Theorem 1 (RDL complexity). For an ALC knowledge base KB, saturat-
ing its definitorial form by RDL decides satisfiability of KB and runs in time
exponential in KB.

For the proof see [7].

4 Distributed Ordered Resolution

Intuitively, the idea for distributing resolution is

– Every module ”hosts” a subset of the literals, i.e. it is responsible for all
inferences resolving upon one of these literals.

– Every (derived or stated) clause is moved to modules that host a resolvable
literal.

Essential for distributing resolution without duplicating clauses and derivations
is to reduce the number of modules that may be responsible for the next deriva-
tion to a single module i.e. to define the resolution method in such a way that
there is a unique resolvable literal for every clause. Note that literals can be
allocated to modules based on their top symbol and a partitioning of symbols.
1 Due to limited space we refer to [6], chapter 4.3 for definition. Intuitively, the defin-

itorial form can be seen as contrary of unfolding, it splits up nested axioms into
simple ones by introducing new concepts.
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4.1 Resolvable Literals of a Given Clause

For defining a resolution method that is complete for this communication strat-
egy, we investigate the options for using a given clause in an inference. The first
thing we discover from the definition of ordered resolution is that a clause can
only be main premise and not side premise if some literal is selected by the se-
lection function. By exploiting the other requirements we obtain the following
decision tree (Assuming the decision on the resolvable literal is not affected by
unification).

Resolution options for a given clause

If nothing is selected, only a maximal literal can be resolved. If there are multiple
maximal literals, then the clause cannot be a side premise. Problematic are
multiple negative maximal literals because any of them can be the resolved
literal in the next derivation. If all multiple maximal literals are positive only
factoring is possible because the clause can neither be a side premise nor a main
premise. A given clause can never be side premise and main premise at same
time (in different inferences). If the selection function is empty, the first branch
on the right is pruned. If the order is total, the branch in the middle is pruned.
By exploiting the effects of the selection and ordering on the clause tree, two
problematic cases are identified:

? Multiple selected literals: If literals from different modules are selected, we
cannot allocate the inference to one module.

?? Multiple negative maximal literals, none selected: We have to send the clause
to every module that is responsible for derivations resolving upon one of these
literals.

Never selecting literals hosted by different modules conflicts with selecting all
negative binary literals like required by RDL. Using a total order on literals
would avoid the second problem but, even with a total precedence on symbols
LPO might be only total on ground literals. Before we address these problems,
we make sure that the assumption we made for building the clause tree is true.
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4.2 Invariance of Resolvable Literals

The decision tree can only be applied if the resolvable literals for each clause are
not changed by unification. The definition of ordered resolution requires each
resolved atom Aσ to be (strictly) maximal with respect to Dσ (Cσ) but this
does in general not imply that A is (strictly) maximal w.r.t. the premise before
substitution. For some definitions of selection, unification might also affect the
literals to be selected. Fortunately, in the resolution method presented by [6] for
ALC, the types of clauses are restricted to five different types and the occuring
substitutions are very simple. Furthermore, the selection function is independent
of unification. For these clauses depicted below we can show, that Aσ is (strictly)
maximal w.r.t. its clause iff A is (strictly) maximal w.r.t. its clause.

clause type type of resolvable literal
1 R(x, f(x)) ∨P(x) R(x, f(x))
2a P(x) (¬)P (x)
2b P1(f(x)) ∨P2(x) (¬)P (f(x))
3 ¬R(x, y) ∨P1(x) ∨P2(y) ¬R(x, y)
4 P(a) (¬)P (a)
5 (¬)R(a, b) (¬)R(a, b)

In the above table P(t) (where t is a term) denotes a possibly empty disjunction
of the form (¬)P1(t) . . . (¬)Pn(t). P(f(x)) denotes a possibly empty disjunc-
tion of the form P1(f1(x)) . . .Pm(fm(x)). Note that this definition allows each
Pi(fi(x)) to contain positive and negative literals. We choose a slightly different
notation of the ALC clauses with the type 2 clauses subdivided because the re-
solvable literal is of type P (f(x)) if one exists and otherwise P (x).

Analysing all possible types of inferences among these clause will reveal that
in all cases the resolvable literals can be determined prior to substitution.
This is obvious for clauses of type 5 (they are unit clauses) and of type 4 because
nothing is substituted in these clauses. Furthermore clauses of type 3 contain a
selected literal, i.e. the negative binary literal of type ¬R(x, y). For the remaining
clauses of type 1 and 2 we show that we can determine the maximal literal of a
clause prior to any substitution.

Lemma 1 (Invariance of Maximality). If a set of ALC clauses is resolved
applying RDL, the maximal literal of a clause of type 1 or 2 is independent of
unification.

Proof. To prove the lemma we apply the definition of the ordering used for RDL,
i.e. a LPO (see Definition 5) based on a precedence > of function (f), predicate
(P ) and logical symbols with (f > P > ¬). We demonstrate for any literals
A and B of a clause of type 1, 2a or 2b and for all possible substitutions σ
that Aσ � Bσ if and only if A � B. Possible substitutions are of the form
x → a, x → y and x → f(y). They do not get more complicated because the
definition of the ordering impedes substitution of variables that are arguments
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of functions. E.g. P1(x) will only be unified with P2(f(y)) if no function symbol
is contained in the same clause. Without loss of generality we restrict the proof
to positive literals, because for every literal A, ¬A � A and there is no literal B
with ¬A � B � A.

1. The literal R(x, f(x))σ is maximal in clauses of type 1 independently of the
substitution because f > P and f(x)σ � xσ (subterm property) and by (i)
f(x)σ � P (x)σ. By (iii) follows R(x, f(x))σ � P (x)σ.

2a. P (x)σ � Q(x)σ iff P > Q independent of σ because (ii) and (iii) are not
applicable and by the subterm property P (x)σ � xσ. Note that the same
holds if predicate symbols are replaced by function symbols.

2b. Literals of type (¬)P (f(x)), are larger than any literal of type P (x) inde-
pendent of substitution by (iii) because f(x)σ � Q(x)σ.
P (f(x))σ � Q(g(x))σ holds iff one of (i),(ii),(iii) hold i.e. (P > Q∧P (f(x))σ �
g(x)σ) ∨ (P = Q ∧ f(x)σ � g(x)σ) ∨ f(x)σ ≥ Q(g(x))σ. This is equiv-
alent to (P > Q ∧ f = g) ∨ f > g independent of substitution, because
by (iii) (P (f(x))σ � g(x)σ iff f(x)σ � g(x)σ) and (f(x)σ ≥ Q(g(x))σ iff
f(x)σ � g(x)σ). ut

Hence, the resolvable literals of a clause are not affected by any possible substi-
tution. Maximality of a literal in a clause with nothing selected can be computed
prior to unification.
Actually the proof of Lemma 1 establishes a stronger result for RDL. The list of
clause types on the one hand and the biconditionals P (x)σ � Q(x)σ iff P > Q
and P (f(x))σ � Q(g(x))σ iff (P > Q ∧ f = g) ∨ f > g on the other hand yield
the following corollary.

Corollary 1.
Saturating an ALC knowledge base by RDL, 1) the selection function never se-
lects more than one literal and 2) the order is total on the literals of a clause
that are not selected.

This solves exactly the problems marked by * and ** in the clause decision
tree. Thus, there is a unique resolvable literal for every clause c independent of
substitution and a unique module m(c) that is responsible for resolving upon
this literal.

Theorem 2 (Completeness of Distributed Resolution). Distributed Or-
dered Resolution is a complete, terminating procedure for deciding ALC satisfi-
ability.

Proof. The theorem follows from the properties of centralized RDL (Theorem 1)
and Lemma 1. Factoring is not affected by distribution because it is applied
to single clauses. Assume the empty clause is not derived from an unsatisfiable
KB by distributed ordered resolution and consider the first inference in the
corresponding centralized reasoner that does not occur in the distributed version.
The literal that is resolved upon is hosted by a single module. By Lemma 1 this
literal is identified to be the unique resolvable literal of each premise when the
premise is derived or read. Thus both premises are send to the same module
that hosts the literal and the inference is carried out by local resolution. ut
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5 Optimizations

5.1 Selection Function

The selection function defined for RDL selects at most one literal. A derived
clause is very likely to be moved to another module. It would be more efficient
to select local literals first. Moreover, if we select multiple literals, we can combine
multiple inferences to a so called hyperresolution inference and skip redundant
intermediate results. By taking a closer look at the requirements necessary to
make sure that the set of ALC clauses is closed under RDL, we can improve the
selection function as follows:

Definition 6 (selection2).
1. Select nothing from clauses of type 1 and 5
2. From type 3 clauses select the negative binary literal.
3. From clauses of type 2b select the maximal number of negative literals of type

P (f(x)) hosted by a single module.
4. From clauses of type 2a and 4 select the maximal number of negative literals

hosted by a single module.

We may not select all local literals but selecting all literals hosted by one module
has a similar effect. First the clause is moved to that module, but then all local
literals are solved in the next inference.

5.2 Reduction

The most important reduction technique is the deletion of clauses that are sub-
sumed by another clause. Deleting newly derived clauses that are subsumed is
forward subsumption, backward subsumption refers to the deletion of clauses
that are subsumed by a newly derived clause. The näıve approach to distributed
subsumption would be to propagate new clauses to all modules that host one
of its literals for forward subsumption checks and send it to modules that are
responsible for literals equal or smaller than the resolvable literal of the new
clause for backward subsumtion.
Fortunately we can again take advantage of the clause typology. Of all different
clause types only type 2a can be subsumed by a clause of different type, every
other clause can only be subsumed by a clause of the same type. Thus, by in-
dexing the clauses with their types we can skip a large part of the subsumption
tests.

6 Summary

We addressed the problem of improving the scalability of description logic rea-
soning by proposing a distributed resolution method for ALC terminologies. The
algorithm extends ordered resolution with a method for assigning clauses to a
unique location at which all possible resolution steps are executed by a local
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solver. We analyzed the properties of such a distributed method and identified
necessary conditions for guaranteeing completeness and termination of the algo-
rithm. Further, we have shown that the resolution method for ALC described by
Motik satisfies these conditions and can therefore be distributed across different
distributed reasoners. Our investigations lay the foundation for the implemen-
tation of a large scale reasoning infrastructure for ALC terminologies and can
be seen as a first step towards supporting the vision of the semantic web as a
distributed system of interlinked ontologies that can be reasoned upon. It re-
mains to be seen how the proposed algorithm behaves in practice. In particular,
we have to find a way to control the cost of communication between local rea-
soners. The major task in this context is the definition of a suitable distribution
strategy based on the nature of the terminologies involved. Further, we have to
investigate possible optimizations of the reasoning method some of which are
already mentioned in Section 5. Another major issue is the development of dis-
tributed reasoning methods for more expressive languages – the final goal is to
support reasoning in OWL which is known to be equivalent to SHOIN (D). A
direct extension of the approach proposed here is not possible because dealing
with number restrictions requires a different resolution approach, i.e. the use of
paramodulation. In this context it is not clear if an assignment of literals to a
certain reasoner is still feasible. An investigation of this issue will be the focus
of future work.

Acknowledgement

This work was partially supported by the German Science Foundation in the
Emmy-Noether Program under contract Stu 266/3-1.

References

1. E. Amir and S. McIlraith. Partition-based logical reasoning for first-order and
propositional theories. Artificial Intelligence, 162(1-2):49–88, 2005.

2. A. Borgida and L. Serafini. Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics, 1:153–184, 2003.

3. Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Combining owl ontologies
using e-connections. Journal Of Web Semantics, 4(1), 2005.

4. Ewing L. Lusk, William W. McCune, and John Slaney. Roo: a parallel theorem
prover. In In Proceedings of the 11th CADE, volume 607 of LNAI, pages 731–734.
Springer Verlag, 1992.

5. C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive de-
scription logics. In Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence IJCAI-07. AAAI Press, 2007.

6. Boris Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Universität Karlsruhe (TH), Karlsruhe, Germany, January
2006.

7. Tanel Tammet. Resolution methods for Decision Problems and Finite Model Build-
ing. PhD thesis, Chalmers University of Technology and University of Göteborg,
1992.

11


