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Abstract. This paper explores some aspects of a new and natural semantical dimen-
sion that can be accommodated within the syntax of description logics which opens
up when passing from the classical truth-value interpretation to a constructive inter-
pretation. We argue that such a strengthened interpretation is essential to represent
applications with partial information adequately and to achieve consistency under ab-
straction as well as robustness under refinement. We introduce a constructive version
of ALC, called cALC, for which we give a sound and complete Hilbert axiomatisation
and a Gentzen tableau calculus showing finite model property and decidability.

1 When Constructiveness Matters

Knowledge representation based on description logics (DL) can be used to capture the mean-
ing of natural language statements about specific world domains (ontologies). Often, how-
ever, such knowledge is dynamic and incomplete. Entities that make up the domain may not
be fixed and tangible but abstractions of real individuals whose properties are changing and
defined only up to construction. Natural language concepts rarely have a static interpretation
but are subject to negotiation or context and thus require a constructive approach which
is robust under refinement. An application area where this aspect is particularly prominent
and which motivates the work1 reported in this paper, is auditing. The digital auditing of
business mass data experiences a huge increase in importance recently. Audit executives,
fraud examiners and compliance professionals are pressured on all fronts to shorten audit
cycles and to increase audit efficiency and quality. In particular, the efficient verification of
enterprise processes is of big interest since the audit concern is getting more critical with
new regulations like SOX2, IFRS3 and also to respond accurately to managing risks in our
competitive world.

Audit statements about the validity of accounting data, absence of fraud or conformance
to financial process standards must constructively take account of many dimensions of ab-
straction and refinement. First, the producers of audit data usually are ongoing business
processes which the audit data can only cover a limited snapshot of. E.g., a requirement
such as “each delivery order must have an associated invoice” must take into account that
for some delivery order the invoice is still “in the process”and only available after refinement
of the audit data. Second, a role like the “legally responsible signatory”may not be fully de-
finable once and for all but depend on the legal context. Some aspects may even deliberately
be left open subject to negotiations and only refined as the auditing case progresses. Third,
entities may be abstractions of physical individuals: The notion of the ‘CEO of company X’
in an audit statement is a virtual rather than concrete person who may be replaced perhaps
while auditing in ongoing. The CEO which appears atomic at some level of abstraction re-
ally is a concept at a lower level where personal liability issues come in or where executive
action needs to be taken. Forth, auditing is typically faced with vast amounts of business
data. For efficiency reasons, manageable digests of the data need to be created. Such data

1 Incipient research project funded by the DFG.
2 Sarbanes-Oxley Act, US law of 2002 on business reporting in reaction to Enron and WorldCom

scandals.
3 International Financial Reporting Standard.
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compression may ignore potentially irrelevant attributes of entities or scan only subsets of
concepts. Auditing, thus, is not exact but approximated. If the quick check indicates po-
tential irregularities then a constructive refinement of the abstracted entities and concepts
must be possible to confirm or reject the case constructively.

Auditing is a prime example of a class of application domains which require the ability to
express partiality and incomplete information beyond the standard open world assumption
(OWA). Because the semantical meaning is context-dependent and possibly involves many
levels of explication there must be a constructive notion of undefinedness which permits that
concepts evolve. Classical OWA assumes that each concept is static and at the outset either
includes a given entity or not. However, either option may be incorrect, if the entity or the
concept is not fully defined until a later stage where lower levels of detail become available.

But if OWA is not enough, how can reasoning be both correct under abstraction and sus-
tainable under refinement? Logic has a well-known suggestion to solve this puzzle: replace the
traditional binary truth interpretation by a constructive notion of truth. Proof-theoretically,
constructive logic is compatible with the idea of positive evidence and realisability [22]. It
does not infer the presence of entities from the absence of others but insists on the existence
of computational witnesses. Model-theoretically, constructive logic admits of an interpreta-
tion based on stages of information [23] so that truth is persistent under refinement4.

The role of intuitionistic Kripke models for knowledge representation based on partial de-
scriptions has been highlighted in [7]. The general benefits of the Curry-Howard Isomorphism
(proofs-as-computations) in DL have been argued in [8,6]. In our context, more concretely,
we envisage that the computational interpretation of TBox deductions as λ-terms yields ver-
ified audit tactics and that constructive ABox tableau algorithms provide engines to drive
interactive games between auditee (proponent) and auditor (opponent). A third potential
benefit arises from the use of DLs as a programming type system (see e.g., [16]) which nat-
urally requires a constructive setting. Constructive DL concepts may not only specify the
semantics of data streams in audit component interfaces but also resource requirements.
This can be exploited to satisfy higher demands on robustness and efficiency in the semantic
processing of mass data.

In this paper we discuss some of the model-theoretic aspects of the constructive inter-
pretation of DLs, in contrast to [6] which is proof-theoretic and addresses the extraction of
information terms.

The work of [7] presents an intuitionistic epistemic logic based on several refinement
relations coding multiple (partial) points of view. Here we only consider one dimension
of refinement reflecting a two-player scenario (e.g., auditor and auditee) but in a more
general sense than [7]. Our refinement ordering � may have cycles and fallible descriptions.
Such descriptive “oscillations” and “deadlocks” are intrinsic to real-world abstractions (see
examples below).

It is important to point out that the semantic dimension along which refinement takes
place is implicit in cALC and not coded in the syntax. This accommodates many different
notions of context generically in the standard ALC language. The context-dependency is
built into the notion of truth rather than the terminology like in other work on special cases
of context such as temporal DL [1,5,2]. cALC is meant for applications where we must be
robust for several implicit notions of context-dependency but do not need to reason explicitly
about some specific refinement.

Our work is to be distinguished also from many-valued DL (see e.g., [17,14]) which is
only finitely valued while cALC is infinitely valued and from fuzzy DL (see e.g., [21,9,13])
which use a quantitative notion of approximate truth whereas cALC still adheres to a crisp
deductive approach. Even though the envisaged application domain of auditing may use
statistical analyses, at the end of the day we must cross the t’s and dot the i’s and be able
to name the evidence.

4 One might say that classical DL is based on a static open world assumption (SOWA) while
constructive DL supports an evolving open world assumption (EOWA).
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2 Syntax and Semantics of cALC
Concept descriptions in cALC are based on sets of role names NR and concept names NC

and formed as follows, where A ∈ NC and R ∈ NR:

C, D → A | � | ⊥ | ¬C | C � D | C � D | C 	 D | ∃R.C | ∀R.C.

This syntax is more general than standard ALC in that it includes subsumption 	 as a
concept–forming operator. The TBox statement C 	 D meaning that ‘D subsumes C’ is
expressed as the concept identity C 	 D = �. In classical ALC one could use the equation
¬C � D = � to do that, essentially reducing subsumption to ¬ and �. This is no longer
possible in constructive logic where these operators are independent. Being a first class
operator, subsumption can be nested arbitrarily as in ((D 	 C) 	 B) 	 A. The full power
of such “higher–order” subsumptions will not be needed in practice but will allow us to
axiomatise the full theory of cALC conveniently in the form of a Hilbert calculus. Like in
ALC the universal concept � is redundant and codable as ¬⊥. Also, ⊥ and ¬ can represent
each other, e.g. ⊥ = A � ¬A and ¬C = C 	 ⊥. Otherwise, the operators are independent.

Constructive interpretations I of concept descriptions extend the classical models for
ALC by a pre–ordering �I for expressing refinement between individuals and by a notion
of fallible entities ⊥I for interpreting contradiction. Following the standard Kripke seman-
tics of intuitionistic logic [23], entities in constructive DL are not atomic individuals but
have internal structure which in general is only partially determined and thus subject to
refinement. Let relation a � a′ on entities denote that a′ is more precisely determined than
a, that a′ refines a or that a abstracts a′. The relation � models a potential increase of
information or refinement of context associated with the process of pinning down entities as
real individuals. This includes the possibility that both a � b and b � a, i.e., a and b have
the same information content and thus are formally indistinguishable, yet still distinct a �= b
because of some lower-level properties. Now, if a concept C is to be robust under refinement
then a:C and a � a′ must imply a′:C. This is achieved by the following definition:

Definition 1. A constructive interpretation or constructive model of cALC is a structure
I = (ΔI ,�I ,⊥I , ·I) consisting of a non-empty set ΔI of entities, the universe of discourse
in which each entity represents a partially defined, or abstract individual; a refinement pre-
ordering �I on ΔI , i.e., a reflexive and transitive relation; a subset ⊥I ⊆ ΔI of fallible
entities closed under refinement, i.e., x ∈ ⊥I and x �I y implies y ∈ ⊥I ; finally an interpre-
tation function ·I mapping each role name R ∈ NR to a binary relation RI ⊆ ΔI ×ΔI and
each atomic concept A ∈ NC to a set ⊥I ⊆ AI ⊆ ΔI which is closed under refinement, i.e.,
x ∈ AI and x �I y implies y ∈ AI ; Interpretation I is lifted from atomic ⊥, A to arbitrary
concepts, where ΔI

c =df ΔI \ ⊥I is the set of non-fallible elements in I:

�I =df ΔI

(¬C)I =df {x | ∀y ∈ ΔI
c . x �I y ⇒ y �∈ CI}

(C � D)I =df CI ∩ DI

(C � D)I =df CI ∪ DI

(C 	 D)I =df {x | ∀y ∈ ΔI
c . (x �I y & y ∈ CI) ⇒ y ∈ DI}

(∃R.C)I =df {x | ∀y ∈ ΔI
c . x �I y ⇒ ∃z ∈ ΔI . (y, z) ∈ RI & z ∈ CI}

(∀R.C)I =df {x | ∀y ∈ ΔI
c . x �I y ⇒ ∀z ∈ ΔI . (y, z) ∈ RI ⇒ z ∈ CI}. ��

Entities in ΔI are partial descriptions representing incomplete information about indi-
viduals. Read a � b as saying that a “is an abstraction of” b, i.e., that it has “contains no
more information” than b. Fallible elements b ∈ ⊥I may be thought of as over–constrained
tokens of information, self-contradictory objects of evidence or undefined computations. E.g.,
they may be used to model the situation in which computing a role–filler for an abstract
individual a fails, i.e., ∀b. R(a, b) ⇒ b ∈ ⊥I , yet when a is refined to a′ then a non-fallible
role-filler b′ ∈ ΔI

c exists with R(a′, b′) (see Ex. 3 below). Each entity implicitly subsumes all
its refinements and truth is inherited. Specifically, one can show that x ∈ CI and x �I y
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implies y ∈ CI for all concepts C. Fallible entities are information–wise maximal elements
and therefore included in every concept, i.e., ⊥I ⊆ CI for all C.

The purpose of the present work is to show that the non-standard interpretation of Def. 1
induces a well-behaved logic, called cALC, which uses the same syntax but is more expressive
than classical ALC and still admits standard TBox and ABox tableau reasoning. Before we
continue expounding the theory let us look at some examples.

Example 1. Every classical interpretation I of ALC (see e.g., [3]) induces a trivial model
according to Def. 1 with the discrete refinement relation x �I y iff x = y and the empty set
⊥I = ∅ of fallible entities. These validate the concept descriptions C � ¬C, ∃R.⊥ = ⊥ and
∃R.(C � D) = ∃R.C � ∃R.D. These three axioms essentially characterise classical models
(see Sec. 4). ��

Example 2. Let a = (c, d1) and b = (c, d2) be two entries in a (relational) database that
share the same first attribute but are distinguished in the second. If the attributes are ref-
erenced by roles $1 and $2 then the situation could be specified, in ABox syntax, by a $1 c,
a $2d1, a $1 c, a $2 d2. Now let us abstract from the second attributes and consider the pairs
as partially defined entities a� = (c, ?) and b� = (c, ?), respectively, say in an attempt to
compress information. Ignoring d1, d2 means that a� and b� carry the same information
and thus can no longer be distinguished. Since the pre-order � measures the information
content we get a� � b� and b� � a�. This cyclic refinement relationship implies an abstract
equivalence a� ∼= b� but not an identity a� = b� keeping in mind that both have incompatible
realisations a� � a and b� � b, respectively.

The situation is depicted in Fig. 1. The dashed arrows correspond to refinement and
solid arrows represent the attribute roles $1, $2. Note that both a�, b� have a falli-
ble $2 filler (⊥) which corresponds to a computational deadlock when selecting $2 for
a� or b�. Formally, if Th(x) denotes the set of concepts which entity x participates
in, then Th(a�) = Th(b�). E.g., ∃$1.C, ∃$2.(D1 � D2) ∈ Th(a�) since every refine-
ment of a� has c:C
as filler for role $1
and either d1:D1 or
d2:D2 as a filler for
$2. The disjunction
∃$2.(D1 � D2) cap-
tures the choice be-
tween the two real-
isations of a� as a
concrete individual,
viz.,(c, d1) and (c, d2).
On the other hand,

� �

� �

� �

a�

�

� �⊥ ⊥

ba

b�

c:C

d1:D1 d2:D2

�

�
$2 $2

$1 $1

$1 $1

$2$2

Fig. 1: A simple data model with abstraction.

this choice cannot be resolved at the abstract level as there is no single uniform choice of
the $2-filler. This is reflected in the logic by the fact that ∃$2.Di �∈ Th(a�) (i = 1, 2) which
means ∃$2.D1 � ∃$2.D2 �∈ Th(a�).

Abstractions like this cannot be expressed in classical DL where existential fillers always
distribute over �, i.e., ∃$2.(D1�D2) is semantically identical to ∃$2.D1�∃$2.D2. Note that
¬∃$2.D1 is not the same as ∀$2.¬D1. The former says that it is inconsistent to assume that
all refinements of a� have $2-filler in D1. The latter means that no refinement has a $2-filler
in D1. In ALC, the concepts ¬∃$2.D1 and ∀$2.¬D1 are identical which is not what we want
here. Also, note that the Excluded Middle ∃$2.D1 � ¬∃$2.D1 is not valid for a�. ��

Example 3. Concerning hasCustomer relationships between companies a, b, c, d let us as-
sume that a has both b and c as customers, b has customer c and c has d among its
customers. Further suppose that b is insolvent (concept Insolvent) and d solvent (concept
¬Insolvent). Regarding possible insolvency of c nothing is known. In classical OWA we have
c:(Insolvent � ¬Insolvent) regardless of c. This implies that a is an instance of the concept
description CW = ∃hasCustomer .(Insolvent � ∃hasCustomer .¬Insolvent) specifying credit-
worthy companies with an insolvent customer who in turn can rely on at least one solvent
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customer. In the first case c:Insolvent this customer of a is c, in case c:¬Insolvent it is b. In
a static world the filling customer would be unknown but fixed. However, the case analysis
on c is invalid if the model arises by abstraction from a concrete taxonomy where insolvency
is a context-dependent defect.

Fig. 2 shows an example model of the situation. Each solid edge is the relation
hasCustomer and each dotted line codes refinement. Company c may be insolvent dur-
ing some specific period of time or under some specific legal understanding of the concept
Insolvent , represented by refinement c′. It may be solvent during another period of time
or other legal regulations as represented by refinement c′′. Then insolvency of c is not just
unknown but undecidable (i.e., not fixable). The
required hasCustomer -filler for a in concept CW
cannot be obtained without contradicting one of
the two directions c′, c′′ in which c may evolve.
The case c:¬Insolvent conflicts with refinement
c � c′ and c′:Insolvent , if c:Insolvent the refine-
ment c � c′′ obtains c′′:¬Insolvent . Thus, neither
Insolvent nor ¬Insolvent can be satisfied in c. In
classical static OWA the case analysis is performed
outside the model so that fillers may depend non-

�

�

�

� ��

a

c:?

c′:I c′′:¬I

b:I

d:¬I

hasCustomer

� �

Fig. 2: Evolving OWA Model.

uniformly on the case analysis. In cALC this choice is internalised and the filler of a role
must be robust under case analysis. Thus, a:CW is invalid under Evolving OWA because
the ∃-filler is not realisable by a single nameable entity. ��

Example 4. Business data typically come in streams, e.g., as linearised database tables
or time–series of financial market transactions. If streams are considered as abstract en-
tities then DL concepts can act as a typing system to specify semantical properties of
typical stream elements. To illustrate this let D = N � B � (N × B) be the discrete uni-
verse of booleans, naturals and their pairings. Consider the domain ΔI = D

ω = D
∗ ∪ D

∞

of all finite and infinite sequences (“streams”) over D. The refinement �I is the suffix or-
dering, e.g., a0a1a2 · · · �I a2a3 · · · . Concepts CI under this interpretation express future
projected behaviour of streams. The empty stream has no future behaviour, it represents
a computational deadlock, i.e., ⊥I = {ε}. For each concept there is a natural (functional)
role val which picks the first element of the sequence considered as a singleton stream, i.e.,
a0a1a2 · · · val a0. Let Nat and Bool be the usual programming language types considered as
atomic cALC concepts, i.e. NatI =df N

ω and BoolI =df B
ω, specifying streams of naturals

and streams of booleans, respectively. In a similar vein, we put (Nat×Bool)I =df (N×B)ω

to represent simple database tables as streams of data pairs. We then have TBox axioms
Nat ≡ ∀val .Nat ≡ ∃val .Nat and Bool ≡ ∀val .Bool ≡ ∃val .Bool.

Now, suppose we linearise a table t = (n0, b0)(n1, b1)(n2, b2) · · · of (stream) type Nat×
Bool to give the flattened stream t� = n0b0n1b1n2b2 · · · . What is the type of t�? It is
not the concept Nat � Bool nor the equivalent ∃val .Nat � ∃val .Bool since this would
require that all elements of t� are either Nat or all are Bool. Really, we want set union
Nat∪Bool. In fact, this is what the concept ∃val .(Nat�Bool) expresses: the first element
of each suffix sequence is of value Nat or Bool. Notice that the use of ∃val here performs
the decomposition of the stream so that the concept specification Nat � Bool is applied
element–wise rather than globally.

This interpretation provides a typical example for why ∃ should not distribute over
� under a constructive interpretation which uses DL as a type system for programming:
The difference between concepts ∃val .(Nat�Bool) and ∃val .Nat�∃valBool, or between
Nat ∪ Bool and Nat � Bool for that matter, is the difference between local (dynamic)
and global (static) choice. ��

It will be convenient to introduce a semantical validity relation |= as follows: Write
I; x |= C to abbreviate x ∈ CI in which case we say that entity x satisfies concept C in the
interpretation I. Further, I is a model of C, written I |= C iff ∀x ∈ ΔI . I, x |= C. Finally,
|= C means ∀I. I |= C. All notions I; x |= Φ, I |= Φ and |= Φ are extended to sets Φ of
concepts in the usual universal fashion.
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In typical reasoning tasks the interpretation I and the entity x in a verification goal
such as I; x |= C are not given directly but are themselves axiomatised by sets of formulas,
specifically a TBox Θ for I and an ABox Γ for x ∈ ΔI . Accordingly, we write Θ; Γ |= C if
for all interpretations I which are models of all axioms in Θ it is the case that every entity x
of I which satisfies all axioms in Γ must also satisfy concept C. Formally, ∀I.∀x ∈ ΔI . (I |=
Θ & I; x |= Γ ) ⇒ I; x |= C. Here is how standard concept reasoning is covered:

– Θ; {C} �|= ⊥ iff concept C is satisfiable with respect to the TBox Θ, i.e., there exists I
with I |= Θ and non-fallible x ∈ ΔI

c such that x ∈ CI ;
– Θ; {C, D} �|= ⊥ iff the concepts C and D are disjoint with respect to Θ, i.e., CI and DI

do not share any non-fallible entities in all models I of Θ;
– Θ; {C} |= D iff concept C is subsumed by concept D, i.e., for all I with I |= Θ, CI ⊆ DI ;

The same can be expressed by Θ; ∅ |= C 	 D (by reflexivity of �);
– Θ; ∅ |= (C 	 D) � (D 	 C) iff concepts C and D are equivalent with respect to Θ, i.e.,

for all I with I |= Θ we have CI = DI . We define C ≡ D to be the concept description
(C 	 D) � (D 	 C).

It is easy to see that I |= C�D iff I |= C and I |= D. It follows that all the above inferences
can be reduced to concept subsumption Θ; {C} |= D as in classical DL. Unlike classical DL,
however, we cannot reduce concept inferences to the special form Θ; {C} �|= ⊥ of satisfiability.
Instead, we need to implement the generalised satisfiability check Θ; {C} �|= D for arbitrary
D. We will see in Sec. 3.2 how to build a tableau-calculus for such generalised constructive
satisfiability. Another difference to classical DL is that whenever |= C � D then |= C or
|= D. This is known as the Disjunction Property, a definitive feature of constructive logic.
In classical DL, we have |= C �¬C for every concept C even if neither |= C nor |= ¬C. The
Disjunction Property is the key to proof extraction for cALC.

cALC is related to the constructive modal logic CK (Constructive K) [24,4,15] as ALC is
related to the classical modal system K [8]. In cALC the classical principles of the Excluded
Middle C � ¬C = �, double negation ¬¬C = C, the dualities ∃R.C = ¬∀R.¬C, ∀R.C =
¬∃R.¬C and Disjunctive Distribution ∃R.(C �D) = ∃R.C �∃R.D are no longer tautologies
but non-trivial TBox statements to axiomatise specialised classes of application scenarios
(see Sec. 4). The fact that Excluded Middle, double negation and the dualities do not hold
is a feature which cALC has in common with standard intuitionistic modal logics such as
[10,18,11,20]. It is well known that these principles are non-constructive and therefore need
special care. In cALC, however, we go one step further and refute the principle of Disjunctive
Distribution (and, in fact, also the nullary version ¬�⊥) arguing that this principle is not
consistent with abstraction. Disjunctive Distribution, which corresponds to the classical �-
dual of the normality axiom �(A ∧ B) = �A ∧ �B, is commonly accepted for intuitionistic
modal logics. In other words, as a modal logic, cALC is non-normal regarding � and thus
proofs of decidability and finite model property for standard intuitionistic modal logics (e.g.,
for IntK�,� [12][Chap 10]) do not directly apply.

3 Constructive Proof Systems for cALC
In this section we show simple Hilbert and Gentzen-style deduction systems for cALC
which admit a direct interpretation of proofs as computations following the Curry-Howard-
Isomorphism in which the refinement relation � is treated implicitly. The presence of the
semantic refinement structure is visible in the fact that the concept operators �, �, 	 on
the one hand and ∀R, ∃R on the other are primitive and not expressible any more in terms
of each other with the help of negation as in classical DLs. This makes sense since all have
different computational meaning. According to the Curry-Howard-Isomorphism concept de-
scriptions are types so that, e.g., concept conjunction � corresponds to Cartesian product
×, disjunction � to disjoint union +, subsumption 	 to function spaces → (see Ex. 5).

3.1 Hilbert Calculus for cALC
The Hilbert calculus is given by the usual axioms for intuitionistic propositional logic [23],
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the two extensionality prin-
ciples ∃K, ∀K for role filling
as well as the rules of Modus
Ponens MP and Necessita-
tion Nec as seen in Fig. 3.
Let the symbol �H denote
Hilbert deduction, i.e., Θ �H

C if there exists a deriva-
tion C0, C1, . . . , Cn such that

∀K : (∀R. (C 	 D)) 	 (∀R.C 	 ∀R.D)
∃K : (∀R. (C 	 D)) 	 (∃R.C 	 ∃R.D)
IPL : All axioms of intuitionistic propositional logic
Nec : If C is a theorem, then so is ∀R.C.
MP : If C and C 	 D are theorems, then so is D.

Fig. 3: Hilbert Calculus for cALC.

Cn = C and each Ci (i ≤ n) is either a hypothesis Ci ∈ Θ, or a substitution instance of an
axiom scheme from Fig. 3 or arises from earlier concepts Cj (j < i) through MP or Nec.
The Hilbert calculus implements TBox-reasoning in the sense that it decides the semantical
relationship Θ; ∅ |= C which says that C is a universal concept in all models of TBox Θ.

Theorem 2 (Hilbert Soundness and Completeness). Θ; ∅ |= C iff Θ �H C. ��

Example 5. We reconsider the example by Brachman et.al. (1991) as reported by [6]:

Θ �H food 	 ∃goesWith.(color � ∃isColorOf.wine) (1)

in the TBox Θ = {Ax1,Ax2} where Ax1 =df food 	 ∃goesWith.color and Ax2 =df

color 	 ∃isColorOf.wine. The Curry-Howard-Isomorphism can be adapted to understand
any Hilbert-proof of (1) as a program construction. For instance, the axiom Ax1 can be read
as a function ax 1 translating food-entities f into color-entities c such that goesWith(f, c)
and similarly Ax2 is a function ax 2 from colors c to wines w so that isColorOf(c, w). The
derivation of (1) then is the construction of a uniform function from food f to pairs (c, w)
of color c and wine w with goesWith(f, c) and isColorOf(c, w). How this can be done
formally has been shown by Bozzato et.al. in [6]. In the following we recall (and slightly
generalise) their constructions.

With each concept C we associate a set of realisers or information terms IT(C). These
realisers are then taken as extra ABox parameters so that instead of I, x |= C we declare
what it means that I, x |= 〈α〉C for a particular realiser α ∈ IT(C). This so-called realisability
predicate gives additional constructive semantics to our concepts in the sense that I, x |=
〈α〉C implies I, x |= C.

The sets IT(C) and refined concepts 〈α〉C are defined by induction on C. For our example
we only need the following information terms:

– IT(A) =df {tt} for atomic concepts;
– IT(C � D) =df IT(C) × IT(D);
– IT(C 	 D) =df IT(C) → IT(D);
– IT(∃R.C) =df ΔI × IT(C);
– IT(∀R.C) =df ΔI → IT(C).

Realisability is such that

– I, x |= 〈tt〉A iff x ∈ AI ;
– I, x |= 〈α, β〉(C � D) iff I, x |= 〈α〉C and I, x |= 〈β〉C;
– I, x |= 〈f〉(C 	 D) iff ∀α ∈ IT(C). I, x |= 〈α〉C ⇒ I, x |= 〈fα〉D;
– I, x |= 〈a, α〉(∃R.C) iff (x, a) ∈ RI and I, a |= 〈α〉C;
– I, x |= 〈α〉(∀R.C) iff ∀a ∈ ΔI . (x, a) ∈ RI ⇒ I, a |= 〈α a〉C.

One then shows that every proof �H C generates, for any interpretation I, a function
f :ΔI → IT(C) such that ∀u ∈ ΔI . I, u |= 〈fu〉C. Specifically, every of the following Hilbert
axioms IPL1:C 	 (D 	 C), IPL2:((C 	 (D 	 E)) 	 (C 	 D) 	 (C 	 E)) and IPL3:C 	
(D 	 (C � D)) is realised by a λ-term: For instance, IPL1 =df λu.λx.λy.x, IPL2 =df

λu.λx.λy.λz. (xz)(yz) and IPL3 =df λu.λx.λy. (x, y). Axiom ∃K is the function ∃K =df

λu.λx.λy.(π1y, x(π1y)(π2y)). The rule of MP and Nec are refined to

If 〈α〉C and 〈β〉(C 	 D) then 〈λu.(β u)(α u)〉D
If 〈α〉C then 〈λu.λx. α x〉(∀R.C).
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In this way, the derivation of (1), up to reductions in the λ-calculus, corresponds to the term
prf = λu.λx.(π1(ax 1 x), (π2(ax 1 x), (π1(ax 2(π2(ax 1 x))), π2(ax 2(π2(ax 1 x)))))) which is an
information term so that ∀u. I, u |= 〈prf u〉(food 	 ∃goesWith.(color�∃isColorOf.wine))
assuming that ∀u. I, u |= 〈ax 1 u〉Ax1 and ∀u. I, u |= 〈ax 2 u〉Ax2. Such realisers ax 1, ax 2 can
be obtained from a concrete ABox [6]. ��

3.2 Gentzen Tableau Calculus for cALC
Refutation or tableau calculi play an important role in automated reasoning. These com-
bine both goal-directed proof-search and counter-model construction. In this section we
will present such a tableau system for cALC based on Gentzen-style sequents. In contrast
to tableau systems for classical DL it is consistent with the Curry-Howard Isomorphism
and thus permits proof-extraction. In contrast to natural deduction systems such as [6],
Gentzen-systems not only support the constructive interpretation of proofs as λ-terms but
also formalise tableau-style refutation procedures.

The tableau calculus manipulates Gentzen-style sequents Θ; Σ; Γ � Φ; Ψ , where Θ, Γ , Φ
are sets of concepts, not necessarily finite, and Σ, Ψ are partial functions mapping role names
R ∈ NR to sets of concepts Σ(R), Ψ(R) which may be infinite, too. The domains of the latter
functions are assumed to be finite and identical. We call dom = dom(Σ) = dom(Ψ) ⊆ NR the
domain of the sequent. A sequent Θ; Σ; Γ � Φ; Ψ formalises and refines the semantic validity
relationship Θ; Γ |= Φ (see page 6) by extra constraints Σ, Ψ as follows: Θ is the TBox
which are model assumptions. The ABox is given by the sets Σ, Γ , Φ, Ψ of the sequent.
These encode information about individual entities relative to Θ. The first, Σ, Γ specify
what we want an entity to satisfy and the latter Φ, Ψ what we do not want them to satisfy.
The fact that we sandwich entities between explicit positive and negative constraints is the
novel constructive aspect of the following Definition 3:

Definition 3 (Constructive Satisfiability). Let I = (ΔI ,�I ,⊥I , ·I) be an interpreta-
tion and a ∈ ΔI an entity in I. We say that the pair (I, a) satisfies a sequent Θ; Σ; Γ � Φ; Ψ
if I is a model of Θ, I |= Θ, and for all R ∈ dom, L ∈ Σ(R), M ∈ Γ , N ∈ Φ, K ∈ Ψ(R):

– ∀a′. ∀b. (a � a′ & a′ R b) ⇒ I, b |= L, i.e., all R-fillers of a and of its refinements a′ are
part of all concepts of Σ(R);

– I, a |= M , i.e., a and hence all its refinements are part of all concepts of Γ ;
– I, a �|= N , i.e., a is contained in none of the concepts in Φ;
– ∀b. a R b ⇒ I, b �|= K, i.e., none of the R-fillers b of a is contained in any concept of

Ψ(R).

A sequent Θ; Σ; Γ � Φ; Ψ is (constructively) satisfiable, written Θ; Σ; Γ �|= Φ; Ψ , iff there
exists an interpretation I and entity a ∈ ΔI such that (I, a) satisfies the sequent. ��

The purpose of a tableau or refutation proof is to establish that an entity specification
presented as a sequent is not satisfiable. On the other hand, if no closed tableau can be
found and the calculus is complete then the failed proof search implies the existence of a
satisfying entity. Our tableau calculus for cALC is given by the rules seen in Fig. 4.

Definition 4 (Tableau and Constructive Consistency). A tableau for Θ; Σ; Γ � Φ; Ψ
is a finite and closed derivation tree T built using instances of the rules in Fig. 4 which has
Θ; Σ; Γ � Φ; Ψ as its root. The sequent is (constructively) consistent, written Θ; Σ; Γ �� Φ; Ψ ,
if no tableau exists for it. ��

Our calculus is formulated in the spirit of Gentzen with left introduction rules �L, �L,
	L, ∀L, ∃L and right introduction rules �R, �R, 	R, ∀R, ∃R for each logical connec-
tive. These rules can be interpreted not only as tableau-style refutation steps but also have
computational meaning.

Proposition 5. The Hilbert and Tableau calculi are equivalent. For any TBox Θ and set
of concepts Φ we have Θ �H Φ iff the sequent Θ; ∅; ∅ � Φ; ∅ has a tableau derivation (i.e., is
inconsistent). ��
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Ax
Θ ; Σ ; Γ, C � Φ, C ; Ψ

|Φ ∪ Ψ | ≥ 1 ⊥L
Θ ; Σ ; Γ,⊥ � Φ ; Ψ

Θ ; Σ ; Γ, C, D � Φ ; Ψ �L
Θ ; Σ ; Γ, C � D � Φ ; Ψ

Θ ; Σ ; Γ � Φ, C ; Ψ Θ ; Σ ; Γ � Φ, D ; Ψ �R
Θ ; Σ ; Γ � Φ, C � D ; Ψ

Θ ; Σ ; Γ � Φ, C, D ; Ψ �R
Θ ; Σ ; Γ � Φ, C � D ; Ψ

Θ ; Σ ; Γ, C � Φ ; Ψ Θ ; Σ ; Γ, D � Φ ; Ψ �L
Θ ; Σ ; Γ, C � D � Φ ; Ψ

Θ ; Σ ; Γ � Φ, C ; Ψ Θ ; Σ ; Γ, D � Φ ; Ψ �L
Θ ; Σ ; Γ, C � D � Φ ; Ψ

Θ ; Σ ; Γ, C � D ; ∅ �R
Θ ; Σ ; Γ � Φ, C � D ; Ψ

Θ ; Σ ; Γ � ∅ ; [R 
→ C] ∃R
Θ ; Σ ; Γ � Φ, ∃R.C ; Ψ

Θ ; ∅ ; Σ(R), C � Ψ(R) ; ∅ ∃L
Θ ; Σ ; Γ,∃R.C � Φ ; Ψ

Θ ; Σ ∪ [R 
→ C] ; Γ � Φ ; Ψ ∀L
Θ ; Σ ; Γ, ∀R.C � Φ ; Ψ

Θ ; ∅ ; Σ(R) � C ; ∅ ∀R
Θ ; Σ ; Γ � Φ,∀R.C ; Ψ

Θ ; Σ ∪ [R 
→ C] ; Γ � Φ ; Ψ R ∈ dom
Hyp1Θ, C ; Σ ; Γ � Φ ; Ψ

Θ ; Σ ; Γ, C � Φ ; Ψ
Hyp2Θ, C ; Σ ; Γ � Φ ; Ψ

In all rules, the hypotheses Θ, Σ(R), Γ and conclusions Φ, Ψ(R) are treated as sets rather than
lists. For instance, Γ, C � D in rule �L is Γ ∪{C � D}. Hence, if C � D ∈ Γ then Γ in the premise
of �L is identical to Γ, C � D in the conclusion of the rule. ∅ is used both as the empty set and
the constant function ∅(R) = ∅. [R 
→ C] is the finite function with domain {R} mapping R to the
singleton set {C} and Σ ∪ [R 
→ C] is the union of functions with domain dom(Σ)∪ {R} such that
(Σ ∪ [R 
→ C])(S) = Σ(S) for S �= R and (Σ ∪ [R 
→ C])(R) = Σ(R) ∪ {C}, otherwise.

Fig. 4. Gentzen-tableau rules for cALC.

Theorem 6 (Strong Soundness and Completeness). A sequent is satisfiable iff it is
consistent, i.e., Θ; Σ; Γ �|= Φ; Ψ ⇔ Θ; Σ; Γ �� Φ; Ψ . ��

A sequent Θ; Σ; Γ � Φ; Ψ is finite if it has a finite domain and for all R ∈ dom the sets
Σ(R), Ψ(R) as well as Θ, Γ , Φ are finite as well. The tableau rules in Fig. 4 induce a decidable
deduction system for finite sequents because all rules have the sub-formula property: The
premises of each rule only contain (not necessarily proper) sub-formulas of formulas in the
conclusion. In fact, the proof of Thm. 6 shows that finite counter-models can be obtained
essentially by unfolding unprovable finite end–sequents.

Theorem 7 (Finite Model Property). A finite sequent is satisfiable iff it is satisfiable
in a finite interpretation. ��

As a corollary of Thms. 6 and 7 it follows that consistency of finite sequents is decidable.
This is not surprising since cALC can be embedded into ALC with transitive roles, ALCR+ .
Therefore, the PSpace-complexity of ALCR+ [19] forms an upper bound for satisfiability
of cALC-concepts. On the other hand it is easy to show that concepts in negation normal
form (NNF) coincide in ALC and cALC. Since all ALC-concepts can be transformed into
NNF (in linear time) and satisfiability of ALC-concepts is PSpace, satisfiability in cALC is
PSpace-complete.

4 Some Specialisations between cALC and ALC
There are at least three natural dimensions in which cALC is a constructive weakening of
ALC corresponding to the axiom schemes of Non-contradictory Fillers ¬∃R.⊥, Disjunctive
Distribution ∃R.(C �D) 	 (∃R.C � ∃R.D) and the Excluded Middle C �¬C. Each of them
is associated with a specific semantical restriction of interpretations which can be captured
by a simple modification (strengthening) of the cALC tableau calculus.

In this way, depending on the application at hand, a combination of non-classical DLs
may be generated between cALC and ALC:
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– Non-contradictory Fillers. Interpretations without fallible elements, i.e., ⊥I = ∅, can be
axiomatised by the scheme ¬∃R.⊥ which says that any entity can always be refined so
it becomes fully defined for role R, i.e., all its R-fillers (if they exist) are non-fallible. In
fact, the invalidity of ¬∃R.⊥ is the only effect of fallibility. It indicates the existence of
entities all of whose refinements have fallible R-fillers. In the tableau system we exclude
fallibility and implement the scheme ¬∃R.⊥ by rule ⊥L+ in Fig. 5 which is ⊥L without
the side-condition |Φ ∪ Ψ | ≥ 1.

– Disjunctive Distribution. If we add the axiom ∃R.(C � D) 	 (∃R.C � ∃R.D) then ∃R.
distributes over � and we are essentially saying that role filling via R is confluent with
refinement, i.e., whenever xRIy and x � x′ then there exists y′ such that y � y′ and
x′RIy′. In the tableau system this can be accommodated by strengthening ∃R to ∃R+

as in Fig. 5, thereby making it perfectly dual to rule ∀L.
– Excluded Middle. We can implement the scheme C � ¬C by replacing the intuitionistic

rule for implication 	R by the classical 	R+ seen in Fig. 5. The difference is that in
applying 	R+ backwards we do not lose the contexts Φ, Ψ like in 	R. This is the
standard extension which turns the intuitionistic into the classical sequent calculus.

⊥L+

Θ ; Σ ; Γ,⊥ � Φ ; Ψ

Θ; Σ; Γ � Φ; Ψ ∪ [R 
→ C] ∃R+

Θ; Σ; Γ � Φ,∃R.C; Ψ

Θ; Σ; Γ, C � Φ, D; Ψ �R+

Θ; Σ; Γ � Φ, C�D; Ψ

Fig. 5. Variations of Tableau Rules.

Note that cALC + Excluded Middle is prop-
erly more expressive than ALC. Therefore, cALC
is not the intuitionistic analog of ALC in the
sense of Simpson [20] but a constructive or
sub-intuitionistic analog. In fact, cALC + Non-
contradictory Fillers yields the multimodal ver-
sion of Wijesekera’s constructive modal logic [24].
However, if we further add Disjunctive Distribu-
tion and the axiom scheme (∃R.C → ∀R.D) →
∀R.(C → D) (not discussed above) then we obtain the multi-modal version iALC of the
standard intuitionistic logic of Fischer-Servi [11] known as IK [20] or FS [12]. See [8] for a
deeper discussion of the difference between cALC and iALC. Here it suffices to point out
that iALC is a special theory of cALC which enforces additional relationships between role
filling and refinement which may or may not be adequate for a given application.

5 Conclusion and Future Work

We presented a new constructive interpretation of DL which refines the classical one and
generates a family of theories that admit computational interpretations of proofs in line
with the Curry-Howard Isomorphism. This new interpretation is consistent with the idea
of concepts comprising abstract entities with hidden fine–structure. It supports intensional
ABox and TBox theories with semantic slack in the sense that not all aspects of the low-level
structure of entities can necessarily be captured by the concept language. This gives rise to
the notion of constructive satisfiability and a stronger form of OWA, which we tentatively
call the Evolving Open World Assumption.

In this paper we applied this interpretation to ALC as the core DL obtaining cALC
together with sound and complete Hilbert and Tableau deduction systems. The semantics
is general enough that it should be applicable to other DLs, too. It is conservative in that
all constructions of cALC are sound in ALC. The point is that cALC does not permit
constructions which are incompatible with refinement. We have given examples where ALC
would not be adequate. cALC enjoys semantical robustness and admits decidable tableau
with proof extraction and counter-model construction. Where the application supports it we
can specialise cALC back towards ALC by adding axioms or strengthen some tableau rules
suitably as discussed.

We aim to extend cALC for the domain of mass data business auditing by designing spe-
cialised example ontologies. We plan to extract and automate auditing processes from proof
terms by using the calculus as an interactive design and type specification system of data
streams and audit component interfaces. Towards this end we will give full separation be-
tween ABox and TBox reasoning, specifically explicit representation of ABoxes in sequents.
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As in standard DL tableaux each node would then describe information about a full ABox
rather than a single entity, which yields a more global construction.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments. We also ac-
knowledge the support by the German Research Council (DFG).

References

1. A. Artale and E. Franconi. A survey of temporal extensions of description logics. Annals of
Mathematics and Artificial Intelligence, 30(1–4), 2001.

2. A. Artale, C. Lutz, and D. Toman. A description logic of change. In Int’l Workshop on
Description Logics (DL 2006), pages 97–108, 2006.

3. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. The descrip-
tion logic handbook: theory, implementation, and applications. Cambridge University Press,
2003.

4. G. Bellin, V. de Paiva, and E. Ritter. Extended Curry-Howard correspondence for a basic
constructive modal logic. In Methods for Modalities II, November 2001.

5. A. Borgida. Diachronic description logics. In Int’l Workshop on Description Logics (DL 2001),
pages 106–112, 2001.

6. L. Botazzo, M. Ferrari, C. Fiorentini, and G. Fiorino. A constructive semantics for ALC. In
Int’l Workshop on Description Logics (DL 2007), pages 219–226, 2007.

7. O. Brunet. A logic for partial system description. Journal of Logic and Computation, 14(4):507–
528, 2004.

8. V. de Paiva. Constructive description logics: what, why and how. In Context Representation
and Reasoning, Riva del Garda, August 2006.

9. M. Dürig and Th. Studer. Probabilistic ABox reasoning: Preliminary results. In Int’l Workshop
on Description Logics (DL 2005), 2005.

10. W. B. Ewald. Intuitionistic tense and modal logic. Journal of Symbolic Logic, 51, 1986.
11. G. Fischer-Servi. Semantics for a class of intuitionistic modal calculi. In M. L. Dalla Chiara,

editor, Italian Studies in the Philosophy of Science, pages 59–72. Reidel, 1980.
12. D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal logics.

Elsevier, 2003.
13. S. Hölldobler, Nguyen Hoang Nga, and Tran Dinh Khang. The fuzzy description logic ALCFLH.

In Int’l Workshop on Description Logics (DL 2005), 2005.
14. Yue Ma, P. Hitzler, and Zuoquan Lin. Paraconsistent resolution for four-valued description

logics. In Int’l Workshop on Description Logics (DL 2007), 2007.
15. M. Mendler and V. de Paiva. Constructive CK for contexts. In L. Serafini and P. Bouquet,

editors, Context Representation and Reasoning (CRR-2005), volume 13 of CEUR Proceedings,
July 2005. Also presented at the Association for Symbolic Logic Annual Meeting, Stanford
University, USA, 22nd March 2005.

16. A. Paschke. Typed hybrid description logic programs with order-sorted semantic web type
systems on OWL and RDFS. Technical report, TU Munich, December 2005.

17. P. F. Patel-Schneider. A four-valued semantics for terminological logics. Artificial Intelligence,
38:319–351, 1989.

18. G. Plotkin and C. Stirling. A framework for intuitionistic modal logics. In Theoretical aspects
of reasoning about knowledge, Monterey, 1986.

19. Ulrike Sattler. A concept extended with different kinds of transitive roles. In S. Hölldobler
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