
A Kernel Revision Operator for Terminologies

Guilin Qi1, Peter Haase1, Zhisheng Huang2, and Jeff Z. Pan3

1 Institute AIFB, University of Karlsruhe, Germany
{gqi,pha}@aifb.uni-karlsruhe.de

2 Department of Mathematics and Computer Science, Vrije University Amsterdam
huang@cs.vu.nl

3 Department of Computing Science, The University of Aberdeen
jpan@csd.abdn.ac.uk

Abstract. In this paper, we propose a new method for revising termi-
nologies in description logic-based ontologies. Our revision method is a
reformulation of the kernel revision operator in belief revision. We first
define our revision operator for terminologies in terms of MIPS (minimal
incoherence-preserving sub-terminologies), and we show that it satisfies
some desirable logical properties. Second, two concrete algorithms are
developed to implement the revision operator.

Key words: Description Logic, Incoherence, Revision

1 Introduction

Ontologies are typically not static entities, but they evolve over time. Firstly, the
process of creating ontologies is in fact a process of change. Secondly, even when
an ontology is stable enough, changes are often necessary when the scenario
of its application changes. Furthermore, from time to time people might want
to change an ontology to reuse it in a similar environment. Ontology evolution
provides means for the timely adaptation of an ontology to such changes.

An important problem in ontology evolution is the consistent revision of
the ontology, i.e. the accommodation of new knowledge in an ontology without
introducing logical contradictions. Generally, we can distinguish two kinds of
logical contradictions: inconsistency and incoherence. An ontology is inconsistent
iff it has no model. An ontology is incoherent iff there exists some unsatisfiable
concept (i.e, the semantics of an unsatisfiable concept corresponds to the empty
set).

There exists a number of prior work on revision in DLs, such as those re-
ported in [3, 5, 11, 2]. Most of them focus on postulates for revision operators.
For example, an important principle is that one should delete information in
the original ontology as little as possible to accommodate the new knowledge
consistently. Theoretically, it is very important to know how to characterize
a revision operator in terms of postulates. However, for practical applicability
to real life ontologies, we require concrete revision operators that can be used.
There are some concrete revision operators defined to deal with inconsistency

2 Guilin Qi1, Peter Haase1, Zhisheng Huang2, and Jeff Z. Pan3

[5, 11]. However, to the best of our knowledge, there is no revision operator deal-
ing specifically with incoherence (as opposed to inconsistency) in the context of
revision.

In this paper, we propose a kernel revision operator in Description Logic-
based ontologies based on MIPS (minimal incoherence-preserving sub-terminologies)
and an incision function. The notion of MIPS is originally developed for non-
standard reasoning service in debugging incoherent terminologies [14, 15]. It is
similar to the notion of a kernel set in belief base change defined in [8]. The
incision function is used to select axioms from each MIPS to remove from the
original ontology. Our revision operator focuses on revising terminologies, i.e.
ontologies with empty ABox. Two concrete algorithms are developed to define
specific kernel revision operator. The first algorithm is based on Reiter’s hit-
ting set tree (HS-tree) algorithm [12] and MIPS. In this algorithm, we need to
compute all the MIPS, which is computationally hard in general. Therefore, we
propose another algorithm, which utilizes confidence values attached to axioms
in the ontology to resolve unsatisfiability concepts without computing all the
MIPS. Compared with the first algorithm, this algorithm is computationally
easier but may delete more axioms from the original ontology after revision.

The rest of this paper is organized as follows: Section 2 provides a preliminary
introduction to Description logics and various notions in ontolgy debugging.
Section 3 presents a syntax-based method for revising terminologies by using
the notions of MUPS and MIPS. Section 4 proposes some algorithms of the
ontology revision. Section 5 overviews related work of ontology evolution and
ontology revision, and Section 6 discusses future work before concluding the
paper.

2 Preliminaries

2.1 Description Logics

This section introduces some basic notions of Description Logics (DLs) and some
important notions used for debugging terminologies.

In our work, we focus DL-based terminological ontologies: An ontology T
consists of concept axioms and role axioms (TBox). Concept axioms have the
form C v D where C and D are (possibly complex) concept descriptions1, and
role axioms are expressions of the formRvS, whereR and S are role descriptions.
We call both concept axioms and role axioms as terminology axioms.

The semantics of DLs is defined via a model-theoretic semantics, which expli-
cates the relationship between the language syntax and the model of a domain:
An interpretation I = (4I , ·I) consists of a non-empty domain set 4I and
an interpretation function ·I , which maps from individuals, concepts and roles
to elements of the domain, subsets of the domain and binary relations on the
domain, respectively.
1 A complex concept is a concept that is formed by some atomic concepts and con-

structors such as conjunction u and disjunction t.

A Kernel Revision Operator for Terminologies 3

Given an interpretation I, we say that I satisfies a concept axiom C v D
(resp., a role inclusion axiom R v S) if CI⊆DI (resp., RI ⊆ SI). An interpre-
tation I is called a model of a TBox T , iff it satisfies each axiom in T . We use
Mod(T) to denote all the models of TBox T A named concept C in a terminol-
ogy T , is unsatisfiable iff, for each model I of T , CI = ∅. A terminology T is
incoherent iff there exists an unsatisfiable named concept in T . Two TBoxes T
and T ′ are equivalent, denoted by T ≡ T ′, iff Mod(T) = Mod(T ′).

2.2 MUPS and MIPS

We introduce the notion of MIPS and MUPS which will be used to define our
revision operator. They are originally defined in [14], and are used to pinpoint
errors in an ontology.

Definition 1. Let A be a named concept which is unsatisfiable in a TBox T . A
set T ′⊆T is a minimal unsatisfiability-preserving sub-TBox (MUPS) of T if A
is unsatisfiable in T ′, and A is satisfiable in every sub-TBox T ′′ ⊂ T ′.

A MUPS of T w.r.t A is the minimal sub-TBox of T in which A is un-
satisfiable. We will abbreviate the set of MUPS of T w.r.t a concept name A
by mups(T , A). Let us consider an example from [14]. Suppose T contains the
following axioms:

ax1 : A1v¬AuA2uA3 ax2 : A2vAuA4

ax3 : A3vA4uA5 ax4 : A4v∀s.BuC
ax5 : A5v∃s.¬B ax6 : A6vA1t∃r.(A3u¬C uA4)
ax7 : A7vA4u∃s.¬B

where A, B and C are atomic concept names and Ai (i = 1, ..., 7) are defined
concept names, and r and s are atomic roles. In this example, the unsatisfiable
concept names are A1, A3, A6, A7 and MUPS of T w.r.t Ai (i = 1, 3, 6, 7) are:

mups(T , A1) : {{ax1, ax2}, {ax1, ax3, ax4, ax5}}
mups(T , A3) : {ax3, ax4, ax5}
mups(T , A6) : {{ax1, ax2, ax4, ax6}, {ax1, ax3, ax4, ax5, ax6}}
mups(T , A7) : {ax4, ax7}
MUPS are useful for relating sets of axioms to the unsatisfiability of specific

concepts, but they can also be used to calculate a minimal incoherence preserving
sub-TBox, which relates sets of axioms to the incoherence of a TBox in general
and is defined as follows.

Definition 2. Let T be an incoherent TBox. A TBox T ′⊆T is a minimal incoherence-
preserving sub-TBox (MIPS) of T if T ′ is incoherent, and every sub-TBox
T ′′⊂T ′ is coherent.

A MIPS of T is a minimal sub-TBox of T which is incoherent. The set of MIPS
for a TBox T is abbreviated with mips(T). For T in the above example, we get
3 MIPS:

mips(T) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}

4 Guilin Qi1, Peter Haase1, Zhisheng Huang2, and Jeff Z. Pan3

3 Kernel Revision Operator for Terminologies

In this section, we define our revision operator based on the notion of MIPS.
Originally, the notion of a MIPS is defined on a single TBox, whereas a revision
operator deals with conflict between two TBoxes. We therefore generalize MIPS
by considering two TBoxes: the TBox T to be revised, and the newly received
TBox T0. We further assume that both T and T0 are coherent in the following.

Definition 3. Let T and T0 be two TBoxes. A minimal incoherence-preserving
sub-TBox (MIPS) T ′ of T w.r.t. T0 is a sub-TBox of T which satisfies (1) T ′∪T0
is incoherent; (2) ∀T ′′⊂T ′, T ′′∪T0 is coherent. We denote the set of all MIPSs
of T w.r.t T0 by MIPST0(T).

A MIPS of TBox T w.r.t. TBox T0 is the minimal sub-TBox of T that is inco-
herent with T0. It is similar to the kernel defined by Hansson in [8]. Similar to
Definition 3, we can define a MUPS of T w.r.t. T0 and an unsatisfiable concept
of T ∪T0. When T0 is an empty set, then Definition 3 is reduced to Definition 2.
In classical logic, given a knowledge base A which is a set of classical formulas
and a formula φ, a φ-kernel of A is the minimal subbase of A that implies φ.
To define a contraction function for removing knowledge from a knowledge base,
called kernel contraction, Hansson defines an incision function which selects for-
mulas to be discarded in each φ-kernel of A. We adapt the incision function to
define our revision operator.

Definition 4. Let T be a TBox. An incision function for T , denoted as σ, is a
function such that for each TBox T0

(i) σ(MIPST0(T))⊆
⋃
Ti∈MIPST0 (T) Ti;

(ii) if T ′∈MIPST0(T), then T ′∩σ(MIPST0(T)) 6= ∅.

An incision function for a TBox T is a function such that for each TBox T0, it
selects formulas from every MIPS of T w.r.t. T0 if this MIPS is not empty. Con-
dition (i) says the axioms selected by an incision function must belong to some
MIPSs of T w.r.t. T0. Condition (ii) says each MIPS of T w.r.t. T0 must have
at least one axiom selected. The incision function plays a similar role as concept
pinpointing in [14]. However, the latter is only applied to a single ontology.

An important incision function is the one which is called minimal incision
function [1]. The idea of this incision function is to select a minimal subset of
elements from the set of kernel sets. We adapt this incision function as follows.

Definition 5. Let T be a TBox. An incision function σ for T is minimal if there
is no other incision function σ′ such that there is a TBox T0, σ′(MIPST0(T))⊂
σ(MIPST0(T)).

A minimal incision function selects a minimal subset of T w.r.t. the set inclusion.
However, among all the minimal incision functions, some of them select more
axioms than others. To make the number of selected axioms minimal, we define
a cardinality-minimal incision function.

A Kernel Revision Operator for Terminologies 5

Definition 6. Let T be a TBox. An incision function σ for T is cardinality-
minimal if there is no other incision function σ′ such that there is a TBox T0,
|σ′(MIPST0(T))|< |σ(MIPST0(T))|.

It is clear that a cardinality-minimal incision function is always a minimal
incision function.

Proposition 1. Let T be a TBox. Suppose σ is a cardinality-minimal incision
function for T , then it is a minimal incision function.

From each incision function, we can define an operator for revising a TBox
T by a newly received TBox T0. The idea is that we first calculate the MIPS
of TBox T w.r.t TBox T0, then delete axioms in T selected by the incision
function. After that, we take the union of the modified TBox and T0 as the
result of revision.

Definition 7. Let T be a TBox, and σ be an incision function for T . The kernel
revision operator ◦σ for T is defined as follows: for each TBox T0,

T ◦σ T0 = (T \ σ(MIPST0(T))) ∪ T0.

The resulting TBox of the kernel revision operator only contains one TBox.
According to the definition of an incision function, the resulting TBox of the
kernel revision operator is always a unique coherent TBox.

Proposition 2. Let T be a TBox, and σ be an incision function for T . The
operator ◦σ satisfies the following properties: for any TBoxes T0, T ′0
(R1) T0 ⊆ T ◦σ T0.
(R2) If T ∪ T0 is coherent, then T ◦σ T0 = T ∪ T0.
(R3) If T0 is coherent, then T ◦σ T0 is coherent.
(R4) If T0 ≡ T ′0 , then T ◦σ T0 ≡ T ◦σ T ′0 .
(R5) If φ ∈ T and φ 6∈ T ◦σ T0, then there is a subset S of T and a subset S0 of
T0 such that S ∪ S0 is coherent, but S ∪ S0 ∪ {φ} is not.

Properties (R1)-(R4) are adapted from postulates (O+1), (O+2*), (O+3*) and
(O+4) in [2]. (R1) says every axiom in the new TBox should be accepted after
revision. (R2) says if two TBoxes have no contradiction, then we do not need
to change anything. (R3) means that if the new TBox is coherent, then the
result of revision should also be coherent. (R4) is a weakened form of syntax-
independence. That is, the revision operator is independent of the syntactic
form of axioms in the new TBox. (R5) is a new property which is adapted from
the core-retainment postulate in [8]. It states that if an axiom is deleted after
revision, then it must be responsible for the conflict.

4 Algorithms

The kernel revision operator is defined by an incision function. However, we
have not given any incision function. Inspired by the work reported in [16], in

6 Guilin Qi1, Peter Haase1, Zhisheng Huang2, and Jeff Z. Pan3

Algorithm 1: Algorithm for Repair based on scoring function
Data: Two TBoxes T and T0, where T is the TBox to be revised
Result: A repaired coherent TBox T ◦σ T0
begin
C = ∅
calculate MIPST0(T)
for ax ∈

⋃
Ti∈MIPST0 (T) Ti do

wax := SMIPST0 (T)({ax})

for Ti∈MIPST0(T) do
Ai := {ax ∈ Ti : 6 ∃ax′ ∈ Ti, wax′ > wax}
C := C ∪ {Ai}

σ(MIPST0(T)) := HSTree(C)
T ◦σ T0 := T \ σ(MIPST0(T)) ∪ T0
return T ◦σ T0

end

the following, we propose some algorithms for computing an incision function
based on Reiter’s hitting set tree (HST) algorithm [12] which is reformulated in
[15]. We select one arbitrary minimal hitting set of MIPST0(T) given by HST
algorithm in [15]. We denote the revised HST algorithm as HSTree.

Next, we give two algorithms to repair a TBox. The first one is based on the
scoring function on axioms2 which is defined as follows.

Definition 8. Let T be a TBox and M be a set of sub-TBoxes of T . Let P(T)
be the power set of T . The scoring function for T w.r.t. M, is a function SM :
P(T) 7→ N such that for all T ′∈P(T)

SM(T ′) = |{Ti∈M : Ti∩T ′ 6=∅}|.

The scoring function SM for T returns for each subset T ′ of T the number of
elements of M that have an overlap with T ′. If we apply the scoring function
to each singleton {axi}, where axi is an axiom in T , then we can attach each
axiom in T a degree.

In Algorithm 1, we first calculate all the MIPSs of T w.r.t. T0 (MIPSs for
short). The approach for calculating all the MIPSs is based on a black-box al-
gorithm for finding all justifications in [9]. We then compute the score of each
axiom which is in the union of the MIPSs (see the first “for” loop). For each
MIPS, we select a subset of it which contains those axioms whose scores are
maximal among all the axioms in the MIPS and apply the modified HST algo-
rithm to them (see the second “for” loop and the line after it). The result of the
modified HST algorithm is the set of axioms to be deleted, i.e., σ(MIPST0(T)).
After removing these axioms, we restore coherence of the TBox T w.r.t. T0. In
2 Scoring function has been used in [10] to measuring inconsistency in a single ontology

and is defined by MIPS. Our definition is slightly different from theirs in that ours
is not defined by MIPS.

A Kernel Revision Operator for Terminologies 7

our algorithm, we use subsets of MIPSs consisting of axioms with highest scores
as an input to the HST algorithm, instead of using all the MIPSs, therefore,
the number of axioms removed may not be minimal. This is due to efficiency
consideration because there may have a large number of hitting sets if we use
all the MIPSs and the algorithm will be very slow.

Example 1. Suppose that we have two TBoxes :

T = {Example v Knowledge,Document v ¬Knowledge, Form v Knowledge,
F irm v Organisation}

T0 = {Document v Example,Knowhow document v Document,
Form v Document,KnowledgeManagement service v Service}.

The TBoxes are taken from a real life ontology km1500 i5003 which is ob-
tained by ontology learning. The MIPSs of T w.r.t. T0 are
T ′ = {Example v Knowledge,Document v ¬Knowledge}

and
T ′′ = {Document v ¬Knowledge, Form v Knowledge}.

The score of the disjointness axiom Document v ¬Knowledge is 2 because
it belongs to both MIPSs. The scores of other axioms are 1. Therefore, we delete
Document v ¬Knowledge and the result of revision is

T ◦s T0 = {Example v Knowledge, Form v Knowledge, F irm v Organisation,
Document v Example,Knowhow document v Document,
Form v Document,KnowledgeManagement service v Service}.

In some cases, there are confidence values attached to axioms in an ontology.
These confidence values can be generated during ontology learning process (see
[7]) or are given by human experts (They are not generated by an automated
algorithm.). When axioms in the TBox are attached to confidence values, we do
not need to calculate all the MIPSs before we repair the TBox. We have the
following algorithm which utilizes confidence values of axioms to decide which
axioms should be deleted. We use wax to denote the confidence value of the
axiom ax.

In Algorithm 2, when resolving incoherence of a TBox, we do not compute
all the MUPSs and MIPSs. Instead, we resolve incoherence by iteratively deal-
ing with unsatisfiable concepts. That is, we remove axioms in MUPSs of an
unsatisfiable concept and make it satisfiable and then go to deal with another
unsatisfiable concept, and so on. The algorithm which computes all the MUPSs
of C in T w.r.t. T0 is similar to the algorithm to compute MUPS in [9]. For each
3 The ontology is available from http://wasp.cs.vu.nl/knowledgeweb/d2163/learning.html.

8 Guilin Qi1, Peter Haase1, Zhisheng Huang2, and Jeff Z. Pan3

Algorithm 2: Algorithm for Repair based on confidence values
Data: Two TBoxes T and T0, where T is the TBox to be revised, axioms in T

are attached with confidence values
Result: A repaired coherent TBox T ◦w T0
begin
C := ∅
for C∈GETALLCONCEPTS(T ∪ T0) do

while T ∪ T0 |= C v ⊥ do
MC,T ,T0 := GETMUPST0(C, T)
for Ti ∈MC,T ,T0 do
Ti := {ax∈Ti : 6 ∃ax′ ∈ Ti, wax′ < wax}

C := {Ti : Ti ∈MC,T ,T0}
TC := HSTree(C)
T ◦w T0 := (T \ TC) ∪ T0
C := ∅

return T ◦w T0
end

unsatisfiable concept, we take the subset of every MUPS which contain axioms
with minimal confidence values and apply the HS-Tree algorithm to select those
axioms to be deleted. The revision operator implemented by this algorithm may
not be a kernel revision operator because we do not calculate all the MIPSs. How-
ever, this algorithm still achieve minimal change when resolve unsatisfiability of
a concept and it is more efficient than Algorithm 1.

Example 2. Let us consider Example 1 again. Suppose axioms in the TBox T
are attached with confidence values as follows:
wExamplevKnowledge = 0.4,
wDocumentv¬Knowledge = 0.8,
wFormvKnowledge = 0.6,
wFirmvOrganisation = 0.9.
The axioms in T0 are assigned weight 1, i.e., they are firmly believed. There
are two unsatisfiable concepts in T ∪ T0: Document and Form. Suppose our
algorithm chooses Form first. The MUPSs of Form in T w.r.t. T0 are
T ′ = {Document v ¬Knowledge, Form v Knowledge} and
T ′′ = {Example v Knowledge,Document v ¬Knowledge}.
SoMForm,T ,T0 = {T ′, T ′′}. Since wFormvKnowledge < wDocumentv¬Knowledge

and wExamplevKnowledge < wDocumentv¬Knowledge, we have
C = {{Form v Knowledge}, {Example v Knowledge}}.
So TC = {Form v Knowledge,Example v Knowledge}.
Let T = T \ {Form v Knowledge,Example v Knowledge}.
It is easy to check that T ∪ T0 is coherent now. So the algorithm terminates

and the result of revision is

T ◦w T0 = {Document v ¬Knowledge,Knowhow document v Document,

A Kernel Revision Operator for Terminologies 9

Document v Example,KnowledgeManagement service v Service,
F irm v Organisation, Form v Document}.

5 Related Work

The problem of revision in DLs has been extensively studied in literature. From
a theoretical point of view, the AGM framework is the most influencing work
on belief change [4], which captures appropriate conditions for the intuitive ra-
tionality of belief change operators. In [3], Flouris, Plexousakis and Antoniou
generalize the AGM framework in order to apply the rationalities behind the
AGM framework to a wider class of logics, i.e. a larger class of logics which are
AGM-compliant. In [2] a framework for the distinction between incoherence and
inconsistency of an ontology is proposed. A set of rational postulates for a revi-
sion operator in DLs is proposed based on the distinction between the coherent
negation and consistent negation. However, in [2], no concrete revision operator
is proposed. In [11], reformulated AGM postulates for revision are adapted to
DLs. The authors also propose two revision operators that satisfy the adapted
postulates, but no algorithm to implement any of the operator is introduced.

Similar to our revision operator, the revision operator defined in [13] also uti-
lizes an incision function to select axioms in the original ontology to delete. Our
work differs from theirs in serval aspects. First, our revision operator deals with
incoherence instead of inconsistency. Second, the incision function used in [13]
is different from ours. Third, we provide algorithms for computation of specific
revision operators and discuss evaluation results on their implementation. This
work is also related to the work presented in [6], in which an algorithm is given
to determine consistent sub-ontologies by adding an axiom to an ontology. The
algorithm is based on on a selection function by assuming that all axioms in the
ontology are connected.

6 Conclusion and Future Work

In this paper, we have proposed a kernel revision operator for terminologies
based on MIPS and an incision function, which has desirable properties such
as those listed in propositions 1 and 2. By implementing an incision function,
we can obtain a concrete revision operator. We provided two algorithms to in-
stantiate our revision operator. One future work is to implement the algorithms
and report evaluation results. Another future work is to give other interesting
incision function to define new kernel revision operators.

Acknowledgments

The first and second authors are partially supported by the EU in the IST project
NeOn (EU IST-2006-027595, http://www.neon-project.org/). The third au-
thor is partially supported by the EU in the IST project OpenKnowledge (EU
IST-2006-027253, http://www.openk.org/).

10 Guilin Qi1, Peter Haase1, Zhisheng Huang2, and Jeff Z. Pan3

References

1. Marcelo A. Falappa, Eduardo L. Fermé, and Gabriele Kern-Isberner. On the logic
of theory change: Relations between incision and selection functions. In Proceedings
of the 17th European Conference on Artificial Intelligence (ECAI’06), pages 402–
406, Riva del Garda, Italy, Aug 2006.

2. Giorgos Flouris, Zhisheng Huang, Jeff Z. Pan, Dimitris Plexousakis, and Holger
Wache. Inconsistencies, negations and changes in ontologies. In Proc. of AAAI’06,
pages 1295–1300, 2006.

3. Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. On applying the
AGM theory to DLs and OWL. In Proceedings of the 4th International Conference
on Semantic Web (ISWC’05), pages 216–231. Galway, Ireland, Nov 2005.

4. Peter Gardenfors. Knowledge in Flux-Modeling the Dynamic of Epistemic States.
The MIT Press, Cambridge, Mass, 1988.

5. Peter Haase and Ljiljana Stojanovic. Consistent evolution of OWL ontologies. In
Proc. of ESWC’05, pages 182–197, 2005.

6. Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stuckenschmidt, and
York Sure:. A framework for handling inconsistency in changing ontologies. In
Proceedings of 4th International Semantic Web Conference (ISWC’05), pages 353–
367. Springer, 2005.

7. Peter Haase and Johanna Völker. Ontology learning and reasoning - dealing with
uncertainty and inconsistency. In Paulo C. G. da Costa, Kathryn B. Laskey, Ken-
neth J. Laskey, and Michael Pool, editors, Proceedings of the Workshop on Uncer-
tainty Reasoning for the Semantic Web (URSW’05), pages 45–55, Galway, Ireland,
Nov 2005.

8. Sven Ove Hansson. Kernel contraction. Journal of Symbolic Logic, 59(3):845–859,
1994.

9. Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Finding
all justifications of OWL DL entailments. In Proc. of ISWC/ASWC’07, pages
267–280, 2007.

10. Guilin Qi and Anthony Hunter. Measuring incoherence in description logic-based
ontologies. In Proc. of ISWC/ASWC’07, pages 381–394, 2007.

11. Guilin Qi, Weiru Liu, and David A. Bell. Knowledge base revision in description
logics. In Proceedings of the 10th European Conference on Logics in Artificial
Intelligence (JELIA’06), pages 386–398, Liverpool, UK, Sep 2006. Springer Verlag.

12. Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

13. Márcio Moretto Ribeiro and Renata Wassermann. Base revision in description
logics - preliminary results. In Proc. of IWOD’07, 2007.

14. Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the de-
bugging of description logic terminologies. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI’03), pages 355–362, Acapulco,
Mexico, Aug 2003.

15. Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank van Harmelen. De-
bugging incoherent terminologies. Journal of Automated Reasoning, 39(3):317–349,
2007.

16. Renata Wassermann. An algorithm for belief revision. In Proc. of KR’00, pages
345–352, 2000.

