
Logical Difference and Module Extraction with
CEX and MEX

Boris Konev1, Carsten Lutz2, Dirk Walther1, and Frank Wolter1

1 University of Liverpool, UK, 2 TU Dresden, Germany
{konev, dwalther, wolter}@liverpool.ac.uk lutz@tcs.inf.tu-dresden.de

1 Introduction

We present algorithms, experimental results, and an analysis of the computa-
tional complexity for the following two problems:

– The module extraction problem: given a terminology T1 and a signature Σ,
extract from T1 a minimal self-contained terminology T0 such that T1 and
T0 imply the same dependencies between Σ-terms.

– The logical diff problem: given a signature Σ and two versions T0 and T1 of
a terminology, check whether T0 and T1 are logically different in the sense
that they do not imply the same dependencies between Σ-terms.

There are various approaches to these problems; see, e.g., [7, 15, 3, 4] for module
extraction and [14] for an algorithm comparing ontology versions. In this paper,
we consider two logic-based approaches.
(1) A semantic approach according to which two terminologies imply the same
dependencies between Σ-terms if the class of Σ-reducts of models of the first
terminology coincides with the class of Σ-reducts of models of the second termi-
nology. In description logic (DL), so far, all reasoning problems considered for
this approach have turned out to be undecidable [12, 13]. Rather surprisingly,
we show that for acyclic ELI-terminologies deciding and extracting semantic
modules is tractable. A number of extensions of this result to expressive DLs
are presented as well. Using our implementation MEX and based on Snomed ct
(the Systematized Nomenclature of Medicine, Clinical Terms used in the health
systems of the US, the UK, and other countries [16]), we compare the size of the
extracted modules using this semantic approach with those extracted by other
approaches.
(2) We consider a language-based approach according to which two terminologies
imply the same dependencies between Σ-terms if they imply the same concept
implications in Σ. The language-based approach distinguishes less terminologies
than the semantic approach. For many DLs, the relevant reasoning problems for
the language-based approach are still decidable, but harder than subsumption
by at least one exponential, e.g., 2ExpTime-complete for general ALC TBoxes
and ExpTime-complete for general EL TBoxes [12, 13]. In this paper, we show
that for the language-based approach, the logical diff problem is tractable for
(not necessarily acyclic) EL-terminologies. Using our implementation CEX, we



apply this algorithm to compare distinct versions of Snomed ct and fragments
thereof. Proofs and additional results are available at [11, 10].

2 Preliminaries

We consider the DLs EL, ELI, ALC, and ALCI. For any of these, the corre-
sponding set of concepts is constructed from countably infinite disjoint sets NC

of concepts names and NR of role names in the usual way. A general TBox T
is a finite set of axioms, where an axiom can be either a concept inclusion (CI)
C v D or a concept equality (CE) C ≡ D with C and D concepts. If all concepts
used in T belong to a DL L, then T is also called a general L-TBox. A general
TBox T is called a terminology if it satisfies the following conditions:

– all CEs are of the form A ≡ C (concept definitions) and all CIs are of the
form A v C (primitive concept definitions), where A is a concepts name;

– no concept name occurs more than once on the left hand side of an axiom.

Define the relation ≺T ⊆ NC × (NC ∪ NR) by setting A ≺T X iff there exists an
axiom of the form A v C or A ≡ C in T such that X occurs in C. Denote by ≺+

T
the transitive closure of ≺T and set dependT (A) = {X | A ≺+

T X}. Intuitively,
dependT (A) consists of all symbols X which are used in the definition of A in
T . A terminology T is called acyclic if A 6∈ dependT (A) for any A ∈ NC. The set
Pr(T ) of primitive symbols in T consists of all role names and concept names
which do not occur on the left hand side of an axiom of T . The set PPr(T ) of
pseudo-primitive symbols in T consists of all symbols primitive in T and all A
with A v C ∈ T for some C.

A signature Σ is a finite subset of NC ∪ NR. The signature sig(C) (sig(α),
sig(T )) of a concept C (axiom α, TBox T ) is the set of concept and role names
which occur in C (α, T , respectively). If sig(C) ⊆ Σ, we also call C a Σ-concept
and similarly for axioms and TBoxes.

We now introduce two formalisations of the informal notion of ‘dependencies
between Σ-terms’: a semantic one and a language-based one. Two interpretation
I and J coincide on a signature Σ, in symbols I|Σ = J |Σ , if ∆I = ∆J and
XI = XJ for all X ∈ Σ.

Definition 1. Let T0 and T1 be general TBoxes and Σ a signature. (1) The
semantic notions are as follows:

– T1 is a semantic Σ-consequence of T0, in symbols T0 |=Σ T1, if for every
model I0 of T0, there exists a model I1 of T1 with I0|Σ = I1|Σ;

– T0 and T1 are semantically Σ-inseparable, in symbols T0 ≡Σ T1, if T0 |=Σ T1

and T1 |=Σ T0;
– T0 is a semantic Σ-tautology if ∅ ≡Σ T0.

(2) The language-based notions are as follows: let L be a DL. Then

– T0 Σ-entails T1 w.r.t. L, in symbols T0 |=L
Σ T1, if T1 |= C v D implies

T0 |= C v D, for all L-concepts C and D with sig(C,D) ⊆ Σ.



– T0 and T1 are Σ-inseparable w.r.t. L, in symbols T0 ≡L
Σ T1, if T0 |=L

Σ T1 and
T1 |=L

Σ T0.
– T0 is a Σ-tautology w.r.t. L if T0 ≡L

Σ ∅.

Observe that T1 is a model conservative extension of T0 (as defined in [12]) if
T0 ⊆ T1 and T0 ≡sig(T0) T1. Similarly, T1 is a conservative extension of T0 in L
(as defined in [12]) if T0 ⊆ T1 and T0 ≡L

sig(T0)
T1. Intuitively, T being a semantic

Σ-tautology means that no non-trivial semantic dependencies between Σ-terms
are implied by T . It is not difficult to see that T0 |=Σ T1 implies T0 |=L

Σ T1, for
any standard DL L. In fact, one can show that T0 |=Σ T1 iff every second-order
predicate logic sentence ϕ which follows from T1 and whose signature is contained
in Σ follows from T0 already. While the language-based notions depend on the
DL chosen and allow for the definition of rather fine-tuned notions of modularity
by careful choice of the DL, the semantic notions are language independent and,
therefore, the language L used need not be known in advance. We refer the reader
to [8, 7, 6] for further information on these and related notions, and remark that
the notion of Σ-tautology is called “safety for Σ” in [7].

3 Σ-entailment for EL-terminologies

We present a polynomial-time algorithm that decides Σ-entailment for (possibly
cyclic) EL-terminologies. In this section, all concepts, concept implications, and
terminologies are in EL. Thus, we omit the prefix EL, and ‘T0 Σ-entails T1’
stands for ‘T0 Σ-entails T1 w.r.t. EL’. An implication C v D is called a counter-
example to Σ-entailment of T1 by T0 if C,D are Σ-concepts and T1 |= C v D,
but T0 6|= C v D.

Lemma 1. Let T0 and T1 be terminologies and Σ a signature. If T0 does not
Σ-entail T1 and C v D is a counter-example to Σ-entailment, then there exist
subconcepts C ′ and D′ of C and D, respectively, such that C ′ v D′ is a counter-
example to Σ-entailment of the form A v ∃r.D0 or C0 v A, where A is a concept
name.

It follows that the problem of deciding Σ-entailment is split into two parts:
decide whether there exists a counter-example of the form C v A, and if this is
not the case, decide whether there exists a counter-example of the form A v D.
The latter problem has been shown to be decidable in polynomial-time already
in [13]. It thus remains to show the following:

Theorem 1. Given EL-terminologies T0 and T1, it is decidable in polynomial-
time whether there exists a counter-example to T0 |=EL

Σ T1 of the form C v A.

When proving Theorem 1, we assume that the terminology T0 is in a certain
normal form (but this need not be the case for T1). A concept name A is called
non-conjunctive in a terminology T if it is pseudo-primitive in T or has a defi-
nition of the form A ≡ ∃r.C ∈ T , and conjunctive otherwise. We say that T is
in normal form if it consists of axioms of the following form:



For each A ∈ sig(T0) ∪Σ, define noimplyT0,Σ(A) and a TBox TA as follows:

– If A is pseudo-primitive in T0, then

noimplyT0,Σ(A) = {ξA} and TA =
˘
ξA v

l

A′∈Σ\preΣ
T0

(A)

A′ u AllΣ
¯

– If A is conjunctive in T0 and A ≡ F ∈ T0, then

noimplyT0,Σ(A) = {ξB | B ∈ F} and TA = ∅

– If A ≡ ∃r.B ∈ T0, then noimplyT0,Σ(A) = {ξA} and

TA =
n

ξA v
l

A′∈Σ\preΣ
T0

(A)

A′ u
` l

r 6=s∈Σ

∃s.(
l

A′∈Σ

A′ u AllΣ)
´
u

l

ξ∈noimplyT0,Σ(B)

∃r.ξ
o

Then define
AuxT0,Σ :=

˘
AllΣ v

l

r∈Σ

∃r.(
l

A∈Σ

A u AllΣ)
¯
∪

[
A∈Σ

TA

Fig. 1. Computing AuxT0,Σ and noimplyT0,Σ(A)

– A ≡ ∃r.B, where B is a concept name;
– A v C, where C is a concept;
– A ≡ F , where F is a (possibly empty) conjunction of concept names such

that every conjunct B of F is non-conjunctive.

By adapting the normalisation algorithm from [1], it is easy to show that every
terminology T can be converted in polynomial-time into a terminology T ′ in
normal form such that T ′ ≡sig(T ) T and T ′ is acyclic iff T is acyclic. It follows
that, in the proof of Theorem 1, we can w.l.o.g. assume T0 to be in normal form.

Lemma 2. Let T0 be a terminology in normal form, Σ a signature, Σ′ =
{AllΣ} ∪ {ξA | A non-conjunctive in T0} a set of fresh concept names, and
preΣ

T0
(A) = {B ∈ Σ | T0 |= B v A}. The algorithm in Figure 1 constructs

in polynomial time

– a terminology AuxT0,Σ using only symbols from Σ ∪Σ′, and
– a set of concept names noimplyT0,Σ(A) for each A ∈ sig(T0) ∪Σ

such that the following are equivalent, for every terminology T1 with sig(T1)∩Σ′ =
∅ and every A ∈ Σ:

1. there exists a Σ-concept C with T1 |= C v A and T0 6|= C v A;
2. T1 ∪ AuxT0,Σ |= ξ v A, for some concept name ξ ∈ noimplyT0,Σ(A).

Since subsumption in EL is tractable [1], Theorem 1 is an immediate consequence
of Lemma 2: given T0, T1, and Σ, the following procedure runs in polynomial
time: for every concept name A ∈ Σ, first compute AuxT0,Σ and noimplyT0,Σ(A)
and then check whether T1 ∪ AuxT0,Σ |= ξ v A, for some ξ ∈ noimplyT0,Σ(A).



In Section 5, we report about experiments with the prototype implementation
CEX of a variant of this algorithm for acyclic EL terminologies. In contrast to
the algorithm above, CEX does not proceed in two separate steps but uses a
dynamic programming approach working with the two terminologies T0 and T1

at the same time.

4 Semantic modularity

We investigate the complexity of various reasoning tasks for the semantic no-
tion of Σ-dependencies and present module extraction algorithms based on this
notion. We consider the following notions of a module:

Definition 2 (Semantic modules). Let T0 ⊆ T1 and Σ ⊇ sig(T0).

– T0 is a weak semantic Σ-module of T1 iff T1 is semantically Σ-inseparable
from T0.

– T0 is a strong semantic Σ-module of T1 iff T1 \T0 is a semantic Σ-tautology.

The requirement that Σ contains the signature of T0 reflects the idea that mod-
ules should be self-contained in the sense that if an ontology T implies a de-
pendency between symbols occuring in T0, then this dependency is implied by
T0 already. Notions of modules in which this is not the case are of interest as
well and are considered, for example, in [3]. The following lemma addresses the
relation between strong and weak modules.

Lemma 3. Every strong semantic module is a weak semantic module. The con-
verse does not hold for acyclic EL-terminologies.

Proof. The first part is obvious. For the second part, let T0 = {A ≡ >}, T1 =
T0 ∪ {B v A}, and Σ = {A,B}. Then T0 is a weak semantic module of T1, but
not a strong semantic module.

Intuitively, the difference between weak and strong modules is that strong mod-
ules additionally require the ontology without the module to not imply any
dependencies between symbols in Σ.

In many cases, it is much harder to decide semantic Σ-consequence than to
decide Σ-entailment (which has a syntactic flavour). For general EL-TBoxes,
the first problem is undecidable while the latter is ExpTime-complete [13]. For
ALC, undecidability even applies to acyclic terminologies:

Theorem 2. It is undecidable whether an acyclic ALC-terminology is a seman-
tic Σ-tautology for a signature Σ. Even for ALC-TBoxes T of the form {A v C}
and Σ of the form {A, r1, r2}, this problem is undecidable.

This result and related ones in [7, 12] explain why the notions of modularity from
Definition 2 have not yet found practical applications. Instead, applications use
stronger notions such as locality [7] which, in general, leads to larger modules,
or they use notions of modularity that are not logic-based [15, 5, 4]. In this sec-
tion, we revisit (the proof of) Theorem 2 and identify relevant cases in which
undecidability can be avoided. In particular, reasoning is even tractable in some
of these cases. A first observation is that roles in Σ are problematic:



Theorem 3. Let L be ALC or ALCI. For general L-TBoxes T1 and T0 and a
signature Σ with sig(Ti) ∩Σ ⊆ NC for i = 0, 1,
(1) it is coNExpNP-complete to decide whether T0 ≡Σ T1; if Σ is fixed, then
this problem is coNPNExp-complete;
(2) it is Πp

2 -complete to decide whether T0 is a semantic Σ-tautology.

Thus, it is possible to decide whether a T0 ⊆ T1 is a weak or strong Σ-module of
T1 in the sense of Definition 2 if Σ contains only concept names. Interestingly,
deciding strong modules is considerably simpler than deciding weak modules,
and even simpler than subsumption in ALC with acyclic TBoxes. Theorem 3 is
also of interest when analysing merged ontologies: it is decidable whether the
union T0 ∪ T1 of two ontologies T0 and T1 is semantically Σ-inseparable from
the two ontologies, if the set Σ of symbols shared by T0 and T1 contains only
concept names.

4.1 Deciding and extracting semantic modules for acyclic
terminologies

From now on, we restrict our investigation to acyclic terminologies. The following
notion will play a central role:

Definition 3 (Syntactic Σ-dependency). Let T be an acyclic terminology
and Σ, Σ1, Σ2 signatures. T contains a syntactic (Σ1, Σ2)-dependency if there
exists a concept name A ∈ Σ1 such that dependT (A) ∩ Σ2 6= ∅. A syntactic
(Σ, Σ)-dependency is called a syntactic Σ-dependency.

Intuitively, having no syntactic Σ-dependency means that no concept name in
Σ is defined in terms of a Σ-symbol. Syntactic Σ-dependencies give rise to a
natural case in which semantic modules in ALC are decidable.

Theorem 4. Let L be ALC or ALCI. For acyclic L-terminologies T1 ⊇ T0

and a signature Σ ⊇ sig(T0) such that T1 \T0 contains no syntactic (Σ, Σ ∩NR)-
dependencies,
(1) it is coNExpNP-complete to decide whether T0 is a weak semantic Σ-module
of T1;
(2) it is Πp

2 -complete to decide whether T0 is a strong semantic Σ-module of T1.

An additional virtue of Theorem 4 is that it can be used to define approxima-
tions of a semantic module. In the following, we consider a stronger syntactic
condition. Namely, we do not allow any Σ-dependency (instead of forbidding
only Σ ∩ NR-dependencies). Our first result states that, under the assumption
that there are no syntactic Σ-dependencies, the notions of strong and weak se-
mantic modules coincide and the corresponding decision problem is Πp

2 -complete
for ALC and ALCI.

Theorem 5. Let L be ALC or ALCI. For L-terminologies T1 ⊇ T0 and a sig-
nature Σ ⊇ sig(T0) such that T1 \ T0 contains no syntactic Σ-dependencies, the
following are equivalent:



Output “not module” if any of the two conditions applies, and “module” otherwise:

1. there exists A ∈ Σ ∩ (Pr(T0) \ Pr(T1)) with dependT1\T0
(A) ∩Σ 6= ∅;

2. there exists A ∈ Σ ∩ (Pr(T0) \ Pr(T1)) such that A ≡ C ∈ T1 for some C and[
B∈Σ∩(Pr(T0)\(Pr(T1)∪{A}))

dependT1\T0
(B) ⊇ depend≡T1\T0

(A) ∩ PPr(T1 \ T0),

Fig. 2. Checking module in ELI

– T0 is a strong semantic Σ-module of T1;
– T0 is a weak semantic Σ-module of T1;
– for all P ⊆ Σ∩(Pr(T0)\Pr(T1)), CP =

d
A∈P Au

d
A∈Σ∩(Pr(T0)\(Pr(T1)∪P )) ¬A

is satisfiable in a model of T1 \ T0 of cardinality 1.

It is Πp
2 -complete to decide whether T0 is a weak/strong semantic module of T1.

We now consider EL and ELI. It follows from Point (2) of Theorem 2 that,
in ALC, it is undecidable whether a syntactic Σ-dependency implies that the
terminology is not a semantic Σ-tautology. In EL and ELI, the same problem
is trivial:

Lemma 4. Let L be EL or ELI. If T is an acyclic L-terminology that contains
a syntactic Σ-dependency, then T is not a Σ-tautology.

Based on this observation, we show that in EL and ELI, modules can be decided
and extracted in polynomial-time. Say that an acyclic ELI/EL-terminology T
contains no trivial axioms if no axiom of the form A ≡ > (nor A ≡ > u >,
etc.) occurs in T . Observe that the example given in the proof of Lemma 3
contains trivial axioms. In acyclic ELI-terminologies, any A defined as > can
be eliminated by replacing it with >. It is, therefore, harmless to assume that
such terminologies do not contain trivial axioms.

Theorem 6. Let L be EL or ELI. For acyclic L-terminologies T1 ⊇ T0 contain-
ing no trivial axioms and signature Σ ⊇ sig(T0), the following are equivalent:

– T0 is a strong semantic Σ-module of T1;
– T0 is a weak semantic Σ-module of T1.

It is decidable in polynomial time whether T0 is a weak/strong semantic module
of T1.

Figure 2 gives an algorithm that establishes the polynomial-time bound stated
in Theorem 6, using the following notation. We say that A ∈ NC directly ≡-
depends on X ∈ NC ∪ NR, in symbols A ≺≡

T X, iff there exists A ≡ C ∈ T
such that X occurs in C. Then, depend≡T (A) denotes the set of all X such that
(A,X) is in the transitive closure of ≺≡

T . The algorithm takes as input acyclic
ELI-terminologies T1 ⊇ T0 and a signature Σ ⊇ sig(T0).



Initialise: T0 = ∅.
Apply Rules 1 and 2 exhaustively, where Rule 1 has higher precedence.
Output T0.

1. if A ∈ Σ ∪ sig(T0), α ∈ T1 \ T0 has A on the left hand side, and dependT1\T0
(A)∩

(Σ ∪ sig(T0)) 6= ∅, set T0 := T0 ∪ {α}.
2. if A ∈ Σ ∪ sig(T0), A ≡ C ∈ T1 \ T0, and[

B∈(Σ∪sig(T0))∩(Pr(T0)\(Pr(T1)∪{A}))

dependT1\T0
(B) ⊇ depend≡T1\T0

(A)∩PPr(T1\T0),

set T0 := T0 ∪ {A ≡ C}.

Fig. 3. Computing module in ELI

It is an interesting consequence of Theorem 6 that acyclic ELI-terminologies
provide the first example of a DL in which subsumption is computationally
harder than checking semantic modules: the former is PSpace-complete [9], and
the latter can be done in polynomial-time. We now apply the results on checking
semantic modules above to design a module extraction algorithm. For EL and
ELI, the algorithm is presented in Figure 3. It takes as input an acyclic ELI-
terminology T1 containing no trivial axioms and a signature Σ and it outputs T0.

Theorem 7. Let L be EL or ELI. For an acyclic L-terminology T1 contain-
ing no trivial axioms and a signature Σ, the algorithm in Figure 3 outputs the
smallest T0 ⊆ T1 such that T0 is a strong/weak semantic Σ ∪ sig(T0)-module
of T1.

For module extraction algorithms for ALC and ALCI, we refer to the full pa-
per [10].

5 CEX and MEX—Experimental results

For any two acyclic EL-terminologies T0 and T1 and signature Σ, the system
CEX outputs two lists DiffRΣ(T0, T1) and DiffLΣ(T0, T1) that describe the logical
difference between T0 and T1. Formally,

– the list DiffRΣ(T0, T1) consists of all A ∈ Σ such that there is a Σ-concept
C with T0 6|= C v A and T1 |= C v A.

– the list DiffLΣ(T0, T1) consists of all A ∈ Σ such that there is a Σ-concept
C with T0 6|= A v C and T1 |= A v C.

Both lists are empty if, and only if, T0 and T1 are Σ-inseparable w.r.t. EL.
Given an acyclic EL-terminology T1 and signature Σ, the system MEX out-

puts the smallest semantic module T0 of T1 as described in Theorem 7. MEX and
CEX are OCaml programs. The experiments below use two versions of Snomed



ct: one dated 09 February 2005 (SM-05) and the other 30 December 2006
(SM-06) and having 379 691 and 389 472 axioms, respectively. As CEX currently
accepts acyclic EL-terminologies only, the role inclusions of Snomed ct are not
taken into account for experiments with CEX (in contrast to MEX, see [10] for
details). The tests have been carried out on a standard PC: Intel r© CoreTM

2 CPU at 2.13 GHz and 3 GB of RAM.

Logical difference between SM-05 and SM-06. The left hand side of Table 1
shows the average time and memory consumption of CEX computing the lists
DiffRΣ(SM-05,SM-06) and DiffLΣ(SM-05,SM-06) for 20 randomly generated
signatures Σ of size 100, 1 000, etc. For both sets, their average size is provided.

The right hand side of Table 1 shows the average time and memory consump-
tion of computing the same lists, but here we first use MEX to extract semantic
Σ-modules T0 and T1 from SM-05 and SM-06, respectively, and then CEX com-
putes DiffRΣ(T0, T1) and DiffLΣ(T0, T1). Though CEX is already very efficient,
the results show that the latter procedure is even faster and gives results almost
instantaniously. Even in the case of Σ = 100000, MEX contributes less than 5
seconds to the overall runtime.

CEX: Diff(SM-05,SM-06) CEX: Diff(Mod(SM-05),Mod(SM-06))
Size of Time Memory |DiffLΣ | |DiffRΣ | Time Memory

Σ (Sec.) (MByte) (Sec.) (MByte)

100 513.1 1 393.7 0.0 0.0 3.66 116.5

1 000 512.4 1 394.6 2.5 2.5 4.46 122.5

10 000 517.7 1 424.3 183.2 122.0 22.29 126.5

100 000 559.8 1 473.2 11 322.1 4 108.5 189.98 615.8

Table 1. Logical difference between semantic modules of two Snomed ct versions

The size of modules. We compare the size of modules generated by MEX with the
minimal modules generated by a number of other extraction algorithms. When
applied to an acyclic EL-terminology T1 and signature Σ, the module extraction
algorithms presented in [7, 5, 15] output a module T0 that is definition-closed,
i.e., satisfies the following:

if A ∈ sig(T0) ∪Σ and α ∈ T1 has A on the left hand side, then α ∈ T0.

An exception are the modules generated using the >-based locality approach
of [7] (whereas the ⊥-based locality approach yields definition-closed modules).
Any definition-closed module contains the module generated by MEX. The fol-
lowing experiment compares the minimal size of definition-closed modules with
the size of modules generated using MEX, when applied to Snomed ct. To
compute the minimal definition-closed modules, we use the module extraction



feature of the CEL reasoner [2] (Version 1.0b). In Figure 4, an input signature
consisted of a number of concept names that were randomly selected from SM-
05. The size of the input signatures varied from 100 to 1 000 concept names and
for every signature size, we use 1000 random signatures. The maximal, minimal,
and average module sizes depending on the size of the input signature are shown.

Fig. 4. Sizes of definition-closed and semantic modules

Comparing sensitivity of CEX and class hierarchy. To compute the logical diff,
CEX compares the set of Σ-concept inclusions implied by terminologies. Alterna-
tively, one could compare only the set of implied inclusions between Σ-concept
names (the class-hierarchy). Figure 5 shows the size of DiffLΣ ∪ DiffRΣ as com-
puted by CEX when applied to the empty terminology and SM-05 for 500 ran-
domly generated signatures Σ of size 10 to 270. Each Σ contains, in addition, 20
role names. The second curve of Figure 5 shows the number of concept names
from Σ for which new inclusions occur in the class-hierarchy restricted to Σ.
It can be seen that for these signatures CEX detects about five times as many
differences as the class hierarchy. The difference between the two approaches is
less significant if less roles names are in the signature Σ. But even for signatures
without role names CEX detects possibly important differences that do not occur
in the class hierarchy.

For further experiments using CEX and MEX, we refer the reader to the full
papers [11, 10].
References

1. F. Baader. Terminological cycles in a description logic with existential restrictions.
In Proc. of IJCAI-03, pages 325–330. Morgan Kaufmann, 2003. Long version
available as LTCS Report 02-02.

2. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time reasoner
for life science ontologies. In Proc. of IJCAR-06, volume 4130 of LNAI, pages
287–291. Springer, 2006.



Fig. 5. Comparing sensitivity of CEX and class hierarchy

3. A. Borgida. On importing knowdledge from DL ontologies: some intuitions and
problems. In Proc. of DL Workshop, volume 250 of http://ceur-ws.org/, 2007.

4. P. Doran, V. Tamma, and L.Iannone. Ontology module extraction for ontology
reuse: an ontology engineering perspective. In Proc. of CIKM-07, pages 61–70.
ACM, 2007.

5. J. H. Gennari et al. The evolution of protégé: an environment for knowledge-based
systems development. Int. J. Hum.-Comput. Stud., 58(1):89–123, 2003.

6. S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? a case for conser-
vative extensions in description logics. In Proc. of KR-06, pages 187–197. AAAI
Press, 2006.

7. B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right amount:
extracting modules from ontologies. In Proc. of WWW-07, pages 717–726, 2007.

8. B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. A logical framework for
modularity of ontologies. In Proc. of IJCAI-07, pages 298–303. AAAI Press, 2007.

9. C. Haase and C. Lutz. Complexity of subsumption in the EL-family of description
logics: Acyclic and cyclic Tboxes. 2008. submitted.

10. B. Konev, C. Lutz, D. Walther, and F. Wolter. Semantic modularity and mod-
ule extraction in description logic. http://www.csc.liv.ac.uk/frank/publ/publ.
html.

11. B. Konev, D. Walther, and F. Wolter. The logical difference problem for description
logic terminologies. http://www.csc.liv.ac.uk/frank/publ/publ.html.

12. C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive descrip-
tion logics. In Proc. of IJCAI-07, pages 453–458. AAAI Press, 2007.

13. C. Lutz and F. Wolter. Conservative extensions in the lightweight description logic
EL. In Proc. of CADE-07, volume 4603 of LNCS, pages 84–99. Springer, 2007.

14. N. F. Noy and M. Musen. Promptdiff: A fixed-point algorithm for comparing
ontology versions. In Proc. of AAAI, pages 744–750. AAAI Press, 2002.

15. J. Seidenberg and A. L. Rector. Web ontology segmentation: analysis, classification
and use. In WWW-06, pages 13–22, ACM, 2006.

16. K. Spackman. Managing clinical terminology hierarchies using algorithmic calcu-
lation of subsumption: Experience with Snomed-rt. In JAMIA, 2000.

17. B. Suntisrivaraporn. Module Extraction and Incremental Classification: A Prag-
matic Approach for EL+ Ontologies. In Proc. of ESWC-08, volume 5021 of LNCS,
pages 230–244. Springer, 2008.


