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Abstract. Four-valued description logic has been proposed to reason with de-
scription logic based inconsistent knowledge bases, mainly ALC. This approach
has a distinct advantage that it can be implemented by invoking classical reason-
ers to keep the same complexity as classical semantics. In this paper, we further
study how to extend the four-valued semantics to more expressive description
logics, such as SHIQ, and to more tractable description logics including EL++,
DL-Lite, and Horn-DLs. The most effort we spend defining the four-valued se-
mantics of expressive four-valued description logics is on keeping the reduc-
tion from four-valued semantics to classical semantics as in the case of ALC;
While for tractable description logics, we mainly focus on how to maintain their
tractability when adopting four-valued semantics.

1 Introduction

Expressive and tractable description logics have been well-studied in the field of se-
mantic web applications [12, 13]. However, real knowledge bases and data for Seman-
tic Web applications will rarely be perfect. They will be distributed and multi-authored.
They will be assembled from different sources and reused. It is unreasonable to expect
such realistic knowledge bases to be always logically consistent, and it is therefore im-
portant to study ways of dealing with inconsistencies in both expressive and tractable
description logic based ontologies, as classical description logics break down in the
presence of inconsistent knowledge.

About inconsistency handling of ontologies based on description logics, two funda-
mentally different approaches can be distinguished. The first is based on the assumption
that inconsistencies indicate erroneous data which is to be repaired in order to obtain
a consistent knowledge base, e.g. by selecting consistent subsets for the reasoning pro-
cess [14, 5, 4]. The other approach yields to the insight that inconsistencies are a natural
phenomenon in realistic data which are to be handled by a logic which tolerates it
[11, 15, 8]. Such logics are called paraconsistent, and the most prominent of them are
based on the use of additional truth values standing for underdefined (i.e. neither true
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nor false) and overdefined (or contradictory, i.e. both true and false). Such logics are
appropriately called four-valued logics [2, 1]. We believe that either of the approaches
is useful, depending on the application scenario. Besides this, four-valued semantics
proves useful for measuring inconsistency of ontologies [9], which can provide context
information for facilitating inconsistency handling.

In this paper, based on our study of paraconsistent semantics for ALC in [8], we
contribute to the inconsistency handling for DLs in terms of the four-valued semantics
for expressive and tractable DLs in following aspects:

– The extension of four-valued semantics to SHIQ is defined. Specially, we show
that it still can be reduced to classical semantics regardless its high expressivity.

– The extension of four-valued semantics to tractable description logics EL++, Horn-
DLs, DL-Lite family are studied one by one. We show that the internal inclusion
axiom form is a safe way to maintain the tractability when adopting four-valued
semantics.

– Compared with our existing work on four-valued semantics of ALC, in this paper,
we do not impose four-valued semantics on roles for DLs except DL-Lite. The rea-
sons are: 1) Negative roles are not used as concept constructors in ALC, SHIQ,
EL++, or Horn-DLs such that contradiction caused directly by roles can be ignored.
2) We claim that the four-valued semantics should be defined as classically as pos-
sible. 3) Four-valued semantics is semantically weaker than classical semantics (the
syllogism does not hold under four-valued entailment). So if we adopt four-valued
semantics for roles, then we have {R v S,R(a, b)} 6|=4 S(a.b) even though there
is no contradiction in the precondition.

The paper is structured as follows. We first review briefly the four-valued semantics
for ALC in Section 2. Then we study the four-valued semantics for expressive descrip-
tion logics in Section 3 and four-valued semantics for tractable description logics in
Section 4, respectively. We conclude and discuss future work in Section 5.

2 Preliminaries

2.1 The Four-valued Semantics for ALC
We describe the syntax and semantics of four-valued description logic ALC4 [8]. Syn-
tactically, ALC4 hardly differs from ALC. Complex concepts and assertions are de-
fined in exactly the same way. For class inclusion, however, significant effort has been
devoted on the intuitions behind these different implications in [8]. We claim that vari-
ous inclusion axioms provide flexible ways to model inconsistent ontologies. They are
as follows:

C 7→ D (material inclusion axiom),
C @ D (internal inclusion axiom),
C → D (strong inclusion axiom).

Semantically, interpretations map individuals to elements of the domain of the in-
terpretation, as usual. For concepts, however, modifications are made to the notion of
interpretation in order to allow for reasoning with inconsistencies.



Table 1. Semantics of ALC4 Concepts

Constructor Syntax Semantics
A AI = 〈P, N〉, where P, N ⊆ ∆I

o oI ∈ ∆I

> 〈∆I , ∅〉
⊥ 〈∅, ∆I〉

C1 u C2 〈P1 ∩ P2, N1 ∪N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

C1 t C2 〈P1 ∪ P2, N1 ∩N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

¬C (¬C)I = 〈N, P 〉, if CI = 〈P, N〉
∃R.C 〈{x | ∃y, (x, y) ∈ RI and y ∈ proj+(CI)},

{x | ∀y, (x, y) ∈ RI implies y ∈ proj−(CI)}〉
∀R.C 〈{x | ∀y, (x, y) ∈ RI implies y ∈ proj+(CI)},

{x | ∃y, (x, y) ∈ RI and y ∈ proj−(CI)}〉

Intuitively, in four-valued logic we need to consider four situations which can occur
in terms of containment of an individual in a concept: (1) we know it is contained, (2)
we know it is not contained, (3) we have no knowledge whether or not the individual
is contained, (4) we have contradictory information, namely that the individual is both
contained in the concept and not contained in the concept. There are several equivalent
ways how this intuition can be formalised, one of which is described in the following.

For a given domain ∆I and a concept C, an interpretation over ∆I assigns to C
a pair 〈P, N〉 of (not necessarily disjoint) subsets of ∆I . Intuitively, P is the set of
elements known to belong to the extension of C, while N is the set of elements known
to be not contained in the extension of C. For simplicity of notation, we define functions
proj+(·) and proj−(·) by proj+〈P, N〉 = P and proj−〈P, N〉 = N.

Formally, a four-valued interpretation is a pair I = (∆I , ·I) with ∆I as domain,
where ·I is a function assigning elements of ∆I to individuals, and subsets of (∆I)2

to concepts, such that the conditions in Table 1 are satisfied. Note that the semantics
of roles here remains unchanged from the classical two-valued case. Intuitively, in-
consistencies always rise on concepts, and not on roles, at least in the absence of role
negation, which is often assumed when studying DLs. We will see in this paper that this
approach can be used to tolerate inconsistency, not only for ALC but also for more ex-
pressive description logics. This is an improvement over [8] in the sense that we would
like to make as few changes as possible when extending the classical semantics to a
four-valued semantics for handling inconsistency.

The semantics of the three different types of inclusion axioms is formally defined in
Table 2 (together with the semantics of concept assertions). we refer to [8] for details.

We say that a four-valued interpretation I satisfies a four-valued knowledge base
O (i.e. is a model of it) iff it satisfies each assertion and each inclusion axiom in O. A
knowledge base O is satisfiable (unsatisfiable) iff there exists (does not exist) such a
model.



Table 2. Semantics of inclusion axioms in ALC4

Axiom Name Syntax Semantics
material inclusion C1 7→ C2 ∆I \ proj−(CI

1 ) ⊆ proj+(CI
2 )

internal inclusion C1 @ C2 proj+(CI
1 ) ⊆ proj+(CI

2 )
strong inclusion C1 → C2 proj+(CI

1 ) ⊆ proj+(CI
2 ) and

proj−(CI
2 ) ⊆ proj−(CI

1 )

individual assertions C(a) aI ∈ proj+(CI)
R(a, b) (aI , bI) ∈ RI

2.2 Reduction from Four-valued Semantics of ALC to Classical Semantics

It is a pleasing property of ALC4 that it can be translated easily into classical ALC,
such that paraconsistent reasoning can be simulated by using standard ALC reasoning
algorithms.

Definition 1 (Concept transformation) For any given concept C, its transformation
π(C) is the concept obtained from C by the following inductively defined transforma-
tion.

– If C = A for A an atomic concept, then π(C) = A+, where A+ is a new concept;
– If C = ¬A for A an atomic concept, then π(C) = A′, where A′ is a new concept;
– If C = >, then π(C) = >;
– If C = ⊥, then π(C) = ⊥;
– If C = E uD for concepts D, E, then π(C) = π(E) u π(D);
– If C = E tD for concepts D, E, then π(C) = π(E) t π(D);
– If C = ∃R.D for D a concept and R is a role, then π(C) = ∃R.π(D);
– If C = ∀R.D for D a concept and R is a role, then π(C) = ∀R.π(D);
– If C = ¬¬D for a concept D, then π(C) = π(D);
– If C = ¬(E uD) for concepts D, E, then π(C) = π(¬E) t π(¬D);
– If C = ¬(E tD) for concepts D, E, then π(C) = π(¬E) u π(¬D);
– If C = ¬(∃R.D) for D a concept and R is a role, then π(C) = ∀R.π(¬D);
– If C = ¬(∀R.D) for D a concept and R is a role, then π(C) = ∃R.π(¬D);

Based on this, axioms are transformed as follows.

Definition 2 (Axiom Transformations) For any ontology O, π(O) is defined as the
set {π(α) | α is an axiom of O}, where π(α) is the transformation performed on each
axiom defined as follows:

– π(α) = ¬π(¬C1) v π(C2), if α = C1 7→ C2;
– π(α) = π(C1) v π(C2), if α = C1 @ C2;
– π(α) = {π(C1) v π(C2), π(¬C2) v π(¬C1)}, if α = C1 → C2;.
– π(C(a)) = π(C)(a), π(R)(a, b) = R(a, b),

where a, b are individuals, C1, C2, C are concepts, R a role.



We note two issues. First of all, the transformation algorithm is linear in the size
of the ontology. Secondly, for any ALC ontology O, π(O) is still an ALC ontology.
Based on these two observations as well as the following theorem, we can see that
paraconsistent reasoning of ALC can indeed be simulated on standard reasoners by
means of the transformation just given.

Theorem 1 For any ontology O in ALC, O is 4-valued unsatisfiable if and only if
π(O) is unsatisfiable under the classical semantics of ALC.

Definition 3 Given a knowledge base O, the satisfiable form of O, written SF(O), is
a knowledge base obtained by replacing each occurrence of⊥ in O with Anewu¬Anew,
and replacing each occurrence of > in (O) with with Anew t ¬Anew, where Anew is a
new atomic concept.

3 Paraconsistent Semantics for Expressive DLs

In this section, we study how to extend four-valued semantics to SHIQ.
For the conflicting assertion set {≥ (n + 1)R.C(a),≤ nR.C(a)}, intuitively, it

is caused by the contradiction that there should be less than n different individuals
related to a via the R relation, and also there should be more than n + 1 different
individuals related to a via R. That is, the contradiction is from the set of individuals
of concept C which relate a via R. By this idea, we extend the four-valued semantics
to the constructors for number restrictions in Table 3. We remark that the semantics of
roles is just the classical semantics. So the semantics for role inclusion and transitive
role axiom are still classical.

Table 3. Four-valued Semantics Extension to Number Restrictions and Nominals

Constructor Semantics

≥ nR.C 〈{x | #(y.(x, y) ∈ RI ∧ y ∈ proj+(CI)) ≥ n},
{x | #(y.(x, y) ∈ RI ∧ y 6∈ proj−(CI)) < n}〉

≤ nR.C 〈{x | #(y.(x, y) ∈ RI ∧ y 6∈ proj−(CI)) ≤ n},
{x | #(y.(x, y) ∈ RI ∧ y ∈ proj+(CI)) > n}〉

Example 1 Consider {≥ 2hasStu.PhD(Green),≤ 1hasStu.PhD(Green)}which
says the conflicting facts that Green has at least two and at most one PhD student. Con-
sider a 4-interpretation: I = (∆I , ·I) where ∆I = {a1, a2, b1, b2, Green}, PhDI =
〈{a1, b1}, {b1, b2, a2}〉, and hasStuI = {(Green, a1), (Green, a2), (Green, b1), (Green, b2)}.
According to Table 3, we can see that I is a 4-model because (≥ 2hasStu.PhD(Green))I

= (≤ 1hasStu.PhD(Green))I = B by checking

Green ∈ {x | #(y.(x, y) ∈ hasStuI ∧ y ∈ proj+(PhDI)) ≥ 2},
Green ∈ {x | #(y.(x, y) ∈ hasStuI ∧ y 6∈ proj−(PhDI)) < 2}.



That is, the conflicting assertions are assigned the contradictory truth value B under
their 4-model I .

For the extended four-valued semantics defined in Table 3, we have following prop-
erties hold as under classical semantics.

Proposition 2 Let C be a concept and R be an object role name. For any four-
valued interpretation I defined satisfying Table 3, we have

(¬(≤ nR.C))I =4 (> nR.C)I and (¬(≥ nR.C))I =4 (< nR.C)I .

Proposition 3 Let C be a concept and R be an object role name. For any four-
valued interpretation I defined satisfying Table 3, we have

(∃R.C)I =4 (≥ 1R.C)I and (∀R.C)I =4 (< 1R.¬C)I .

Proposition 2 and Proposition 3 show that many intuitive relations between different
concept constructors still hold under the four-valued semantics, which is one of nice
properties of our four-valued semantics for handling inconsistency.

Next proposition shows that our definition of four-valued semantics for SHIQ is
enough to handle inconsistencies in an SHIQ knowledge base.

Proposition 4 For any SHIQ knowledge base O, SF(O) always has at least one
4-valued model, where SF(·) operator is defined in Definition 3.

Note that unqualified number restrictions, ≥ n.R and ≤ n.R are special forms
of number restrictions because of the equations ≤ n.R =2≤ nR.> and ≥ n.R =2≥
nR.>. However, if we defined the four-valued semantics of≤ n.R(≥ n.R) by the four-
valued semantics of ≤ nR.>(≥ nR.>) defined in Table 3 and Table 1, we would find
that {≤ n.R(a),≥ n+1.R(a)} is still an unsatisfiable set. This is because #(y.(a, y) ∈
proj(RI)∧y ∈ proj+(>I)) ≥ n+1 and #(y.(a, y) ∈ proj(RI)∧y 6∈ proj−(>I)) ≤ n
cannot hold simultaneously since >I = 〈∆I , ∅〉.

To address this problem, we also adopt the substitution defined by Definition 3. By
substituting > by Anew t ¬Anew in ≥ (n + 1)R.> and ≤ nR.>, we can see that {≤
n.R(a),≥ n + 1.R(a)} has a four-valued model with ∆I = {a, b1, ..., bn+1}, (a, bi) ∈
RI for 1 ≤ i ≤ n + 1, and AI

new = 〈∆I ,∆I〉. By doing this, we get a four-valued
model I which pushes the contraction onto the new atomic concept Anew.

Next we study how to extend the reduction algorithm to the case of four-valued
semantics of SHIQ.

Definition 4 (Definition 1 extended) For any given concept C, its transformation
π(C) is the concept obtained from C by the following inductively defined transforma-
tion.

– If C =≥ nR.D for D a concept and R a role, then π(C) =≥ nR.π(D);
– If C =≤ nR.D for D a concept and R a role, then π(C) =≤ nR.¬π(¬D);
– If C = ¬(≥ nR.D) for D a concept and R a role, then π(C) =< nR.¬π(¬D);
– If C = ¬(≤ nR.D) for D a concept and R a role, then π(C) => nR.π(D);



Regarding both the extension of number restrictions and of nominals, the following
theorem holds, which lays the theoretical foundation for the algorithm of four-valued
semantics for expressive DLs.

Theorem 5 (Theorem 1 extended) For any ontology O in SHIQ, O is 4-valued un-
satisfiable if and only if π(O) is unsatisfiable under the classical semantics of SHIQ.

4 Tractable DLs

In this section, we will see that inconsistencies are also unavoidable in many tractable
DLs. So we focus on discussing whether the four-valued semantics can preserve the
tractability of these tractable DLs. That is, whether the reduction for computing the
four-valued semantics transfers tractable DLs still into tractable DLs. If it does, then we
can use the four-valued semantics to deal with inconsistency without having to worry
about intractability. Our discussion is based on EL++, Horn-DLs, and DL-Lite.

4.1 EL++

We do not consider concrete domains. The syntax definition of EL++ knowledge bases
is shown in Table 4. EL++ ontologies may also contain role inclusions (RI) of the form
r1 ◦ · · · ◦ rk v r, where ◦ denotes role composition.

It is easy to see that an EL++ knowledge base may be inconsistent if we consider
the knowledge base {A v ⊥, A(a)}. So we still hope that the 4-valued semantics can
help us to handle inconsistency in EL++ knowledge bases. However, we will see that
we don’t have as many choices of class inclusion as in ALC and SHIQ if we want to
maintain the tractability of the 4-valued entailment relationship of EL++. The analysis
is as follows.

Obviously, the concept transformation of Definition 1 performing on an EL++ con-
cept produces an EL++ concept. For the transformation of internal inclusion, each
EL++ axiom C @ D is transformed into π(C) v π(D) where π(C) and π(D)
are still EL++ concepts, so that π(C) v π(D) is still an EL++ axiom. So internal
class inclusion does not destroy the tractability of EL++. This property does not hold
for material and strong class inclusions as shown by the following counterexamples:
A u A′ 7→ B and A u A′ → B. They will be transformed into ¬(A− t A′−) v B+

and {A+ u A′+ v B+, B− v (A− t A′−)} by Definition 2, which are not within the
expressivity of EL++. This is mainly because of no negative constructor in EL++.

For role inclusions in EL++, since there is no negative role constructor which can
cause inconsistency, we only need to use the classical interpretation for roles as what
we do for ALC. So adaptation of 4-valued semantics does not effect the role inclusions
axioms.

4.2 Horn-DLs

We ground our discussion on Horn-SHOIQ◦ as defined in [7]. Then we will point out
that the same conclusion holds for other Horn-DLs, like Horn-SHIQ [10], which has



Table 4. EL++ and Horn-SHOIQ◦. The Horn-SHOIQ◦ normal form used is due to [7].

Language GCIs Tractability-preserving Inclusions

EL+ + C v D, where C, D = > | ⊥ | {a} |
C1 u C2 | ∃r.C

internal inclusion (only)

Horn-SHOIQ◦ > v A, A v ⊥, A uA′ v B, internal inclusion (only)
∃R.A v B, A v ∃R.B, A v ∀S.B,
A v≥ nR.B, A v≤ 1R.B.

tractable data complexity [6]. We define Horn-SHOIQ◦ by means of a normal form
given in [7], which can be found in Table 4 where A,A′, B are concept names.

We can see that all of the Horn-SHOIQ◦ concept constructors preserve its form
under π(·) operator except ≤ 1R.B, because π(≤ 1R.B) =≤ 1R.¬B− according to
Definition 4. To still maintain the concept structure of≤ 1R.B within Horn-SHOIQ◦,
we redefine the π(·) operator on ≤ 1R.C as

π(≤ 1R.C) = {≤ 1R.C=}, where C= u C− v ⊥.

Then π(A @≤ 1R.C) = {A v≤ 1R.C=, C= u C− v ⊥} by the transformation
definition of internal inclusion axiom.

However, not all of the axiom transformations in Definition 2 preserve the struc-
tures of Horn-DL axioms. As the analysis in last paragraph, internal inclusion pre-
serves Horn-ness. As counterexamples for material inclusion and strong inclusion, just
consider again the counterexample used in EL++ case. The transformed forms ¬(A−t
A′−) v B+ and {A+ u A′+ v B+, B− v (A− t A′−)} are not within the expres-
sivity of Horn-SHOIQ◦. Since A u A′ v B is allowed in other Horn-DLs, the same
conclusion as for Horn-SHOIQ◦ holds. This means that when we want ro preserve
the structure of tractable Horn-DLs, we have to choose internal inclusion as the only
inclusion form to perform paraconsistent reasoning.

4.3 DL-Lite

DL-Lite family includes DL-Litecore, DL-LiteF , and DL-LiteR. The logics of DL-Lite
family are the maximal DLs supporting efficient query answering over large amounts
of instances. In [3], the usual DL reasoning tasks on DL-Lite family are shown to be
polynomial in the size of the TBox, and query answering is LOGSPACE in the size of
the ABox. Moreover, DL-Lite family allows for separation between TBox and ABox
reasoning during query evaluation: the part of the process requiring TBox reasoning
is independent of the ABox, and the part of the process requiring to the ABox can be
carried out by an SQL engine [3].

Concepts and roles of DL-Lite family are formed by the following syntax [3]:

B ::= A | ∃R R ::= P | P−
C ::= B | ¬B E ::= R | ¬R



where A denotes an atomic concept, P an atomic role, and P− the inverse of the atomic
role P . See to Table 5 for the syntax definitions of GCIs and Role Inclusions.

Table 5. DL-Lite Family

Language GCIs Role Inclusions Tractability-preserving Inclusions

DL-Litecore B v C ∅ internal inclusion (only)
DL-LiteR B v C R v E internal inclusion (only)
DL-LiteF B v C (funct R) internal inclusion (only)

It is also easy to construct an inconsistent knowledge base even for DL-Litecore. For
instance, KB = {B v ¬A,B(a), A(a)}. Moreover, conflictions about roles possibly
occur on DL-LiteR, such as {P v P ′, P v ¬P ′, P (a, b)}.

In order to still adopt 4-valued semantics for DL-Lite family, we define the four-
valued semantics extension for roles. Just as the four-valued semantics for concepts, a
pair 〈RP , RN 〉 (RP , RN ⊆ (∆I)2) denotes the four-valued semantics of a role R under
interpretation I , where RP stands for the set of pairs of individuals which are related
via R and RN explicitly represents the set of pairs of individuals which are not related
via R. Table 6 gives the formal definition.

Table 6. Four-valued Semantics of Roles

Syntax about Roles Semantics
R RI = 〈RP , RN 〉, where RP , RN ⊆ ∆I ×∆I

R− (R−)I = 〈R−P , R−N 〉, where R−P , R−N represent the in-
verse relations on R−P and R−N , respectively.

∃R 〈{x | ∃y, (x, y) ∈ RI
P }, {x | ∀y, (x, y) ∈ RI

N}〉
¬∃R 〈{x | ∀y, (x, y) ∈ RI

N}, {x | ∃y, (x, y) ∈ RI
P }〉

For simple expression, we say that x and y are positively related via R under in-
terpretation I if (x, y) ∈ RI

P , and that x and y are negatively related via R under
interpretation I if (x, y) ∈ RI

N .
Intuitively, the first part of the four-valued semantics ∃R in Table 6 denotes the set

of individuals x which has an individual y positively related x via R. While the second
part denotes the set of individuals x which negatively relate with all individuals y via
R. Note that x is not negatively related to y does not mean x and y are positively related
under four-valued semantics, since RI

P ∪ RI
N = ∆I ×∆I and RI

P ∩ RI
N = ∅ are not

necessary to hold under four-valued semantics. This also the key point why our four-
valued semantics can tolerant conflicts caused by role assertions, by allowing a, b both
positively related and negatively related via R under a four-valued interpretation I . We
give the following example to illustrate the four-valued semantics of ∃R.



Example 2 Note that the ontology O = {∃hasStud(Green),¬∃hasStud(Green)}
is inconsistent. Consider the following 4-interpretation I = (∆I , ·I), where ∆I =
{a, b, Green}:

hasStudI = 〈{(Green, a)}, {(Green, a), (Green, b), (Green, Green)}〉
which says that we know that Green has a student a, and that Green doesn’t relate
any of the individuals via the relation hasStudent. By checking the following formulae
we know that I is a 4-model of O:

Green ∈ {three exists y ∈ ∆I , such that (Green, y) ∈ hasStudI
P }

Green ∈ {for all y ∈ ∆I , (Green, y) ∈ hasStudI
N}.

Intuitively, this 4-model reflects the contradictory status of the ontology about whether
Green has a student.

Now we turn to define the concept transformations for DL-Lite.

Definition 5 The concept and role transformations for DL-Lite concepts are de-
fined on structure induction as follows.

– For E = R, then π(E) = R;
– For E = ¬R, then π(E) = R′, where R′ is a new role;
– If C = ∃R, then π(C) = ∃R;
– If C = ¬∃R, then π(C) = ¬∃R=, where R= is a new role name and R= v ¬R′.

Consider the internal inclusion transformation, we have all the GCIs B v C of
DL-Lite will be transferred into form B v C with at most an additional role inclu-
sion because π(B v ¬∃R) = {B v ¬∃R=, R= v ¬R′}. For material inclusion and
strong inclusion, because the negative concept is not allowed to occur on the left of a
GCI, they do not preserve the DL-Lite structure. So only internal inclusion works under
the reduction from four-valued semantics to classical semantics of DL-Lite family to
keep tractability. We can see that the four-valued semantics of DL-Lites family can be
reduced to the reasoning of classical DL-LiteR. The following theorem shows this.

Theorem 6 For any DL-Lite ontology O, O is 4-valued unsatisfiable if and only if
π(O) is unsatisfiable under the classical semantics of DL-LiteR.

5 Conclusions

In this paper, we further studied the four-valued semantics for description logics, spe-
cially for expressive DLs and tractable DLs. We formally defined their four-valued se-
mantics and proper reductions to classical semantics, such that all the benefits from
existing reasoners on these DLs can also be achieved by invoking classical reasoners
after employing these reduction algorithms in a preprocessing manner. And the size
of obtained ontology is linear as the size of original ontology. Unlike the four-valued
semantics for ALC and SHIQ, we showed that in order to preserve the tractability
of tractable DLs, only internal class inclusion among the three class inclusion forms is



suitable to model class inclusion. Intuitively, this is because that the semantics of mate-
rial and strong class inclusions needs the ability to represent negation in some complex
form, which is not within the expressivity of tractable DLs. In the future, we will im-
plement these extensions on our existing prototype ParOWL1 to support paraconsistent
inconsistency handling on these DLs.
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