
Safe and Economic Re-Use of Ontologies:
A Logic-Based Methodology and Tool Support

Ernesto Jiménez-Ruiz1, Bernardo Cuenca Grau2, Ulrike Sattler3,
Thomas Schneider3, and Rafael Berlanga1

1 Universitat Jaume I, Spain, {berlanga,ejimenez}@uji.es
2 University of Oxford, UK, berg@comlab.ox.ac.uk

3 University of Manchester, UK, {sattler,schneider}@cs.man.ac.uk

1 Motivation

Ontology design and maintenance require an expertise in both the domain of
application and the ontology language. Realistic ontologies typically model dif-
ferent aspects of an application domain at various levels of granularity; prominent
examples are the National Cancer Institute Ontology (NCI)4, which describes
diseases, drugs, proteins, etc., and GALEN5, which represents knowledge mainly
about the human anatomy, but also about other domains such as drugs.

Ontologies such as NCI and GALEN are used in biomedical applications as
reference ontologies, i.e., ontology developers reuse and customise them for their
specific needs. For example, concepts from NCI or GALEN are used and refined
(e.g., by adding sub-concepts), generalised (e.g., by adding super-concepts), or
referred to when expressing a property of some other concept (e.g., by defining
the concept Polyarticular JRA via reference to the concept Joint from GALEN).

One of such use cases is the development within the Health-e-Child project
of an ontology, called JRAO, to describe a kind of arthritis called JRA (Juve-
nile Rheumatoid Arthritis).6 Following the ILAR7, JRAO describes the kinds
of JRA. Those are distinguished by several factors such as the joints affected
or the occurrence of fever, and each type of JRA requires a different treatment.
GALEN and NCI contain information that is relevant to JRA, such as detailed
descriptions of the human joints as well as diseases and their symptoms. Figure
1 gives a fragment of NCI that defines JRA. It also shows our reuse scenario,
where C1, . . . , C7 refer to the kinds of JRA to be defined in JRAO.

The JRAO developers want to reuse knowledge from NCI and GALEN for
three reasons: (a) they want to save time through reusing existing ontologies
rather than writing their own; (b) they value knowledge that is commonly ac-
cepted by the community and used in similar applications; (c) they are not
experts in all areas covered by NCI and GALEN.
4 Online browser: http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do, latest

version: ftp://ftp1.nci.nih.gov/pub/cacore/EVS/NCI Thesaurus
5 http://www.co-ode.org/galen
6 See http://www.health-e-child.org. This project aims at creating a repository of

ontologies that can be used by clinicians in various applications.
7 Int. League of Associations for Rheumatology http://www.ilarportal.org/

NCI

JRAO GALEN

Arthropathy

Arthritis Autoimmune
Disease

Rheumatologic
Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

C1

. . .
C7

Joints

Drugs

affects

isTreatedBy

Figure 1. Constructing the ontology JRAO reusing fragments of GALEN and NCI

GALEN, NCI, and JRAO are written in OWL DL; hence their semantics
should be taken into account for ontology reuse. More precisely, the following
guarantees should be provided. First, when reusing knowledge from NCI and
GALEN, the JRAO developers do not want to change the original meaning of
the reused concepts. For example, due to (b) and (c) above, if it followed from
the union of JRAO and NCI that JRA is a genetic disorder, then this should also
follow from NCI alone. Second, only small parts of large ontologies like NCI and
GALEN are relevant to the sub-types of JRA. For efficiency and succinctness,
the JRAO developers want to import only those axioms from NCI and GALEN
that are relevant for JRAO. By importing only fragments of NCI and GALEN,
one should not lose important information; for example, if it follows from the
union of JRAO and NCI that JRA is a rheumatologic disorder, then this also
follows from the union of JRAO and the chosen fragment of NCI.

Our scenario has two main points in common with other ontology design
scenarios: the ontology developer wants to reuse knowledge without changing it,
and also to import only the relevant parts of an existing ontology. To support
these scenarios whilst providing the two above guarantees, a logic-based approach
to reuse is required. Current tools that support reuse, however, do not implement
a logic-based solution and thus do not provide the above guarantees—and neither
do existing guidelines and “best practices” for ontology design.

In this paper, we propose a methodology for ontology design in scenarios
involving reuse which is based on a well-understood logic-based framework [1].
We describe a tool that implements this methodology and report on experiments.

2 Preliminaries on Modularity

Based on the scenario in Section 1, we define the notions of a conservative ex-
tension, safety, and module [2, 1]. For simplicity, we restrict ourselves to SHIQ.
In this and the following section, we have omitted a few technical details, which
can be found in a technical report available at http://www.cs.man.ac.uk/
∼schneidt/publ/safe-eco-reuse-report.pdf.

2.1 Conservative Extensions, Safety and Modules

When reusing knowledge from NCI and GALEN, the developer of JRAO should
not change the original meaning of the reused concepts. This requirement can be
formalised using the notion of a conservative extension [2, 3]. In the following,
we use Sig() to denote the signature of an ontology or an axiom.8

Definition 1 (Conservative Extension). Let O1 ⊆ O be ontologies, and S
a signature. We say that O is an S-conservative extension of O1 if, for every
axiom α with Sig(α) ⊆ S, we have O |= α iff O1 |= α; O is a conservative
extension of O1 if O is an S-conservative extension of O1 for S = Sig(O1).9

Definition 1 applies to our example as follows: O1 = NCI is the ontology to be
reused, O is the union of JRAO and NCI, S represents the symbols reused from
NCI, such as JRA and Rheumatologic Disorder, and α stands for any axiom over
the reused symbols only, e.g., JRA v Rheumatologic Disorder.

Definition 1 assumes that the reused ontology is static. In practice, however,
ontologies such as NCI are under development and may evolve beyond the control
of the JRAO developers. Thus, it is convenient to make the axioms of NCI
available on demand via a reference such that the developers of the JRAO need
not commit to a particular version of NCI. The notion of safety [1] is a stronger
version of conservative extension that abstracts from the particular ontology to
be reused and focuses only on the reused symbols.

Definition 2 (Safety for a Signature). Let O be an ontology and S a signa-
ture. We say that O is safe for S if, for every ontology O′ with Sig(O)∩Sig(O′) ⊆
S, we have that O ∪O′ is a conservative extension of O′.

As mentioned in Section 1, by importing only a fragment of NCI and GALEN,
one should not lose important information. This idea can be formalised using
the notion of a module [1]. Intuitively, when checking an arbitrary entailment
over the signature of the JRAO, importing a module of NCI should give exactly
the same answers as if the whole NCI had been imported.

Definition 3 (Module for a Signature). Let O′
1 ⊆ O′ be ontologies and S

a signature. We say that O′
1 is a module for S in O′ (or an S-module in O′)

if, for every ontology O with Sig(O) ∩ Sig(O′) ⊆ S, we have that O ∪ O′ is a
conservative extension of O ∪O′

1 for Sig(O).
8 SHIQ-axioms are concept or role inclusions, or transitivity statements.
9 SHIQ is a monotonic logic; hence the “only if” in “O |= α iff O1 |= α” is trivial.

The notions of safety and module are related as follows: if O′ \O′
1 is safe for

S ∪ Sig(O′
1), then O′

1 is an S-module in O′ [1].

2.2 Locality Conditions

The decision problems associated with conservative extensions, safety and mod-
ules—are undecidable for SHOIQ [4, 1]. Sufficient conditions for safety have
been proposed: if an ontology satisfies such conditions, then we can guarantee
that it is safe, but the converse does not necessarily hold [1]. Such conditions
could be used for extracting modules. A particularly useful condition is locality
[1]: it is widely applicable in practice and it can be checked syntactically.

As mentioned in Section 1, when using a symbol from NCI or GALEN, the
JRAO developers may refine or extend its meaning, or refer to it for expressing
a property of another symbol. The simultaneous refinement and generalisation
of a given “external” symbol, however, may compromise safety. For example,
JRAO cannot simultaneously contain the following axioms:

Polyarticular JRA v JRA (⊥-local) (1)
Juvenile Chronic Polyarthritis v Polyarticular JRA (>-local) (2)

where the underlined concepts are reused from NCI, see Figure 1. These axioms
imply Juvenile Chronic Polyarthritis v JRA, and therefore an ontology containing
axioms (1) and (2) is not safe w.r.t. S = {JRA, Juvenile Chronic Polyarthritis}.
Thus, when designing sufficient conditions for safety, we are faced with a fun-
damental choice depending on whether the ontology designer wants to reuse or
generalise the reused concepts. Each choice leads to a different locality condition.

The following definition introduces these conditions and refers to Figure 2:
A† and R† are concept and role names not in S; C and R denote arbitrary
concepts and roles.

Definition 4 (Syntactic ⊥-Locality and >-Locality). Let S be a signature.
An axiom α is ⊥-local w.r.t. S (>-local w.r.t S) if α ∈ Ax(S), as defined in
Figure 2 (a) ((b)). An ontology O is ⊥-local (>-local) w.r.t. S if α is ⊥-local
(>-local) w.r.t. S for all α ∈ O.

Axiom (2) is >-local w.r.t. S = {Juvenile Chronic Polyarthritis}, and Axiom (1)
is ⊥-local w.r.t. S = {JRA}. Note that the locality conditions allow us to refer to
a reused concept for expressing a property of some other concept; for example,
the axiom Polyarticular JRA v > 5 affects.Joint is ⊥-local w.r.t. S = {Joint}.

Both >-locality and ⊥-locality are sufficient for safety and locality can be
used for defining modules: we say that O1 ⊆ O is a ⊥-module (>-module) in O
for S if O \ O1 is ⊥-local (>-local) w.r.t. S ∪ Sig(O1) [1].

It is clear that ⊥-modules and >-modules satisfy Definition 3: if O1 is ⊥-
module or a >-module for S in O, then O1 is an S′-module in O for S′ =
S∪Sig(O1) [1]. These modules enjoy a property which determines their scope: let
O1 (O2) be a ⊥-module (>-module) for S in O, then O1 (O2) contains all super-
concepts (sub-concepts) in O of all concepts in S–that is if α := (X v Y), β :=

(a) ⊥-Locality Let C† ∈ Con(S̄), Cs
(i) ∈ Con(S)

Con(S̄) ::= A† | ¬Cs | C u C† | C† u C | ∃R.C† | > n R.C† | ∃R†.C | > n R†.C

Con(S) ::= ¬C† | Cs
1 u Cs

2

Ax(S) ::= C† v C | C v Cs | R† v R | Trans(R†)

(b) >-Locality Let Cs ∈ Con(S), C†
(i) ∈ Con(S̄)

Con(S) ::= ¬C† | C u Cs | Cs u C | ∃R.Cs | > n R.Cs

Con(S̄) ::= A† | ¬Cs | C†
1 u C†

2 | ∃R†.C† | > n R†.C†

Ax(S) ::= Cs v C | C v C† | R v R† | Trans(R†)

Figure 2. Syntactic locality conditions

(Y v X), for X, Y concept names, then O1 |= α iff O |= α and O2 |= β iff O |= β
[1]. For example, if we reused the concept JRA from NCI as shown in Figure
1 by extracting a ⊥-module for a signature that contains JRA, such a module
would contain all the super-concepts of JRA in NCI, namely Rheumatoid Arthritis,
Autoimmune Disease, Rheumatologic Disorder, Arthritis, and Arthropathy. Since
such a fragment is a module, it will contain the axioms necessary for entailing
those subsumption relations between the listed concepts that hold in NCI.

Finally, given O and S, there is a unique minimal ⊥-module and a unique
minimal >-module for S in O, which can be computed in polynomial time [1].
We denote these modules by UpMod(O,S) and LoMod(O,S).

3 A Novel Methodology for Ontology Reuse

Based on our scenario in Section 1 and the theory of modularity summarised
in Section 2, we propose a novel methodology for designing an ontology when
knowledge is to be borrowed from several external ontologies. This methodology
provides precise guidelines for ontology developers to follow, and ensures that
logical guarantees will hold at certain stages of the design process. We propose
the working cycle given in Figure 3. It consists of an offline phase—which is
performed independently from the current contents of the external ontologies—
and an online phase—where knowledge from the external ontologies is extracted
and transferred into the current ontology. This separation between offline and
online is not strict: The first phase is called “offline” simply because it does not
need to be performed online. However, the user may still choose to do so.
The Offline Phase starts with the ontology O being developed, e.g., JRAO.
The ontology engineer specifies the set S of symbols to be reused, and associates
to each symbol the external ontology from which it will be borrowed. In Figure
3 this step is represented in the Repeat loop: each Si ⊆ S stands for the external
symbols borrowed from a particular ontology O′

i; in our example, we have S =
S1]S2, where S1 is associated with NCI and contains JRA, and S2 is associated
with GALEN and contains symbols related to joints and drugs. This part of

the offline phase may involve an “online” component where the developer may
browse through the external ontologies selecting symbols for import.

In the subsequent For loop, the ontology developer decides, for each Si,
whether she wants to refine or generalise the symbols from Si. In the example in
Figure 1, the concept JRA from NCI is refined by sub-concepts C1, . . . , C7. In
both cases, the user may also reference the external symbols via roles; in our ex-
ample, certain types of JRA are defined by referencing concepts in GALEN (e.g.,
joints) via the roles affects and isTreatedBy. As argued in Section 1, refinement
and generalisation, combined with reference, are the main possible intentions
when reusing external knowledge. Therefore it is reasonable for the user, both
from the modelling and tool design perspectives, to declare her intention.

At this stage, we want to ensure that the designer of O does not change the
original meaning of the reused concepts, independently of what their meaning is
in the external ontologies. This requirement can be formalised using safety:

Definition 5 (Safety Guarantee). The ontology O guarantees safety w.r.t.
the signatures S1, . . . ,Sn if O is safe for Si for all 1 ≤ i ≤ n.

O
F
F
L
I
N
E

Load local ontology O
Repeat at user’s discretion

Choose a set of external symbols Si

plus associated ontology O′
i

Let S = S1] · · ·] Sn

For each Si do
Select refinement or generalisation view

O
N
L
I
N
E

Repeat at user’s discretion
Select an Si

Load external ontology O′
i for Si

Customise scope of module
Extract module OSi from O′

i

Import OSi into O

Safety

Module Coverage

Mod. Independence

Figure 3. The two phases of import with the required guarantees

In the Online Phase, the relevant knowledge from each external ontology is
imported. We aim at extracting only those fragments from the external ontologies
that are relevant to the reused symbols, and therefore these fragments should
be modules in the sense of Definition 3.

As Figure 3 shows, the import for each external ontology O′
i consists of four

steps. First, O′
i is loaded—the ontology engineer commits to a particular version

of it. Second, the scope of the module to be extracted from O′
i is customised—

the ontology engineer obtains a view of O′
i and may extend Si by giving re-

quirements such as “The module has to contain the concept Joint, all its direct
super-concepts and two levels of its sub-concepts”. Third, a fragment of O′

i is
extracted. At this stage, we should ensure that this fragment is a module for the
customised signature according to Definition 3. Therefore, the following guaran-
tee should be provided for each external ontology and customised signature:

Definition 6 (Module Coverage Guarantee). The ontology O′
S guarantees

coverage of the signature S in O′ ⊇ O′
S if O′

S is a module for S in O′.

Finally, the actual module OSi
is imported, and O evolves to O∪OSi

. This new
ontology might violate safety. Such an effect is obviously undesirable. Hence the
following guarantee should be provided:

Definition 7 (Module Independence Guarantee). Let O be an ontology
and S1,S2 be signatures. O guarantees module independence if, for all O1 with
Sig(O)∩ Sig(O1) ⊆ S1 and for all O2 with Sig(O)∩ Sig(O2) ⊆ S2 and Sig(O1)∩
Sig(O2) = ∅, it holds that O ∪O1 ∪ O2 is a conservative extension of O ∪O1.

Note that, if we dropped the requirement Sig(O1) ∩ Sig(O2) = ∅, then module
independence would hold if, for all O1 as above, O∪O1 were safe for S2. However,
this would be a meaningless definition because no O would guarantee module
independence for any S2 with more than one concept name. In practice, it is safe
to assume that different reference ontologies usually have different namespaces.

In order to provide the necessary guarantees of our methodology, we will now
make use of the locality conditions introduced in Section 2.2 and some general
properties of conservative extensions, safety and modules.

The Safety Guarantee. In Section 2.2, we argue that the simultaneous refine-
ment and generalisation of an external concept may violate safety. To preserve
safety, we propose to use two locality conditions: ⊥-locality, suitable for refine-
ment, and >-locality, suitable for generalisation. These conditions can be checked
syntactically using the grammars defined in Figure 2, and therefore they can be
easily implemented. In order to achieve the safety guarantee at the end of the
offline phase, we propose to follow the procedure sketched in Figure 4.

The following holds upon completion of the procedure: for each Si, if the user
selected the refinement (generalisation) view, then O is ⊥-local (>-local) w.r.t.
Si, which is sufficient to guarantee safety:

Proposition 8. Let O be an ontology and S = S1] . . .] Sn be the union of
disjoint signatures. If, for each Si, either O is ⊥-local or >-local w.r.t. Si, then
O guarantees safety w.r.t. S1, . . . ,Sn.

The Module Coverage Guarantee. The fragment extracted for each cus-
tomised signature in the online phase must satisfy the module coverage guar-
antee. Given an external ontology O′ and customised signature Si, the scope

Input Ontology O, disjoint signatures S1, . . . ,Sn

a choice among refinement and generalisation for each Si

Output an ontology O1 that guarantees safety

1: O1 := O
2: while exists Si such that O not local according to the selection for Si do

3: check

(
⊥-locality of O1 w.r.t. Si if Si is to be refined

>-locality of O1 w.r.t. Si if Si is to be generalised

4: if non-local then
5: O1 := repair O1 until it is local for Si according to the choice for Si

6: end if
7: end while
8: return O1

Figure 4. A procedure for checking safety

of the ⊥-module and >-module is determined: the ⊥-module contains all the
super-concepts in O′ of the concepts in Si, whereas the >-module contains the
sub-concepts. The extraction of these modules, however, may introduce unneces-
sary symbols not in Si. To reduce the size of the modules, we proceed as follows:
first, extract the minimal ⊥-module O′

1 for S in O′; then, extract the minimal
>-module O′

2 for S in O′
1. Now, O′

2 satisfies the module coverage guarantee:

Proposition 9. Let O′
1 = UpMod(O′,S), and O′

2 = LoMod(O′
1,S). Then O′

2

guarantees coverage of S in O′.

The Module Independence Guarantee. When a module is imported in the
online phase (see Figure 3), module independence should be guaranteed—that
is, after importing a module for a signature Si from an external ontology O′

i into
O, the extended ontology O should still satisfy safety.

Proposition 10. Given O and disjoint signatures S1,S2, if, for each i = 1, 2,
O is ⊥-local or >-local w.r.t. Si, then O guarantees module independence.

4 The Ontology Reuse Tool

We have developed a Protégé 410 plugin that supports the methodology pre-
sented in Section 3. The plugin and user manual can be downloaded from
http://krono.act.uji.es/people/Ernesto/safety-ontology-reuse.

The offline phase first involves the selection of the external entities. Our
plugin provides functionality for declaring entities as external and for defining
the associated external ontology URI. This information is stored in the ontol-
ogy using OWL 1.1 ontology/entity annotation axioms [5]. The set of external
entities with the same external ontology URI can be viewed as one of the Si.
10 Ontology Editor Protégé 4: http://www.co-ode.org/downloads/protege-x/

ProSÉ allows for specifying refinement or generalisation for each external on-
tology. The tool then provides safety checking of the ontology w.r.t. each group
of external symbols separately. This check uses ⊥-locality/>-locality for refine-
ment/generalisation. The non-local axioms are displayed for a possible repair.

Figure 5 shows the ProSÉ tab with the signature subgroups in the top left
corner, and the non-local axioms in the bottom left corner. In this phase, the
user may work completely offline, without the need of extracting and importing
external knowledge, and even without knowing exactly from which ontology
the reused entities will be taken. The specification of the URIs of the external
ontologies is optional at this stage. Even if a URI is given, it may not refer to a
real ontologies—it may simply act as a temporary name.

Figure 5. ProSÉ—a Protégé-4 P lugin for Reusing Ontologies: Safe and Économique

In the online phase, the user chooses external ontologies and will import ax-
ioms from them. At this stage, the groups Si of external symbols to be imported
should refer to the location of a “real” external ontology. Once an Si has been
selected, it can be customised by adding super-concepts and sub-concepts of the
selected symbols. The tool allows for previewing the extended Si. Next, a module
for the extended Si can be extracted, which is computed using the procedure
in Proposition 9. The user can compute the module, preview it in a separate
frame, and either import it or cancel the process and come back to the signature
customisation stage. It is also possible to import the whole external ontology
instead of a module. Currently, modules are imported “by value”—they will be-
come independent from the original ontology. If the external ontology on the

Web evolves, this will not affect the module. The right hand side of the ProSÉ
tab reflects the workflow of the online phase.

So far, we have demonstrated our tool to various ontology developers11, who
have expressed great interest. We are currently working on a proper user study. In
http://www.cs.man.ac.uk/∼schneidt/publ/safe-eco-reuse-report.pdf,
we describe experiments we have performed to show that locality-based modules
are reasonably sized compared to the whole ontology.

5 Related Work

Ontology Engineering Methodologies. Several ontology engineering method-
ologies can be found in the literature, e.g., Methontology [6], On-To-Knowledge
(OTK) [7], and ONTOCLEAN [8]. These methodologies, however, do not address
ontology development scenarios involving reuse. Our proposed methodology is
complementary and can be used in combination with them.

Ontology Segmentation and Ontology Integration Techniques. Re-
cently, a growing body of work has been developed addressing ontology mod-
ularisation, mapping and alignment, merging, integration and segmentation,
see [9, 10, 11] for surveys. This diverse field originates from different communi-
ties. In particular, numerous techniques for extracting fragments of ontologies
are known. Most of them, such as [12, 13, 14], rely on syntactic heuristics for
detecting relevant axioms. These techniques do not attempt to formally specify
the intended outputs and do not provide any guarantees.

Ontology Reuse techniques. There are various proposals for “safely” com-
bining modules; most of them, such as E-connections, Distributed Description
Logics and Package-based Description Logics, propose a specialised semantics
for controlling the interaction between the importing and the imported mod-
ules to avoid side-effects, for an overview see [15]. In contrast, we assume that
reuse is performed by simply building the logical union of the axioms in the
modules under the standard semantics. We provide the user with a collection of
reasoning services, such as safety testing, to check for side-effects. Our paper is
based on theoretical work [16, 17, 4, 3] which enables us to provide the necessary
guarantees. We extend this work with a methodology and tool support.

6 Future Work

We aim at extending the tool support so that the user can “shop” for symbols
to reuse: it will allow to browse an ontology for symbols to reuse and provide a
simple mechanism to pick them and, on “check-out”, will compute the relevant
module. Next, we plan to carry out a user study to assess the usefulness of the
interface and how to improve it. Finally, our current tool support implements a

11 Thanks to Elena Beißwanger, Sebastian Brandt, Alan Rector, and Holger Stenzhorn
for valuable comments and feedback.

“by value” mechanism: modules are extracted at the user’s request. In addition,
we would like to support import “by reference”: a feature that checks whether
the imported ontology has changed and thus a new import is necessary.

Acknowledgements. This work has been partially supported by the PhD
Fellowship Program of the Generalitat Valenciana, by the Fundació Caixa
Castelló-Bancaixa, and by the UK EPSRC grant no. EP/E065155/1.

References

[1] Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of on-
tologies: Theory and practice. J. of Artificial Intelligence Research 31 (2008)
273–318

[2] Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-
vative extensions in description logics. In Doherty, P., Mylopoulos, J., Welty, C.,
eds.: Proc. of KR-06, AAAI Press (2006) 187–197

[3] Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive descrip-
tion logics. In: Proc. of IJCAI-07, AAAI (2007) 453–459

[4] Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for
modularity of ontologies. In: Proc. of IJCAI-07, AAAI (2007) 298–304

[5] Motik, B., Patel-Schneider, P.F., Horrocks, I.: OWL 1.1 Web Ontology Language
Structural Specification and Functional-Style Syntax. W3C Member Submission
(2007)

[6] M. Fernandez, A. Gomez-Perez, e.a.: Methontology: From ontological art towards
ontological engineering. In: AAAI, Stanford, USA. (1997)

[7] Sure, Y., Staab, S., Studer, R.: On-to-knowledge methodology. In: In Handbook
on Ontologies. Edited by S. Staab and R. Studer (eds.). Springer. (2003)

[8] Guarino, N., Welty, C.: Evaluating ontological decisions with ontoclean. Commun.
ACM 45(2) (2002) 61–65

[9] Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. The
Knowledge Engineering Review 18 (2003) 1–31

[10] Noy, N.F.: Semantic integration: A survey of ontology-based approaches. SIG-
MOD Record 33(4) (2004) 65–70

[11] Noy, N.F.: Tools for mapping and merging ontologies. In Staab, S., Studer, R.,
eds.: Handbook on Ontologies. International Handbooks on Information Systems.
Springer (2004) 365–384

[12] Noy, N., Musen, M.: The PROMPT suite: Interactive tools for ontology mapping
and merging. Int. J. of Human-Computer Studies 6(59) (2003)

[13] Seidenberg, J., Rector, A.L.: Web ontology segmentation: analysis, classification
and use. In: Proc. of WWW 2006, ACM (2006) 13–22

[14] Jiménez-Ruiz, E., Berlanga, R., Nebot, V., Sanz, I.: Ontopath: A language for
retrieving ontology fragments. In: Proc. of ODBASE, LNCS. (2007) 897–914

[15] Cuenca Grau, B., Kutz, O.: Modular ontology languages revisited. In: Proc. of
the Workshop on Semantic Web for Collaborative Knowledge Acquisition. (2007)

[16] Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
extracting modules from ontologies. In Williamson, C.L., Zurko, M.E., Patel-
Schneider, P.F., Shenoy, P.J., eds.: WWW, ACM (2007) 717–726

[17] Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Ontology reuse: Better
safe than sorry. In: Proc. of DL 2007. Volume 250 of CEUR WS Proc. (2007)

