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Abstract. Representing probabilistic knowledge in combination with a
description logic has been a research topic for quite some time. In [1] one
of such combinations is introduced. We present our implementation of
the proposed system and some modeling observations we made.

1 Introduction

For at least ten years, modeling of uncertainty combined with description log-
ics has been a topic of research. First approaches of combinations of descrip-
tion logic and probabilities are described in [2–4]. Recently, techniques for so-
called probabilistic lexicographic reasoning services were proposed by Giugno
and Lukasiewicz [1]. Their approach, named P-SHOQ(D), reduces the proba-
bilistic reasoning problems to solving linear programs and standard satisfiability
tests with respect to the underlying description logic. Later the extension was
adapted to SHIF(D) and SHOIN (D) in [5]. The property of reducing the
probabilistic reasoning problems allows for a modular implementation reusing
mature software components, i.e., a DL reasoner and a linear program solver.
Although this approach seems attractive, experience shows that, usually, severe
performance problems can be expected for expressive logics. However, since the
P-SHOQ(D) approach seems well-suited for a modular implementation we in-
vestigate the hypothesis that such a implementation can be done in practice.
As a DL reasoner RacerPro has been chosen due to its stability and maturity
[6, 7]. For solving linear programs we used the mosek [8] and the or-objects[9]
solver. The combined probabilistic reasoning system is called ContraBovemRu-
fum1. The main contributions of this paper can be summarised as follows:

1. We investigated the feasibility of the approach taken by Giugno and Lukasiewicz
[1] in a practical implementation, showing that it can be implemented. The
implementation already includes the optimised algorithms proposed in [5].

2. Some techniques for further optimisations of the reasoning algorithms are
discussed.

3. Modeling experiements demonstrate some of the difficulties that come with
the semantics of this kind of probabilistic description logics.

? This paper has been partially funded by the Project PreSInt DFG NE 279/9-1
1 See [10] for the genesis of the name.



2 Syntax and Semantics

We use SHIQ(D) as underling DL in our system, hence the investigated prob-
abilistic description logic is named P-SHIQ(D). For syntax and semantics of
SHIQ(D) the reader is referred to [11–13]. The probabilistic part is introduced
in the remainder of this section.

In order to extend a description logic for dealing with probabilistic knowledge
an additional syntactical and semantical construct is needed. The additional
construct is called a conditional constraint.

A conditional constraint consists of a statement of conditional probability
for two concepts C,D as well as a lower bound l and an upper bound u on
that probability. It is written as follows: (D|C)[l, u] Where C can be called the
evidence and D the hypothesis.

To gain the ability to store such statements in a knowledge base it has to be
extended to a probabilistic knowledge base PKB. Additionally to the TBox T of
a description logic knowledge base we introduce the PTBox PT , which consists
of T and a set of conditional constraints Dg, and a PABox PA holding sets
of conditional constraints Do for each probabilistic individual o. We also define
the set of probabilistic individuals Ip, which contains all individuals o for which
some probabilistic knowledge is available and therefore a set Do. In [1] there is
no ABox declared, knowledge about so called classical individuals is also stored
inside the TBox using nominals. Dg therefore represents statistical knowledge
about concepts and Do represents degrees of belief about the individual o.

To be able to define the semantics for a description logic with probabilistic
extension the interpretation I = (∆I , ·) has to be extended by a probability
function µ on the domain of interpretation ∆I . The extended interpretation is
called the probabilistic interpretation Pr = (I, µ). Each individual o in the do-
main ∆I is mapped by the probability function µ to a value in the interval [0,1]
and the values of all µ(o) have to sum up to 1 for any probabilistic interpreta-
tion Pr . With the probabilistic interpretation Pr at hand the probability of a
concept C, represented by Pr(C), is defined as sum of all µ(o) where o ∈ CI .
The probabilistic interpretation of a conditional probability Pr(D|C) is given
as Pr(CuD)

Pr(C) where Pr(C) > 0.

A conditional constraint (D|C)[l, u] is satisfied by Pr or Pr models (D|C)[l, u]
if and only if Pr(D|C) ∈ [l, u]. We will write this as Pr |= (D|C)[l, u]. A prob-
abilistic interpretation Pr is said to satisfy or model a terminology axiom T ,
written Pr |= T , if and only if I |= T . A set F consisting of terminological ax-
ioms and conditional constraints, where F denotes the elements of F , is satisfied
or modeled by Pr if and only if Pr |= F for all F ∈ F .

The verification of a conditional constraint (D|C)[l, u] is defined as Pr(C) =
1 and Pr has to be a model of (D|C)[l, u]. We also may say Pr verifies the con-
ditional constraint (D|C)[l, u]. On the contrary the falsification of a conditional
constraint (D|C)[l, u] is given if and only if Pr(C) = 1 and Pr does not satisfy
(D|C)[l, u]. It is also said that Pr falsifies (D|C)[l, u].



Further a conditional constraint F is said to be tolerated under a termi-
nology T and a set of conditional constraints D if and only if a probabilistic
interpretation Pr can be found that verifies F and Pr |= T ∪ D.

With all these definitions at hand we are now prepared to define the z-
partition of a set of generic conditional constraints Dg. The z-partition is build
as ordered partition (D0, . . . ,Dk) of Dg, where each part Di with i ∈ {0, . . . , k}
is the set of all conditional constraints F ∈ Dg \ (D0 ∪ · · · ∪ Di−1), that are
tolerated under the generic terminology Tg and Dg \ (D0 ∪ · · · ∪ Di−1).

If the z-partition can be build from a PABox PT = (T ,Dg), it is said to be
generically consistent or g-consistent. A probabilistic knowledge base PKB =
(PT , (Po)o∈Ip

) is consistent if and only if PT is g-consistent and Pr |= T ∪ Do

for all o ∈ Ip.

We use the z-partition for the definition of the lexicographic order on the
probabilistic interpretations Pr as follows:

A probabilistic interpretation Pr is called lexicographical preferred to a prob-
abilistic interpretation Pr ′ if and only if some i ∈ {0, . . . , k} can be found, that
|{F ∈ Di | Pr |= F}| > |{F ∈ Di | Pr ′ |= F}| and |{F ∈ Dj | Pr |= F}| =
|{F ∈ Dj | Pr ′ |= F}| for all i < j ≤ k.

We say a probabilistic interpretation Pr of a set F of terminological axioms
and conditional constraints is a lexicographically minimal model of F if and only
if no probabilistic interpretation Pr ′ is lexicographical preferred to Pr .

By now the meaning of lexicographic entailment for conditional constraints
from a set F of terminological axioms and conditional constraints under a PTBox
PT is given as:

A conditional constraint (D|C)[l, u] is a lexicographic consequence of a set
F of terminological axioms and conditional constraints under a PTBox PT ,
written as F ‖∼ (D|C)[l, u] under PT , if and only if Pr(D) ∈ [l, u] for every
lexicographically minimal model Pr of F ∪ {(C|>)[1, 1]}. Tight lexicographic
consequence of F under PT is defined as F ‖∼tight (D|C)[l, u] if and only if l is
the infimum and u is the supremum of Pr(D). We define l = 1 and u = 0 if no
such probabilistic interpretation Pr exists.

Finally we define lexicographic entailment using a probabilistic knowledge
base PKB for generic and assertional conditional constraints F .

If F is a generic conditional constraint, then it is said to be a lexicographic
consequence of PKB, written PKB ‖∼ F if and only if ∅ ‖∼ F under PT and a
tight lexicographic consequence of PKB, written PKB ‖∼tight F if and only if
∅ ‖∼tight F under PT .

If F is an assertional conditional constraint for o ∈ IP , then it is said to be
a lexicographic consequence of PKB, written PKB ‖∼ F , if and only if Do ‖∼ F
under PT and a tight lexicographic consequence of PKB, written PKB ‖∼tight F
if and only if Do ‖∼tight F under PT .



3 ContraBovemRufum System

The ContraBovemRufum system implements the algorithms presented in [1, 5]
in the Java programming language. Figure 1 displays the generic system ar-
chitecture. For the reasoning tasks RacerPro with its JRacer interface is used.
Therefore it supports the probabilistic description logic P-SHIQ(D). As solvers
a native Java solver by Opsresearch and the Mosek linear program solver have
been integrated.

Knowledge Base

TBox ABox PTBox PABox

ContraBovemRufum

Interface

Description 
Logic Reasoner

Linear Program 
Solver

Interface

Interface

Probabilistic Knowledge Base

Fig. 1. System architecture

For application programmers two different sets of interfaces are provided.
The first set contains the ProbabilisticKBInterface, which provides all opera-
tions related to setting up and modifying PTBox and PABox, and the Proba-
bilisticEntailmentInterface, which offers the probabilistic inference operations to
decide consistency for PT and PKB as well as probabilistic subsumption and
probabilistic instance checking.

The second set of interfaces handles the configuration of the services. Using
the SolverConfiguration interface the selection of the solver may be changed at
runtime. The ReasonerConfiguration interface makes the settings for the rea-



soner. With the EntailmentConfiguration interface the algorithm used to com-
pute the entailment may be chosen at runtime. Currently tight logical entail-
ment and the two available algorithms for tight lexicographic entailment are
supported.

The motivation for the following discussion is to present implementation is-
sues on the one hand, and point to possibilities for optimisation techniques on
the other. As previously mentioned the proposed approach for solving proba-
bilistic reasoning problems relies on use of standard reasoning services provided
by a description logic reasoner in order to build linear programs which may be
handed over to a solver in order to decide the solvability of the programs.

In order to decide satisfiability the first objective is to build a set RT (F). It
contains the elements r, which map conditional constraints Fi = (Di|Ci)[li, ui],
elements of a set of conditional constraints F , onto one of the following terms
Di u Ci, ¬Di u Ci or ¬Ci under the condition, that the intersection of our r is
not equal to the bottom concept given the terminology T , written T 6|= r(F1) u
· · · u r(Fn) v ⊥. In the following we will write ur instead of r(F1) u · · · u r(Fn)
as an abbreviation.

An already implemented idea was to determine the elements r in a tree
structure. First the intersection of r of the first two conditional constraints are
built. Then these are tested against the terminology T for satisfiablility. The ones
that do satisfy are then intersected with the next mapped conditional constraint
and so on. Further extending on this idea one may compute these in parallel.
This would require a DL reasoner which is able to handle multiple satisfiability
tests at once. Such a behaviour could also be achieved if multiple instances of a
DL reasoner are run.

With the set RT (F) at hand we are able to set up linear programs to decide
the satisfiability of the terminology T and a finite set of conditional constraints
F . The constraints of the linear program are displayed in Figure 2. We say that
T ∪ F is satisfiable if and only if the linear program with the constraints 1a-d
is solvable for variables yr, where r ∈ RT (F). This means that in the objective
function all coefficients preceding the variables yr are set to 1. We further need
to introduce the meaning of r |= C which is used as index of the summation in
1a and 1b. It is an abbreviation for ∅ |= ur v C. So the coefficient preceding
the variables yr is set in linear constraints 1a and 1b if either r |= ¬D u C or
r |= D u C may be proven.

Why is the creation of linear programs reasonable? Consider the following: By
definition a conditional constraint is satisfied if u ≥ Pr(D|C) ≥ l ⇔ uPr(C) ≥
Pr(DuC) ≥ lPr(C). This may lead us to linear constraints 1a and 1b. Lets focus
on the upper bound, whose derivation is displayed in Figure 3. The derivation
for the lower bound 1a follows analogously. The linear constraints 1c and 1d
reflect that all µ(o) have to sum up to 1 and all µ(o) ∈ [0, 1]

Lets have a look at the number of subsumption tests which need to be per-
formed to set up the system of linear constraints. At a first glance, finding a |=
under each sum, one might say four tests per variable and conditional constraint.
Looking closer we discover that only two are required because they are identical
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Fig. 3. Upper bound derivation

for lower and upper bound. But even this may be optimised further. Considering
that the ur represents a map of all conditional constraints on Di uCi, ¬Di uCi

or ¬Ci and they are tested on subsumbtion against D u C and ¬D u C we ob-
serve that only if the first subsumbtion test of ur v DuC failed the second one
is necessary. Therefore significantly reducing the number of required tests per
variable and conditional constraint.

With the tool at hand to decide satisfiability, we may also decide if a con-
ditional constraint may be tolerated by a set of conditional constraints F . To
verify a constraint we add a conditional constraint (C|>)[1, 1]. With the ex-
tended set the linear program is generated and solved. If an unfeasible solution
is computed the conditional constraint is conflicting. If an optimal solution is
found, the conditional constraint is tolerated. Now the z-partition of a set of
conditional constraints is computable. An idea for optimisation at this point is
to compute RT (Dg) once and only append the concept C to ur for each verified
constraint in order to obtain the needed RT (F). This would significantly reduce
the number of satisfiability tests which need to be done.

How to compute tight probability bounds for given evidence C and conclusion
D in respect to a set of conditional constraints F under a terminology T ? The
task is named tight logical entailment and denoted T ∪ F |=tight (D|C)[l, u].



Given that T ∪ F is satisfiable, a linear program is set up for F ∪ (C|>)[1, 1] ∪
(D|>)[0, 1]. The objective function is set to

∑
r∈R,r|=D

yr. So the coefficient in front

of the variables yr are set 1 if r |= D. The tight logical entailed lower bound l
is computed by minimising, respectively the upper bound u by maximising the
linear program.

In order to compute tight probabilistic lexicographic entailment for given
evidence C and conclusion D under a PKB the following steps have to be taken:

1. Compute the z-partition of Dg in order to be able to generate a lexicographic
ordering

2. Compute lexicographic minimal sets D′ of conditional constraints of Dg as
elements of D.

3. Compute the tight logical entailment T ∪ F ∪ D′ |=tight (D|C)[l, u] for all
D′ ∈ D.

4. Select the minimum of all computed lower bounds and the maximum of all
upper bounds.

The 2. step needs some explanation since a new task ”compute lexicographic
minimal sets” is introduced. In order to define a lexicographic minimal set D′,
a preparatory definition is required. A set D′ ⊂ Dg lexicographic preferable to
D′′ ⊂ Dg if and only if some i ∈ {0, . . . , k} exists such that |D′ ∩Di| > |D′′ ∩Di|
and |D′ ∩ Di| > |D′′ ∩ Di| for all i < j ≤ k. With the lexicographic order
introduced onto the sets D′ the definition of lexicographic minimal is given as:
D′ is lexicographic minimal in S ⊆ {S|S ⊆ Dg} if and only if D′ ∈ S and no
D′′ ∈ S is lexicographic preferable to D′.

4 Modeling with Conditional Constraints

In order to understand the semantics that comes with the new system some
simple modeling experiments are presented here. Our initial grasp was that the
conditional constraints can be used to model a degree of overlap between two
concepts as depicted in figure 4.

In the first experiment we start out by simply adding one conditional con-
straint with crisp bounds to the PTBox with respect to an empty TBox. There-
fore no restrictions come from the TBox. For example to model that some con-
cept A overlaps with some other concept X to a degree of 60% (see Figure 4)
(X|A)[0.6, 0.6] is placed into the PTbox.

With PTBox containing only this one constraint we were interested in the
entailed tight lexicographic bounds for (A|X)[?, ?]. From intuition one would ex-
pect the answer to be (A|X)[0, 1]. Also if we have a look at Pr(A|X) = Pr(AuX)

Pr(X)

with Pr(X) = 1 from verifying X in order to compute the entailment and
Pr(AuX) = Pr(X|A)Pr(A) = 0.6Pr(A) from the given conditional constraint
therefore Pr(A) remains unknown which should lead to an answer of ignorance
[0, 1]. But our systems answer is (A|X)[0.0, 0.0]. This says that concepts A and X
should be mutually exclusive. Which is somehow contradicting with our intention
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Fig. 4. A overlap X

which we wanted to specify with (X|A)[0.6, 0.6] in the first place. Investigating
the Linear Program (see Figure 5) which is solved last one can see that 0.0 is
obviously the only solution.

yXuA+ y¬XuA = max

0.4yXuA− 0.6y¬XuA ≥ 0

−0.4yXuA+ 0.6y¬XuA ≥ 0

0yXuA− y¬XuA+ 0yXu¬A− y¬Xu¬A ≥ 0

0yXuA+ y¬XuA+ 0yXu¬A+ y¬Xu¬A ≥ 0

yXuA+ y¬XuA+ yXu¬A+ y¬Xu¬A = 1

yr ≥ 0

Fig. 5. Linear Program

The same result is observed if the crisp bounds of the conditional constraint
in the PTBox are relaxed as long as u 6= 1. This behavior appears because Pr(A)
= 0 is accepted as a possible solution and therefore (X|A)[0.6, 0.6] is determined
to be in the lexicographic minimal set. If we would enforce that Pr(A) > 0 than
the previous constraint is forced out of the lexicographic minimal set and the
answer becomes [0, 1].This can for example be achieved by adding a conditional
constraint (A|>)[0.00001, 1] to the PTBox. It is an ad-hoc solution which we
choose in order to test the system without modifying it. Also we observed a



numeric problem as the lower bound was pushed closer to zero and the old
[0.0, 0.0] answer was returned. In email communication Mr. Lukasiewicz pointed
to an elegant solution by maximizing the variables containing A and see if the
result is > 0. With this solution the linear program remains the same only
changes in the objective function are required.

As we previously have tweaked the system such that it entailed ignorance
instead of bottom/empty set with respect to (A|X) we thought it possible to
remove the ignorance regarding X overlap with A from the probabilistic knowl-
edge base. For example if we look at our figure 4 again we might want to include
additionally the conditional constraint (A|X)[0.4, 0.4] in the PTBox. Modeling
this additional knowledge is not possible with the given semantics because both
constraints are mutually in conflict with the other. The system can not decide
which of the two conditional constraints should be ranked higher. Therefore the
z-Partion can not be build and the knowledge base becomes inconsistent.

The presented experiments show that we either must search for a new in-
tuition to describe how one should model with the system or adapt a different
system which captures better the intuition previously described.

5 Related Systems

In 2005, Thomas Lukasiewicz made the nmproblog system[14] available as an
compiled executable. The system computes entailment in variable strength non-
monotonic probabilistic logics (System P, System Z, lexicographic) on top of
propositional logic. Having introduced the ContraBovemRufum System on top
of Racer in [10] recently the Pronto System[15] has been announced on top of the
Pellet Reasoner and is now also available. These systems are based on expressive
description logics. Further the ContraBovemRufum System has been integrated
with the ontology matching system HMatch 2.0[16] in order to facilitate mapping
validation[17].

6 Conclusion

We presented the ContraBovemRufum system which provides probabilistic lexi-
cographic reasoning services with respect to a probabilistic knowledge base and
discussed its underlying techniques. Thus proving that a modular implementa-
tion can be achieved. The mentioned optimization ideas suggest that there is
some potential to increase the systems performance.

As demonstrated in section 4 modeling with the system is not an easy task.
Already with a simple example we were able to demonstrate some of the very
tricky parts of the provided semantics. If we wish to use the system for modeling
probabilistic knowledge an intuition needs to be developed that characterizes the
semantics of a conditional constraint better than the idea of a degree of overlap
between two concepts.



If the reader is interested in verifying the presented results on his own, the
implementation can be obtained from the following site under the section soft-
ware:
http://www.sts.tu-harburg.de/%7Et.naeth/
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